首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the hypothesis that changes in the quality and/or quantity of soil particulate organic matter (POM) after afforestation of pasture land with Eucalyptus globulus Labill. plantations caused increased nitrogen (N) immobilization and a decline in N availability. The quantity of POM was measured on soils from 10 paired pasture/plantation sites in south-western Australia. Net mineralization of C and N were measured over a 14-day incubation of POM, whole soil, and a mix of POM (33%) and whole soil (67%) at 25 °C and optimal moisture content (matric potential of 25 kPa). There was no significant difference in total organic C between pasture and plantation. However, the POM fraction C was higher in plantation soils (75%) than under pasture (62%), reflecting the coarser nature of organic inputs under plantation. Total soil N concentration was 20% lower under plantation compared to pasture, and the proportion in the POM was higher (74% compared to 57% for pasture soil). The C:N ratios in POM under both pasture and plantation, and in the whole soil under plantation were around 19, but C:N ratios of whole soil under pasture was 17. Average C mineralization was 13% lower in plantation relative to that in pasture soil. The isolated POM fraction had 18% higher C mineralization rate than that in whole soil. The change in net N mineralization with afforestation was marked, with 50% lower net N mineralization in plantation than pasture whole soils. Net N mineralization in the isolated POM fraction was also about 50% of that in the whole soil for both pasture and plantation soils. Although, the pasture and plantation POM had similar C:N ratios, the net N mineralization was 2-fold greater in pasture POM than in plantation POM, suggesting that biochemical characteristics other than the C:N ratio had the main influence on net N mineralization rates. The POM fraction did not significantly immobilize N from the whole soil when placed in a mixture of POM and whole soil, suggesting that N immobilization was not the main mechanism for POM to influence N availability in these soils.  相似文献   

2.
More than 200,000 ha of short rotation Eucalyptus globulus plantations have been established in south-western Australia to supply wood for the pulp and paper industries. Sustaining the productivity of these tree crops over successive rotations will depend in part on maintenance of soil fertility, especially soil nitrogen (N) supply. We investigated the impact of four alternative strategies for management of harvest residues on soil N dynamics in recently logged first rotation plantations. The experiments were conducted over 5 years following harvesting at two sites with contrasting soils—a coarse textured grey sand over laterite (Podzol) with low natural fertility and a relatively fertile red earth soil (Ferralsol). At the grey sand site, 31 t ha−1 of residues containing 219 kg N ha−1 were deposited following harvest while at the red earth site the equivalent figures were 51 t ha−1 of residues and 347 kg N ha−1. Experimental treatments applied included residues burned, removed, retained and retained with double the amount of residues. The impact of treatments on soil nitrogen supply was investigated by incubating intact soil cores in the field to determine rates of net N mineralization. Additionally, the effect of treatments on soil moisture and temperature, the resident pool of soil mineral N and the amount of N potentially available for mineralization was assessed. The mulching effect of retained residues resulted in higher soil moisture where residues had been retained and a trend for soil on these treatments to dry out more slowly with the onset of the dry summer season, especially in the first year following harvest. Diurnal variations in soil temperature were moderated and average soil temperatures were reduced during summer where residues were retained. Concentrations of mineral N in soil were high in the 2 years following harvest at both sites and declined as newly established seedlings developed. At the more fertile site, where mineral N occurred predominantly as nitrate, retention of residues resulted in lower pools of soil mineral N following harvest. The effect of residue treatments on soil mineral N pools was less marked at the grey sand site. Concentrations of potentially mineralizable soil N and the amounts of N mineralized annually were greater where residues were retained at both sites. The results indicate that retention of harvest residues will favour the conservation of N following logging. However, accumulation of soil mineral N following harvesting due to reduced plant uptake will result in leaching of N early in the rotation that is largely independent of residue management. Retaining harvest residues will contribute to enhanced N supply for the next tree crop through mineralization in the long term. However, on some sites, additions of nitrogenous fertilizers will still be required to maximise the rate of tree growth.  相似文献   

3.
The introduction of N2‐fixing tree species in fast growing tree plantations is a sustainable management option aiming to reduce the risk of nitrogen (N) deficiency due to a large and frequent exportation of nutrients at harvest. Differences in soil mineral N preferences between Eucalyptus urophylla × grandis and Acacia mangium may, in addition to facilitation related to atmospheric N2 fixation, contribute to the success of mixed‐species plantations of the two species on nutrient‐poor soils of the coastal Congolese plains. We tested whether these two species differ in their preference for nitrate or ammonium by supplying either ammonium or nitrate enriched in 15N to six‐month‐old potted trees growing in an open‐air nursery. Although the uptake of nitrate tended to be higher than that of ammonium by both species, the difference was not significant and there was no significant difference between the species regarding their preferred form of soil mineral N. Despite much lower N contents in foliage, stems, and roots of eucalypt compared to acacia, the specific rates of N uptake were up to three times higher for eucalypt than acacia, which suggests that atmospheric N2 was the major source of N in the six‐month‐old acacias. We conclude that N2 fixation rather than complementarity for soil mineral nitrogen alleviates the competition between species in successful mixed eucalypt and acacia plantations.  相似文献   

4.
Dissolved organic nitrogen (DON) is a significant nitrogen (N) pool in most soils and is considered to be important for N cycling. The present study focused on paired sites of native remnant woodland and managed pasture at three locations in south-eastern Australia. Improved understanding of N cycling is important for assessing the impact of agriculture on soil processes and can guide conservation and restoration soil management strategies to maintain remnant native woodland systems, which currently exist as small pockets of woodland within extensive managed pasture landscapes. Organic and inorganic N pools were quantified, as well as the rates of amino acid and peptide mineralisation in the paired native woodland and managed pasture systems. Soil DON dominated the soil N pool in both land uses, and the proportion of DON to other N pools was greatest at the most N-limited site (up to ∼70% of extractable N). In both land uses soil ammonium and free amino acid concentrations were similar (∼20% of extractable N), and soil nitrate formed the smallest N pool (<∼5% of extractable N). Mineralisation of 14C-labelled amino acid and peptide substrates was rapid (<3 h), and more amino acid was respired than peptide in both the native woodland and managed pasture soils. Soil C:N ratio was important in separating site and land use differences, and contrasting relationships between soil physico-chemical properties and organic N uptake rates were identified across sites and land uses.  相似文献   

5.
Growth and soil N supply in young Eucalyptus tereticornis stands at two sites in Kerala, India, were examined in response to cover cropping with three legume species (Pueraria phaseoloides, Stylosanthes hamata, and Mucuna bracteata). The effects of legume residues on soil N supply were investigated in a long-term (392 day) laboratory incubation using leaching micro-lysimeters. Residues from the eucalypt and legume species had different rates of net N release during the laboratory incubation. Net N release was significantly related to residue N concentration (R2 =0.94), the C:N ratio (R2 =0.91), the lignin:N ratio (R2 =0.83), and the (lignin + soluble polyphenol):N ratio (R2 =0.95). Nitrogen release rates declined in the order Mucuna > Pueraria > Eucalyptus > Stylosanthes. There was no net N release from Stylosanthes residues during the 392-day laboratory incubation, whereas Mucuna and Pueraria released N throughout the incubation period. Net N release from mixtures of legume and eucalypt residues was not additive in the early phase of the incubation, probably because eucalypt residues initially immobilized a portion of the legume-derived N in addition to the soil-derived N. Legume establishment had no significant effect on tree growth at one site (Kayampoovam), but resulted in depressed tree growth at the lower rainfall site (Punnala) at 18 months. There were no significant treatment effects on growth at Punnala after that time. Cover cropping with legumes during the early phase of forest plantation growth may be a useful mechanism to enhance soil N supply and optimize the synchrony between N supply and tree N uptake. Although these effects did not translate into improved plantation growth in the 3 years of this study, improved soil organic matter and N fertility may help ensure sustainable productivity over several rotations in the future. This study showed that the effect of legumes on N dynamics varies markedly with legume species. This, together with other factors (e.g. competition with trees, N fixation capacity), will be important in selecting suitable species for cover cropping in forest plantations.  相似文献   

6.
Abstract. The ability of two nitrogen cycle models, of contrasting complexity, to predict N mineralization from a range of grassland soils in the UK, was evaluated. These were NCYCLE, a simple mass balance model of the N cycle in UK grasslands, and CENTURY, a more complex model simulating long-term C, N, P & S dynamics in grassland ecosystems. The models were tested using field measurements of net N mineralization from a range of grassland soils (differing in soil type, history & management practice), obtained over a 2 year period using a soil core incubation technique. This method was considered to measure the total net release of mineral N from the soil organic matter over a specified time, including N which may have been recycled several times. NCYCLE consistently under-estimated mineralization rates at all sites. By contrast, there was some correlation between CENTURY predictions of net N mineralization and field measurements. This may have reflected the different abilities of the two models to simulate N recycling. Neither model, however, was able to predict adequately the effect of cultivation and reseeding on net N mineralization.  相似文献   

7.
黄土高原北部生长季土壤氮素矿化对植被和地形的响应   总被引:1,自引:1,他引:0  
氮素矿化是陆地生态系统氮循环的重要过程,对氮素有效性有着重要影响。本文在黄土高原北部六道沟小流域选取退耕年限相近的油松和柠条坡地,用原位培养法测定生长季节(4—10月)不同坡位冠层下和冠层外0~10 cm和10~20 cm土层土壤氮素矿化速率,以确定该区氮素矿化的季节动态特征和主要影响因素。结果表明,研究区生长季土壤矿质氮以铵态氮为主,其含量在0~10 cm和10~20 cm土层分别占矿质氮总量的61%和70%,并随生长季的推移而升高。油松林上坡位和中坡位土壤铵态氮显著高于下坡位土壤,柠条林不同坡位铵态氮差异不显著。土壤硝态氮和矿质氮不受坡位的影响,但与林型和采样位置有关,冠层下硝态氮在油松林与冠层外相近,在柠条林则高于冠层外。生长季土壤氮素矿化在0~10 cm土层由硝化作用引起,在10~20 cm土层则由硝化和铵化作用共同引起。铵化速率在生长季初期较高,中期较低,并受坡位、林型和采样位置的影响。土壤硝化和矿化速率在油松林不受采样位置影响,但是在柠条林则以冠层下较高。硝化和矿化速率在冠层下以下坡位土壤最高,在冠层外则以下坡位土壤最低。柠条林促进了冠层下土壤氮素的硝化和矿化过程,有利于矿质氮的积累;油松林对矿质氮和氮素矿化的影响不受采样位置影响。  相似文献   

8.
Background, aim, and scope  Hoop pine (Araucaria cunninghamii) is a nitrogen (N) demanding indigenous Australia softwood species with plantations in Southeast Queensland, Australia. Soil fertility has declined with increasing rotations and comparison study of N cycling between hoop pine plantations, and adjacent native forest (NF) is required to develop effective forest management for enhancing sustainable forest production and promoting environmental benefits. Field in situ mineral 15N transformations in these two forest ecosystems have not been studied. Hence, the present study was to compare the differences in soil nutrients, N transformations, 15N fluxes, and fate between the hoop pine plantation and the adjacent native forest. Materials and methods  The study sites were in Yarraman State Forest (26°52′ S, 151°51′ E), Southeastern Queensland, Australia. The in situ core incubation method was used in the field experiments. Mineral N was determined using a LACHAT Quickchem Automated Ion Analyzer. 15N were performed using an isotope ratio mass spectrometer with a Eurovector elemental analyzer. All statistical tests were carried out by the SPSS 11.0 for Windows statistical software package. Results  Soil total C and N were significantly higher in the NF than in the 53-year-old hoop pine plantation. Concentrations of NO3 were significantly higher in the NF soil than in the plantation soil. The plantation soil had significantly higher 15N and 13C natural abundances than the NF soil. The NF soil had significantly lower C/N ratios than the plantation soil. NO3 –N was dominated in mineral N pools in both NF and plantation soils, accounting for 91.6% and 70.3% of the total mineral N pools, respectively. Rates of net nitrification and net N mineralization were, respectively, four and three times higher in the NF soil than in the plantation soil. The 15NO3 –N and mineral 15N were significantly higher in the NF soil than in the plantation soil. Significant difference in 15NH4 +–N was found in the NF soil before and after the incubation. Discussion  The NF soil had significantly higher NO3 –N, mineral N, total N and C but lower δ15N, δ13C, and C/N ratios than the plantation soil. Moreover, the rates of soil net N mineralization and nitrification were significantly higher, but ammonification rate was lower in the NF than in the plantation. The NF soil had many more dynamic N transformations than the plantation soil due to the combination of multiple species and layers and, thus, stimulation of microbial activity and alteration of C and N pool sizes in favor of the N transformations by soil microbes. The net rate of N and 15N transformation demonstrated differences in N dynamic related to the variation in tree species between the two ecosystems. Conclusions  The change of land use and trees species had significant impacts on soil nutrients and N cycling processes. The plantation had larger losses of N than the NF. The NO3 –N and 15NO3 –N dominated in the mineral N and 15N pools in both forest ecosystems. Recommendations and perspectives  Native forest soil had strong N dynamic compared with the plantation soil. Composition of multiple tree species with different ecological niches in the plantation could promote the soil ecosystem sustainability. The 15N isotope dilution technique in the field can be quite useful for studying in situ mineral 15N transformations and fate to further understand actual N dynamics in natural forest soils.  相似文献   

9.
Tropical regions are currently undergoing remarkable rates of land use change accompanied by altered litter inputs to soil. In vast areas of Southern Ecuador forests are clear cut and converted for use as cattle pastures. Frequently these pasture sites are invaded by bracken fern, when bracken becomes dominant pasture productivity decreases and the sites are abandoned. In the present study implications of invasive bracken on soil biogeochemical properties were investigated. Soil samples (0-5 cm) were taken from an active pasture with Setaria sphacelata as predominant grass and from an abandoned pasture overgrown by bracken. Grass (C4 plant) and bracken (C3 plant) litter, differing in C:N ratio (33 and 77, respectively) and lignin content (Klason-lignin: 18% and 45%, respectively), were incubated in soils of their corresponding sites and vice versa for 28 days at 22 °C. Unamended microcosms containing only the respective soil or litter were taken as controls. During incubation the amount of CO2 and its δ13C-signature were determined at different time intervals. Additionally, the soil microbial community structure (PLFA-analysis) as well as the concentrations of KCl-extractable C and N were monitored. The comparison between the control soils of active and abandoned pasture sites showed that the massive displacement of Setaria-grass by bracken after pasture abandonment was characterized by decreased pH values accompanied by decreased amounts of readily available organic carbon and nitrogen, a lower microbial biomass and decreased activity as well as a higher relative abundance of actinomycetes. The δ13C-signature of CO2 indicated a preferential mineralization of grass-derived organic carbon in pasture control soils. In soils amended with grass litter the mineralization of soil organic matter was retarded (negative priming effect) and also a preferential utilization of easily available organic substances derived from the grass litter was evident. Compared to the other treatments, the pasture soil amended with grass litter showed an opposite shift in the microbial community structure towards a lower relative abundance of fungi. After addition of bracken litter to the abandoned pasture soil a positive priming effect seemed to be supported by an N limitation at the end of incubation. This was accompanied by an increase in the ratio of Gram-positive to Gram-negative bacterial PLFA marker. The differences in litter quality between grass and bracken are important triggers of changes in soil biogeochemical and soil microbial properties after land use conversion.  相似文献   

10.
N mineralization capacity and its main controlling factors were studied in a large variety (n=112) of native (forest, bush) and agricultural (pasture, cultivated) soils from several climatic zones in Spain. The available inorganic N content, net N mineralization, and net N mineralization rate were determined after 6 weeks of aerobic incubation. NH inf4 sup+ –N largely predominated over NO inf3 sup- -N (ratio near 10:1) except in some agricultural soils. Net N mineralization predominated (83% of soils) over net N immobilization, which was more frequent in agricultural soils (25%) than in native soils (9%). In forest soils, both net N mineralization and the net N mineralization rate were significantly higher than in the other soil groups. The net N mineralization rate of pasture and cultivated soils was similar to that of bush soils, but available inorganic N was lower. The net N mineralization rate decreased in the order: soils over acid rocks>soils over sediments>soils over basic rocks or limestone; moreover, the highest net N mineralization and available inorganic N were found in soils over acid rocks. The highest N mineralization was found in soils with low C and N contents, particularly in the native soils, in which N mineralization increased as the C:N ratio increased. N mineralization was higher in soils with a low pH and base saturation than in soils with high pH and base saturation values, which sometimes favoured N immobilization. Soils with an Al gel content of >1% showed lower net N mineralization rates than soils with Al gel contents of <1%, although net N mineralization and available inorganic N did not differ between these groups. The net N mineralization rate in silty soils was significantly lower than in sandy and clayey soils, although soil texture only explained a low proportion of the differences in N mineralization between soils.  相似文献   

11.
Rates of N mineralization were measured in 27 forest soils encompassing a wide range of forest types and management treatments in south-east Australia. Undisturbed soil columns were incubated at 20°C for 68 days at near field-capacity water content, and N mineralization was measured in 5-cm depth increments to 30 cm. The soils represented three primary profile forms: gradational, uniform and duplex. They were sampled beneath mature native Eucalyptus sp. forest and from plantations of Pinus radiata of varying age (<1 to 37 years). Several sites had been fertilized, irrigated, or intercropped with lupins. The soils ranged greatly in total soil N concentrations, C:N ratios, total P, and sand, silt, and clay contents. Net N mineralization for individual soil profiles (0–30 cm depth) varied from 2.0 to 66.6 kg ha-1 over 68 days, with soils from individual depths mineralizing from <0 (immobilization) to 19.3 kg ha-1 per 5 cm soil depth. Only 0.1–3.1% of the total N present at 0–30 cm in depth was mineralized during the incubation, and both the amount and the percentage of total N mineralized decreased with increasing soil depth. N fertilization, addition of slash residues, or intercropping with lupins in the years prior to sampling increased N mineralization. Several years of irrigation of a sandy soil reduced levels of total N and C, and lowered rates of N mineralization. Considuring all soil depths, the simple linear correlations between soil parameters (C, N, P, C:N, C:P, N:P, coarse sand, fine sand, silt, clay) and N mineralization rates were generally low (r<0.53), but these improved for total N (r=0.82) and organic C (r=0.79) when the soils were grouped into primary profile forms. Prediction of field N-mineralization rates was complicated by the poor correlations between soil properties and N mineralization, and temporal changes in the pools of labile organic-N substrates in the field.  相似文献   

12.
Long‐term effects of improved pasture establishment (with high proportion of legumes) on soil organic‐C status and N availability in Mediterranean cork oak (Quercus suber L.) woodlands were assessed. Soils were sampled beneath scattered crowns and in open areas, considering two systems: unmanaged and managed woodlands where improved pastures were installed 26 and 32 years ago. Total and labile C and N pools were measured and C and N mineralization were determined over 24 weeks laboratory incubation. Soils under improved pastures showed higher organic‐C, total‐N and net N mineralization than those under unmanaged pasture, mainly when established beneath trees. Potentially mineralizable C, C mineralization rate and microbial C were not statistically different between the unmanaged and improved pasture sites, but were higher closer to the tree than in the open area (1.8, 1.2 and 1.2 times, respectively). The qCO2 was higher in improved pastures (1.7 times). Labile pool of C and N extracted with hot water increased under improved pasture (3.4 and 1.7 times, respectively). Results indicate that soil quality amelioration by improved pastures is stronger in the presence of oak trees. Management systems that favour oak tree maintenance and regeneration should be taken into account to reverse soil degradation.  相似文献   

13.
Measurements of N transformation rates in tropical forest soils are commonly conducted in the laboratory from disturbed or intact soil cores. On four sites with Andisol soils under old-growth forests of Panama and Ecuador, we compared N transformation rates measured from laboratory incubation (at soil temperatures of the sites) of intact soil cores after a period of cold storage (at 5 °C) with measurements conducted in situ. Laboratory measurements from stored soil cores showed lower gross N mineralization and NH4+ consumption rates and higher gross nitrification and NO3 immobilization rates than the in-situ measurements. We conclude that cold storage and laboratory incubation change the soils to such an extent that N cycling rates do not reflect field conditions. The only reliable way to measure N transformation rates of tropical forest soils is in-situ incubation and mineral N extraction in the field.  相似文献   

14.

Purpose

Plantation is an important strategy for forest restoration and carbon (C) storage. Plantations with different tree species could significantly affect soil properties, including soil pH, soil nutrient content, soil microbial activities, and soil dissolved organic C. Changes in these abiotic and biotic factors could regulate mineralization of soil organic C (SOC). However, it remains unclear to what extent these factors affect the mineralization of SOC under different tree species plantations.

Materials and methods

Soil was collected at 0–10 cm depth from plantations with Pinus elliottii Engelm. var. elliottii, Araucaria cunninghamii, and Agathis australis, respectively, in southeast Queensland, Australia. Soil samples were assayed for soil organic C; organic N and mineralization of SOC; soil particle size; total C, N, and P; and pH. In addition, a 42-day laboratory incubation with substrate additions was done to examine the influence of different substrates and their combinations on bio-available organic C.

Results and discussion

Our results suggested that SOC mineralization was mainly determined by soil pH and soil C content among plantations with different tree species, whereas SOC mineralization was not correlated with soil N and P contents. These results were further confirmed by the substrate addition experiments. SOC mineralization of soils from slash pine showed greater response to C (glucose) addition than soils from other two plantations, which suggested significant differences in SOC mineralization among plantations with different tree species. However, neither N addition nor P addition had significant effects on SOC mineralization.

Conclusions

Our results indicated that plantations with different tree species substantially affect the mineralization and stability of soil organic C pool mainly by soil pH and soil C content.
  相似文献   

15.
红壤水稻土微生物生物量氮与总氮矿化的关系   总被引:1,自引:1,他引:0  
陈旸  李忠佩  车玉萍  周立祥 《土壤》2008,40(5):719-724
通过田间采样并布置室内培育试验,研究了红壤水稻土微生物生物量N和总N的矿化动态及其相互关系。结果表明,红壤水稻土微生物生物量N矿化速率和矿化量随培养时间延长而降低,随水稻土肥力水平提高而增加。12周培养期内,红壤水稻土微生物生物量N的一半以上被矿化,其中约1/2的矿化量出现在前4周;不同熟化程度红壤水稻土的累积矿化N量为73.0~127.8mg/kg,平均矿化速率为6.09~10.7mg/(kg·wk)。用双指数方程和一级动力学方程可以很好地模拟红壤水稻土微生物生物量N和总N的矿化过程。微生物生物量N和总N的矿化过程均可分为快速和缓慢2个阶段,培养的前8周是快速矿化阶段。2个模拟方程参数的比较表明,微生物生物量N矿化量占总N矿化量的比例为10.8%~49.5%,其矿化潜力大,持续矿化时间长,对保证土壤N素的持续供应有积极作用。  相似文献   

16.
Eucalyptus globulus plantations are thought to use stored soil water when planted on ex-agricultural sites, and we hypothesized that this is likely to affect productivity of 2nd and later rotation plantations because the next rotations have access to less stored soil water. We used a combination of experiments and modeling to understand the impact of E. globulus plantations on soil water stores over the first rotation and early second rotation. The experiments were conducted at 3 contrasting sites in south-western Australia, and modeling was used to extrapolate the results to other climatic zones. Soil water dynamics were assessed to 8 m depth under a range of management options, including spacing and nitrogen addition in the first rotation, and coppice or seedling re-establishment in the 2nd rotation. We found that soil water stores declined over the course of the first rotation at all sites, with some (incomplete) annual replenishment evident at the higher rainfall sites, but less replenishment at depth, especially in the lower rainfall sites. Only the wettest of the 3 sites fully replenished with soil water after harvest of the 1st rotation. Plots with higher stocking rates had higher soil water depletion early in the rotation, although by the end of the first rotation, most treatments had similar soil water deficits of around 800 mm at all of the sites. Of the sites that were responsive to N fertilizer, there was a strong differential in the degree of soil water deficit between N treatments, with N fertilized trees using more of the soil water store each year, but also producing more wood. A process-based plantation growth model, CABALA, was found to be adequate for predicting soil water dynamics under the range of management options that we explored, and we applied it to understanding the potential replenishment of soil under 2nd rotation plantations in a range of climatic zones within the E. globulus estate in south-western Australia. This modeling showed that most sites with soil depths of more than 4 m (i.e., most of the estate) are unlikely to be fully replenished in the 2nd rotation, and that this is likely to have a significant impact on the capacity of sites to achieve similar productivity levels in the second rotation as the first unless the sites are given an opportunity for soil water replenishment between rotations. The results from this study suggest that plantation managers will need to understand soil water dynamics at any given site to be able to predict productivity in 2nd and later rotations, and may need to explore novel management options like fallowing between rotations to allow for soil water replenishment.  相似文献   

17.
An incubation experiment was carried out to investigate the impacts of residue particle size and N application on the decomposition of post-harvest residues of fast-growing poplar tree plantations as well as on the microbial biomass. Crown and root residues, differing in their C/N ratios (crown 285, root 94), were ground to two particle sizes and incubated with and without application of inorganic nitrogen (N) for 42 days in a tilled soil layer from a poplar plantation after 1 year of re-conversion to arable land. Carbon and N mineralization of the residues, microbial biomass C and N, ergosterol contents, and recovery of unused substrate as particulate organic matter (POM) were determined. Carbon mineralization of the residues accounted for 26 to 29 % of added C and caused a strong N immobilization, which further increased after N addition. N immobilization in the control soil showed that even 1 year after re-conversion, fine harvest residues still remaining in the soil were a sink for mineral N. Irrespective of the particle size, C mineralization increased only for crown residues after application of N. Nevertheless, the overall decrease in amounts of POM-C and a concurrent decrease of the C/N ratio in the POM demonstrate the mineralization of easily available components of woody residues. Microbial biomass significantly decreased during incubation, but higher cumulative CO2 respiration after N application suggests an increased microbial turnover. Higher ergosterol to microbial biomass C ratios after residue incorporation points to a higher contribution of saprotrophic fungi in the microbial community, but fungal biomass was lower after N addition.  相似文献   

18.
A temporary decline in tree growth has often been observed after liming in coniferous forests poor in N but seldom in forests rich in N. To test the hypothesis that the decline was caused by decreases in N supply, C and N mineralization were estimated in incubated soil: (1) after liming in the laboratory, and (2) after earlier liming in the field. Liming increased the C mineralization rate in needle litter, nor humus and 0 to 5 cm mineral soil for a period of 40 to 100 days at 15°C. After that period, liming had no effect on the CO2 evolution rate in materials poor in N (C:N ratios 30 to 62) but increased the CO2 evolution rate in materials rich in N (C:N ratios 24 to 28). When liming induced nitrification, the CO2 evolution rate was reduced. Liming resulted in lower net N mineralization rate in needle litter and mor humus. The reduction was more pronounced when NH4 + was the only inorganic form than when NO3 ? was the predominant form. The reason is probably that chemical fixation of NH3 and amino compounds increases with increasing pH. Because of the fixation, the incubation technique most likely underestimated the mineralized N available to the roots. Taking this underestimation into consideration, liming initially reduced the N release in the litter layer. In the other soil layers, liming increased the N release in soils rich in N and had only small effects in soils poor in N. For the total N supply to the roots in the litter, humus and 0 to 5 cm mineral soil layers, liming caused a slight reduction in soils poor in N and a slight increase in soils rich in N. Data on tree growth corresponded with these results.The hypotheses that tree growth depressions can be caused by reduced N supply after liming and that tree growth increases can be caused by increased N supply after liming thus seem reasonable.  相似文献   

19.

Background, aim, and scope  

Mulching is frequently used to overcome the drought problem in hardwood plantations that are increasingly being established in lower rainfall areas of Queensland, Australia because of increasing land values. In addition to soil water content, soil nitrogen (N) availability is another critical determinant of plantation productivity in these areas. The purpose of this study was to understand how soil mineral N dynamics, in situ N mineralization, and the fate of fertilized N would be affected by mulching during the early establishment of hardwood plantations.  相似文献   

20.
The formation and fate of soluble nitrogen (N) forms and their response to organic-matter mineralization is not obvious yet, and results are often inconsistent despite intensive research. The available N supply of the soil is very important for plant nutrition and environmentally sound N fertilization. The determination of actual N supply is very important for sustainable agriculture in Hungary, especially in acidic sandy soils, which are very sensitive to environmental effects and inefficient human treatment. Therefore, the aim of this article is to provide further information about N mineralization processes and organic–mineral interactions of soil. To establish the potentially mineralized N content and available N supply of soil, a biological (incubation) method was carried out an acidic brown forest soil of the Nyírlugos long-term field experiment in Hungary. The incubation was carried out in the laboratory with differently treated soils of the long-term field experiment to investigate the effect of treatments on N mineralization processes of soil. The incubation period was 16 weeks long. The pH and the easily soluble mineralized and organic N fractions of soil were measured periodically from leached solution (0.01 M calcium chloride; CaCl2). The leaching process was repeated after 2, 3, 5, 7, 9, 12, and 16 weeks. The potentially mineralized N content of soil and the actual rate of N mineralization were calculated from periodically collected data. The results of the incubation method can be summarized as follows: the kinetics of incubation of 0.01 M CaCl2 soluble organic N is similar to mineral N; 0.01 M CaCl2–soluble N fractions were mainly in inorganic forms in the incubation period but the content of the organic form was significant too; and the mineralization rate is greater where the microbiological activity of the soil is expressed and the soil properties are more favored as a result of applied treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号