首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pentachlorophenol (PCP) adsorption and desorption equilibrium was studied with two Menfro silt loam soils — upper horizon and lower horizon. For the adsorption studies the variables were: temperature (10 and 30 °C) and the amount of organic matter. The variables for the desorption studies were: temperature (10 and 30 °C), pH and the presence of an anionic and a cationic surfactant. The results from these studies confirmed the importance of soil organic matter for adsorption of PCP on the soils. The adsorption data at different temperatures indicated the physical nature of the adsorption process. The desorption data produced non-singularity and some PCP was irreversibly adsorbed onto the soil despite repeated washings. Increased pH increased the desorption of PCP from the soil. The anionic surfactant, sodium dodecylbenzene sulfonate (SDS) was able to desorb significant amounts of PCP from the soil at doses equal to critical micelle concentration (CMC). But, the nonionic surfactant, surfactant, Triton X-405 required a much higher dose (twice the CMC) to cause a significant desorption of PCP from the soil.  相似文献   

2.
When exposed to air and adequate moisture, soils containing sulphides (sulphidic soils with pH > 4) become oxidized and generate sulphuric acid to form ‘sulphuric soils’ (pH < 4). Treatment of this acidity is undertaken by addition of lime. In this study, we investigated the effectiveness of adding plant organic matter, and simple carbon and nitrogen compounds, as alternatives to lime to sulphuric and sulphidic soils. In sulphuric soils under aerobic conditions, organic matter increased pH, the extent depending on the nitrogen content. Lucerne hay, which had the largest nitrogen content, increased the pH from 3.7 to 8.0, while pea straw and wheat straw effected smaller changes, in proportion to their respective nitrogen contents. Lucerne hay also caused the greatest reductions in soil redox potential and sulphate content, consistent with the action of sulphate‐reducing bacteria. Similarly, incorporation of organic matter under aerobic conditions effectively prevented sulphidic soil acidification and reduced the redox potential and sulphate content. The individual effects of carbon and nitrogen compounds were then examined and compared to plant organic material. Glucose was ineffective at both small and large concentrations, while molasses increased the pH slightly to 4.6 and acetate to 5.9. None of these carbon compounds was as effective as complex organic matter. Nitrogen added alone as nitrate or ammonia had little or no effect on pH, whereas organic nitrogen in the form of urea caused the pH to rise to 6.3 and reduced the redox to less than 0 mV but had no significant effect on sulphate content.  相似文献   

3.
碳酸氢铵和尿素在山东省主要土壤类型上的氨挥发特性研究   总被引:11,自引:1,他引:11  
采用全程密闭通气法研究了山东省四种主要土壤类型 (棕壤 ,褐土 ,潮土和砂姜黑土 ) ,尿素和碳酸氢铵表施后的氨挥发特点。结果表明 :碳酸氢铵初始的氨挥发强度大于尿素 ,而氨挥发总量小于尿素 ,尿素在四种类型土壤上铵挥发强度次序为 :褐土 >潮土≈砂姜黑 >棕壤 ,氨挥发总量次序为 :褐土 >潮土≈砂姜黑土 >棕壤 ;碳酸氨氢在四种类型土壤上氨挥发强度次序为 :褐土 >潮土≈砂姜黑土 >棕壤 ,挥发总量次序为 :褐土 >棕壤 >潮土≈砂姜黑土。影响氨挥发的因素主要有 :氮素形态 ,土壤 pH、CEC、粘粒含量和粘土矿物类型、有机质含量等 ,但在不同土壤中其影响的主导因素又有较大差异。  相似文献   

4.
本文对环江肯福环境移民安置示范区所采 88个表层土样及 4个剖面土样有机质 ,全氮 ,全磷 ,全钾 ,水解氮 ,速效磷 ,速效钾 ,pH等指标进行了测定。结果表明该区表层土壤有机质含量较高 ,土壤氮相对丰富 ,钾含量偏低 ,磷严重缺乏 ,pH偏酸性。土壤剖面发育完整 ,在土壤剖面中有机质、氮、速效磷、交换性钾主要聚集在 2 0cm的表层土壤中 ,全磷随深度的增加而降低 ,全钾和 pH值则随土壤深度增加而上升  相似文献   

5.
Abstract

Copper (Cu) is bound strongly to organic matter, oxides of iron (Fe) and manganese (Mn), and clay minerals in soils. To investigate the relative contribution of different soil components in the sorption of Cu, sorption was measured after the removal of various other soil components; organic matter and aluminum (Al) and Fe oxides are important in Cu adsorption. Both adsorption and desorption of Cu at various pH values were also measured by using diverse pasture soils. The differences in the sorption of Cu between the soils are attributed to the differences in the chemical characteristics of the soils. Copper sorption, as measured by the Freundlich equation sorption constants [potassium (K) and nitrogen (N)], was strongly correlated with soil properties, such as silt content, organic carbon, and soil pH. The relative importance of organic matter and oxides on Cu adsorption decreased and increased, respectively, with increasing solution Cu concentrations. In all soils, Cu sorption increased with increasing pH, but the solution Cu concentration decreased with increasing soil pH. The cumulative amounts of native and added soil Cu desorbed from two contrasting soils (Manawatu and Ngamoka) during desorption periods showed that the differences in the desorbability of Cu were a result of differences in the physico‐chemical properties of the soil matrix. This finding suggests that soil organic matter complexes of Cu added through fertilizer, resulted in decreased desorption. The proportions of added Cu desorbed during 10 desorption periods were low, ranging from 2.5% in the 24‐h to 6% in the 2‐h desorption periods. The desorption of Cu decreased with increasing soil pH. The irreversible retention of Cu might be the result of complex formation with Cu at high pH.  相似文献   

6.
Abstract

Zinc (Zn) deficiency is believed to be a consequence of reactions taking place between soluble Zn and the soil solid phase. This study was carried out to obtain quantitative relationships between Zn in equilibrium solution and that retained by the soil solids in calcareous soils. Twenty calcareous soils (saturated paste pH 6.9–7.9; calcium carbonate equivalent 4.64–22.80%) from Tehran province, Iran, were equilibrated with varying solution concentrations of Zn, and the amounts removed from the solution were used to check the fit to five adsorption isotherms, namely, Freundlich, Langmuir, Temkin, Gunary, and two‐surface Langmuir. Adsorption data of all soils showed statistically significant fit to the first four adsorption isotherms, but only 7 of the 20 soils tested showed fit to the two‐surface Langmuir. Coefficients of the adsorption isotherms showed statistically significant relationship with soil characteristics. Clay percentage, calcium carbonate equivalent percentage, and cation exchange capacity appeared to be the most influential soil characteristics with regard to Zn adsorption, whereas soil organic matter seemed to be of no importance under the conditions of this study.  相似文献   

7.
Abstract

The adsorption and mobility of herbicide, metamitron, in 41 soils samples from the province of Salamanca (Spain) was studied. Thirty‐four of the samples assayed were from irrigated soils and seven were from natural, uncultivated soils with organic matter contents above 3%. The correlations between the Freundlich K constants, Kd distribution coefficients, and Rf mobility parameters and the soils parameters were determined. Considering all the soils, the soils with organic matter contents above 2% or the soils with organic matter contents below 2%, significant correlations (p<0.001 to p<0.05) were found between K and Kd and the organic matter content of the soils. There were also a significant correlations (p<0.05) of K and Kd with clay+silt and clay contents of soils with organic matter contents below 2%. The adsorption of the herbicide by isolated soil components confirmed the results obtained with the soils and point to the importance of the exchangeable cation nature of the samples in the adsorption process. Based on Rf values obtained by TLC, the herbicide was found to be moderately mobile in 74% and mobile in 26% of the soils studied. The results of metamitron leaching by thin layer chromatography (TLC) and in undisturbed soil columns indicated the influence of organic matter content and of soil texture on the mobility of this herbicide.  相似文献   

8.
Abstract

To evaluate contributions of organic matter, oxides, and clay fraction to copper (Cu) adsorption in six characterized soils, adsorption isotherms and distribution coefficients were obtained by a batch experimental method. Copper adsorption isotherms from untreated soil, organic matter removed from samples, and organic‐matter‐ and oxide‐removed samples were compared with curve patterns and correlated to Langmuir and Freundlich models. Copper sorption data on untreated soils described L or H‐curves, whereas in soils deprived of any component, their curves were S‐type. Distribution coefficients allowed knowing Cu adsorption capacity of untreated soil and of organic matter, oxides, and clay fraction. Soil organic matter is the main component that affects Cu adsorption as long as soil pH is near neutrality. At acid pH, oxides are the main component that affects Cu adsorption, although to a much smaller extent than organic matter near neutral conditions. Soil pH is the main soil factor that determines Cu adsorption.  相似文献   

9.
三江平原(包括穆稜—兴凯平原)位于我国的东北部,是黑龙江、乌苏里江和松花江汇流的三角地带,是由沼泽、草甸、森林、河流、湖泊和农田组成的一个巨大的湿生生态系统的低湿平原,是我国重要商品粮基地之一。这里蕴藏着丰富的泥炭资源,合理地开发利用这些泥炭资源,对改良和培肥土壤,建设高产稳产农田和提高作物产量有重要意义。  相似文献   

10.
During autumn 1982, soil samples were collected from 15 winter cereal fields in central and southern England. The soils either contained ash resulting from the burning of straw in the field or were ash free. Ash containing soils had much higher adsorption levels (measured as Kd values for chlortoluron) than ash-free soils. There were smaller differences in organic matter, pH and nutrient content between the 2 soil groups. There was a better correlation between adsorption and organic matter content for ash-free soils than for soils containing ash. The ratio of adsorption level to organic matter content for ash soils was almost twice that for ash-free soils. It was concluded that ash can make a substantial contribution to herbicide adsorption on minimally cultivated soils and that this could affect herbicide performance. In a tillage experiment where ploughing was followed by direct drilling, adsorption levels increased much more rapidly than organic matter.  相似文献   

11.
Fifty-five soil samples representing Egyptian alluvial and lacustrine soils were chemically analyzed for total Se which was found to vary from 0.18 to 0.85 ppm with an average of 0.45 ppm. These levels are positively correlated with organic matter, total carbonate and clay content of the soils. Minimum variation of total Se with soil depth was found. The chemical fractionation of soil Se, expressed as percent of the total, indicates that on the average about 25.4 % exists in 0.2 M K2SO4-extractable form, 18.5 % is extracted with 0.5 N NH4OH, 9.7 % as 6 N HCl-extractable form and 13.8 % as extractable with 9 N HNO3. Amounts of K2SO4-Se and HNO3-Se in soils correlated significantly with soil organic matter, total carbonate, free iron oxide and clay content. The NH4OH-Se and HCl-Se fractions correlated significantly only with organic matter and clay content. There is also significant correlation between total Se and the studied Se fractions. Specific adsorption of Se by soils was low as expressed by the Langmiur adsorption maximum values. The high soil pH has a reducing effect on Se adsorption.  相似文献   

12.
有机质对红壤烤烟氮素累积分配特征的影响   总被引:6,自引:1,他引:5  
利用15N示踪技术,研究了有机质含量对红壤烤烟氮累积分配特征的影响。结果表明,随着土壤有机质含量增加,烤烟氮素累积时期延长,且累积量增加。烤烟后期吸收的氮素,在低有机质含量红壤上来自土壤供氮,中有机质含量来自肥料供氮,高有机质含量来自肥料供氮与土壤供氮。烤烟吸收总氮量中29.07%~40.26%来自肥料供氮,59.74% ~70.93%来自土壤供氮,表明烤烟吸收氮素大部分来自土壤供氮。氮素在烟株不同部位分配量表现为:烟叶烟茎烟根;烟叶各部位中的分配量为:在低有机质含量的红壤,下、中、上3个部位分配量相等,中有机质含量和高有机质含量上则为上部叶中部叶下部叶。有机质含量对下部叶氮素分配量影响不大,其它部位均表现为有机质含量越高,氮素分配量越大。烤烟不同部位中肥料氮比例表现为下部叶中部叶烟根烟茎上部叶,土壤氮比例表现为上部叶烟茎烟根中部叶下部叶;并且土壤有机含量越高,各部位中土壤氮的比例越高,肥料氮的比例越低,上部叶受土壤供氮影响最大。红壤上烤烟氮肥利用率在25.42%~30.61%之间,低有机质含量土壤氮肥利用率较低,中、高有机质含量利用率相对较高。在施肥过程中,低有机质红壤上应在N 90 kg/hm2基础上适当增加氮肥施用量,中等有机质含量上保持不变,高有机质含量上应适当降低氮肥用量。  相似文献   

13.
The agricultural use of pesticides leads to diffuse pollution whereby the various contaminants of the soil infiltrate into the groundwater reaching lakes and drinking water aquifers. Due to the extensive application of these chemicals, their leaching presents a high environmental risk. Since the adsorption coefficient (K) characterizes the soil / water partitioning [1] and is also representative for leaching, the first step in understanding of the environmental fate of a pollutant is to study its adsorption properties. Weak binding to the soil constituents (low K) leads to groundwater pollution, while a strong binding (high K) results in surface water pollution through the erosion of the soil. Acetochlor is a widely used herbicide all over the world. Similar to other organic pollutants, the environmental fate of this chemical is strongly related to its adsorption properties. Static adsorption equilibrium measurements were carried out at 25°C on different types of Hungarian soils (chernozem, brown forest and sandy soil) characterized by varying amounts of organic matter and pH values. Acetochlor solutions were prepared in the presence of nitrate and phosphate ions (0.1 mol/L sodium nitrate and 0.1 mol/L phosphate uffer, pH=7) which are constituents of fertilizers occurring in high concentrations in the environment. In order to appreciate their effect, adsorption studies were also performed in pure aqueous medium. The equilibrated liquid was analyzed after centrifugation by two different methods (Total Organic Carbon measurement, High Performance Liquid Chromatography). Isotherms obtained under different conditions, as well as on various soils, exhibit a similar shape, thus indicating a two-step adsorption process. The plots cannot be interpreted according to the classes of isotherms suggested by Giles (H-, L- and C-type, [2]). The adsorption coefficients were estimated from the initial slope of the curves. These values were determined not only by the type of the soil, but also by the composition of the aqueous media. Due to the low value of the adsorption coefficients, the acetochlor is a rather mobile pollutant of the soil posing a potential danger to the aquatic environment. The organic matter adsorption coefficients (Kom) [3] were also calculated and they were approximately identical for soils of high organic matter. For the chernozem and brown forest soils, the values of the K and Kom parameters are increasing in the order from water < phosphate buffer < sodium nitrate. For soils of low organic content, the similarity of the Kom values cannot be expected (due to the hyperbolic nature of the equation) as the data really indicate it for the adsorption behavior of the sandy soil. Here, the organic matter plays a less important role and the adsorption is controlled by the solute / inorganic substance interactions. This conclusion is nicely proved by the adsorption of the acetochlor on quartz resulting thereby in a similar plot being obtained for the soils. According to the hypothesis presented here, the first step of the isotherms is controlled by the solute / surface interactions while the solute / adsorbed solute interactions are operating in the second step of the isotherm. The role of the organic matter in this region of the isotherm is probably negligible. The comparison of the adsorption coefficients leads to the conclusion that the presence of nitrate and phosphate ions enhances the adsorption of acetochlor on the soils containing a high percentage of organic matter. As these ions are present in the environment due to the extensive use of fertilizers, they may increase the acetochlor pollution of water by erosion. This conclusion corroborates those earlier observations that reported frequent acetochlor contamination of the surface waters [4–5]. As the organic matter content of the soils plays an important role in the acetochlor adsorption, humic substances must have a strong influence on the transport of this compound. Experiments to obtain adsorption isotherms of further pesticides and the development of a quantitative model are in progress.  相似文献   

14.
The processes controlling the solid–solution partitioning of organic matter in soils are central to understanding carbon cycling in terrestrial ecosystems, yet are poorly understood at present. We studied the partitioning of soil organic matter between solid and solution in batch titrations of 12 soil samples from three European forests in a range of climates. We also examined the release of soil organic matter on repeated leaching. The partitioning was simulated using a model that pictures the pool of potentially mobile organic matter to consist of fractions of differing solubilities. Desorption of organic matter was then effected by an increase in the electrical charge of the organic molecules due to their chemical reactions with other soil components. The model could simulate the partitioning of organic matter in all the soils using two parameters describing the amounts of soil organic matter in each fraction. The release of organic matter on repeated leaching was reasonably well described. The model predicted that dissolved organic matter should have become more hydrophilic with depth in the soil, due to the retention of more hydrophobic components in the upper horizons. This accorded with observed compositions of the soil organic matter. The model also showed that at the ambient pH of the soils, only a small proportion of the potentially mobile organic matter (comprising fulvic acids and hydrophilic moieties) was involved in partitioning to the solution.  相似文献   

15.
选择代表性的酸性、中性和石灰性紫色土为实验材料,采用平衡吸附和动力学吸附法研究了紫色土对可溶性有机碳(DOC)的吸附-解吸特征,分析了土壤理化性质与DOC吸附量之间的关系。结果表明,紫色土对DOC的吸附容量呈以下顺序:酸性紫色土〉中性紫色土〉石灰性紫色土。石灰性紫色土对DOC的解吸率明显高于酸性、中性紫色土,其迁移淋失问题值得重视。紫色土对DOC的吸附过程包括快速吸附和慢速吸附2个阶段,0~0.5 h内吸附速率最大,随后吸附速率逐渐减小,4~6 h内基本达到吸附平衡。土壤pH值、有机质、粘粒和活性铁铝氧化物含量是影响土壤DOC吸附量与解吸率的重要因素。通径分析表明,土壤理化性质对DOC吸附量的直接作用系数大小顺序为活性铝含量〉土壤pH值〉有机质,对DOC解吸率的直接作用系数大小顺序为活性铁含量〉粘粒〉有机质。多元线性回归模型能较好地预测土壤对DOC的吸附及解吸的变化。  相似文献   

16.
为探究有机质在酸性富硒土吸附Se(Ⅳ)过程中的作用,以广西典型富硒区的赤红壤为材料,研究了酸性富硒土去除有机质后,土壤硒的赋存形态、土壤对Se(Ⅳ)的吸附解吸特征及吸附前后土壤基团的变化。结果表明:(1)去除有机质后,土壤中有机结合态硒大幅度减少,铁锰结合态硒成为土壤硒的主要赋存形态。(2)吸附试验表明,土壤对Se(Ⅳ)吸附过程以多分子层的不均质表面吸附为主,吸附过程受控于化学反应与化学吸附;去除有机质后,土壤对Se(Ⅳ)吸附量和吸附强度均显著下降。(3)解吸试验表明,吸附以难解吸的专性吸附为主;去除有机质后,解吸量与解吸率下降,固液分配系数Kd值下降。(4)傅里叶变换红外光谱表明,土壤吸附Se(Ⅳ)与静电引力、络合反应和配位体交换有关;去除有机质减少了有机官能团的数量,导致吸附量减少。综上,有机质的存在,提升了酸性富硒土对Se(Ⅳ)的吸附容量和吸附强度,是造成酸性富硒土硒有效性较低的重要因素。  相似文献   

17.
《CATENA》2005,60(2):113-128
Salt-affected soils differ in their chemical properties to all other soils. Sodicity and salinity may affect the soil organic matter component of these soils. In a field experiment, we investigated organic matter decomposition in nonsaline nonsodic Aquic Argiudoll, a nonsaline sodic Typic Natraquoll, nonsaline nonsodic Petrocalcic Paleudoll and a saline sodic Typic Natralboll in the Pampa Deprimida, Argentina. The objectives were to identify the degree of stabilization of organic matter by association with mineral particles in these soils and to follow in particular the fate of lignin in these soils. We measured organic carbon, total nitrogen and the extent of lignin alteration with soil depth and in various particle size fractions. The salt-affected soils contained much less organic carbon and nitrogen in their mollic epipedons than the nonsaline nonsodic soils, and bioturbation into deeper layers was restrained. In the salt-affected soils most of the organic matter was in sand-sized particles. Retarded degradation of plant residues was indicated by the pattern of lignin-derived phenols, suggesting less alteration of lignin in the salt-affected soils than in the nonsaline nonsodic soils. We suggest that this results from the effects of high pH, high sodicity, and high salinity on the microorganisms and their enzymatic activities. The high pH and high concentrations of monovalent cations decreased formation of solid organo-mineral complexes. We conclude that in the salt-affected soils oxidatively altered organic compounds are susceptible to losses in dissolved or colloidal forms, because these compounds are not stabilized against leaching and mineralization by chemical bonding to soil minerals.  相似文献   

18.
亚热带低丘区退化红壤肥力质量恢复性能的研究   总被引:7,自引:4,他引:7  
试验和分析结果表明 ,退化红壤主要肥力因素的恢复与农用物质的投入和土壤本身理化性质均存在明显的关系。随着物质投入量的增加 ,土壤肥力质量的恢复也逐渐加快。在自然条件下 ,土壤肥力因素的恢复主要与土壤本身属性有关 ,在肥力恢复过程中 ,土壤有机质的增加量与土壤本身有机质含量呈抛物线关系 ,约当土壤有机质含量在 2 0 g/ kg时 ,增幅最大 ;在一定的含氮范围内 ,土壤氮素的增加与土壤全氮含量呈正相关 ;而速效钾的增加量与土壤本身速效钾含量呈反相关。土壤水稳定性团聚体的恢复与土壤粘粒含量及有机质含量呈正相关。试验结果表明 ,在合理的管理条件下 ,红壤肥力质量可以逐渐得到改善  相似文献   

19.
Background, aim, and scope  Ionic liquids (ILs) are a new class of alternative solvents that make ideal non-volatile media for a variety of industrial processes such as organic synthesis and biocatalysis, as alternative electrolytes, as phases and phase modifications in separation techniques, and as alternative lubricants. Once the large-scale implementation of ILs begins, the industrial application will follow. In view of their great stability, they could slip through classical treatment systems to become persistent components of the environment, where the long-term consequences of their presence are still unknown. Sorption on soils has a critical effect on the transport, reactivity, and bioavailability of organic compounds in the environment. So far, the IL sorption mechanism was investigated solely on the basis of batch experiments, which precluded any assessment of the dynamics of the process. An understanding of the mobility of ILs in soil columns is crucial for an accurate prediction of their fate in the soil. The aim of this study therefore was to investigate in detail the mobility of selected imidazolium ILs on three soil types. Moreover, it was decided to study these processes in soils from the coastal region (Gdańsk, Poland), which usually constitute a very important geochemical compartment, participating in the transport of contaminants on their way to the sea. Materials and methods  The mobility of alkylimidazolium ILs was investigated in columns containing soils from the coastal area. In addition, the sorption processes in all the soil systems studied were described isothermally and the equilibrium sorption coefficient was evaluated. The sorption capacities were determined according to OECD guidelines. Sorption dynamics was studied with use of polypropylene columns (diameter—10 mm, height—100 mm) packed with 10 g of soil. The ionic liquid solution was then injected into the soil column and left for 24 h to equilibrate. After this, a solution of 0.01 mM CaCl2 was pumped through the column at a rate of 0.3 ml min–1. Effluents were collected from the bottom of the column and analyzed by HPLC. Results  Sorption was strongest on the Miocene silt and the alluvial agricultural soil and weakest on the podsolic soil and Warthanian glacial till. The K d value of long-chain ILs was far higher than that of the short-chain ones. Among the substances tested, hydroxylated ILs were usually more weakly sorbed. Desorption of ILs is inversely correlated with sorption intensity. The experimental results of the column tests correlate well with those from batch experiments. In the cases of weakly binding soils, ILs were detected almost immediately in the eluent. The elution profiles of long-chain ILs indicate that these compounds are very strongly sorbed onto most soils, although certain amounts were transported through the soil. ILs exhibit a certain mobility in soils: in particular, salts with short and/or hydroxylated side chains are extremely mobile. Discussion  The results indicate a stronger binding of ILs in the first sorption layer; once the first layer is saturated, there are no more active sites on the soil surface (no free charged groups); hence, there are no more strong electrostatic binding sites, and dispersive interaction becomes the dominant interaction potential. The influence of the structure of the ILs, especially the side-chain length was also confirmed: The K d value of long-chain ILs was far higher than that of the short-chain ones. The long alkyl side chain facilitates dispersive interactions with soil organic matter and intermolecular binding, and the build-up of a second layer becomes possible. Among the substances tested, hydroxylated ILs were usually more weakly sorbed. The hydroxyl group in the side chain can alter the polarity of the compound so strongly that interaction with organic matter hardly occurs; these salts then remain in the aqueous phase. The experimental results from the column tests correlate well with those from batch tests. In the weakly binding soils (with low organic matter), the only binding to the soil surface must be via electrostatic interactions, although intermolecular van der Waals (ionic liquid–ionic liquid) interactions could also be taking place. The elution profile maxima for organic rich soils are far smaller than for the other soils. In the former, hydrogen bonding, dispersive and π…π interactions play a more important part than electrostatic interactions. The rapidly “disappearing” maxima of the elution peaks may indicate that, after elution of ILs from the second layer, it is difficult to extract further sorbed ILs. In the first layer, the ILs are bound by much stronger electrostatic interactions. To break these bonds, a greater energy is required than that sufficient to extract ILs from double sorption layers. Results indicate, moreover, that hydrophobic ILs will be sorbed in the first few centimeters of the soil; migration into the soil will therefore be almost negligible. Conclusions  Sorption of ILs was the strongest in soils with the highest cation exchange capacities and a high organic content. ILs were also more strongly bound to the first sorption layer. The sorption coefficients of long-chain ILs were far higher than those of short-chain ones; usually, hydroxylated derivatives were the least strongly sorbed. Results of soil column experiments to investigate the mobility of ILs in soils correlated well with those from batch tests, and the elution profiles were also well correlated with organic matter content. The observed rapidly disappearing elution peak maxima probably indicate that, after elution of the ILs from the second layer, it is difficult to extract further sorbed compounds. Recommendations and perspectives  Obtained results gave an interesting insight into mobility of ionic liquids in soil columns. However, several questions are now opened. It is therefore necessary to undertake further studies focused on total cycle of ionic liquids in the soil environment. This should include their evapotrasporation (lysimeter test), bioaccumulation by plants as well as degradation and transformation processes (chemical, biological, and physical) typically occurring in soils. Moreover, a further risk assessment of ILs is desirable since this study has indicated that these compounds, especially those with low lipophilicities, are generally mobile in the soil matrix. It is already known that short-chain ILs are characterized by low toxicities; should they enter the environment, they will probably migrate within the soil and pose a risk of contamination of surface and ground waters. This topic is relevant to the audience. Environmental threat of short-chain ionic liquids is currently unknown. From the predictive point of view, judging on known low acute toxic effects or high polarities of these compounds seems to be not enough to confirm their “environmental friendliness”. If we are to fully understand the potential environmental effects, one should also have an insight into long-term biological consequences of these ionic liquids, including chronic toxicity tests, bioaccumulation, and biotransformation rates as well as stability against natural elimination mechanisms.  相似文献   

20.
Abstract

The extractant Mehlich‐1 is routinely used in Brazil for determination of soil nutrients, whereas Mehlich‐3 has been suggested as a promising extractor for soil fertility evaluation. Both were used for extraction of molybdenum (Mo) in Brazilian soils with Mo dosage by the KI+H2O2 method. The Langmuir and Freundlich isotherms were used to study soil Mo adsorption. Mehlich‐1 extracted more Mo than Mehlich‐3 in soils with high contents of organic matter, clay, and iron (Fe) oxides. Mehlich‐3 and Mehlich‐1 extractions correlated positively and significantly with amorphous Fe oxides, crystalline Fe oxides, and organic matter. Molybdenum recovering rates correlated to crystalline Fe oxides and clay contents but not to organic matter, pH, and Mo adsorption capacity. Amorphous and crystalline Fe oxides, clay, and organic matter were responsible for most of the Mo adsorption. The Langmuir isotherm described better the Mo adsorption to soil amorphous Fe oxides and organic matter than the Freundlich isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号