首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
木/麻/PP纤维含量对复合材料性能的影响   总被引:1,自引:1,他引:1  
采用无纺织气流成型织坯再热压的工艺,研究汽车内饰用木/麻/PP纤维三元复合材料中,3种纤维含量对复合材料性能的影响.研究结果表明,增加PP纤维含量,可以提高复合材料的静曲强度和耐水性;麻纤维含量增加对提高材料的强度影响显著,但耐水性略有下降.当PP纤维含量为40%、麻纤维为30%、木纤维30%时,复合材料的性能较佳.  相似文献   

2.
在聚丙烯纤维比例为50%的条件下,采用不同竹/木纤维配比制备竹/木/聚丙烯纤维复合材料,考察竹纤维用量对复合材料物理力学性能和微观形貌的影响。结果显示:随着竹纤维用量增加和木纤维用量减少,复合材料的耐水性能增强,力学性能则呈先升后降的趋势,竹纤维用量为25%时力学性能达到最大;试验确定优化竹/木纤维配比为m(竹)∶m(木)=25∶25,复合材料的性能满足TL 52448-1998《天然纤维成型材料热塑性增强材料要求》的要求。  相似文献   

3.
麻竹制备竹基纤维复合材料的性能初探   总被引:1,自引:0,他引:1  
为了探索利用麻竹制备竹基纤维复合材料的性能,首先利用纤维可控分离技术将麻竹制备成纤维化竹单板,经过浸胶干燥后,采用热压法制备竹基纤维复合材料,并探讨密度对其耐水性能和力学性能的影响。结果表明,采用热压法制备的竹基纤维复合材料的性能较优,已超过重组竹地板标准规定的室外用地板的指标值。随着密度的增加(0.90~1.15g/cm~3),麻竹竹基纤维复合材料的耐水性能得到改善,其静曲强度、弹性模量和水平剪切强度等主要力学性能增强。在应用中可以考虑在保证板材使用性能的前提下,尽量降低竹基纤维复合材料的密度以节约成本。  相似文献   

4.
利用短纤维代替粉状材料作为增强材料制备纤维增强型聚丙烯基复合材料,研究不同的木纤维/聚丙烯配比、密度以及不同浓度的碱处理对木纤维/聚丙烯复合材料物理力学性能的影响。结果表明,目标密度仅为0.55g/cm3时,且当木纤维与聚丙烯的配比为30︰70时,木纤维/聚丙烯复合材料表现出最佳的物理力学性能,但仍达不到标准要求。因此,综合产品成本和物理力学性能,选取了50︰50的原料配比,研究密度对该产品物理力学性能的影响。进一步研究表明,随着密度的增加,复合材料的力学强度得到不断提高,当密度为0.70g/cm3时,板材的力学性能就可以满足国标要求但吸水厚度膨胀率不能满足国标要求。当密度为0.83 g/cm3时,板材的力学性能满足国标要求,吸水厚度膨胀率有减小的趋势。为了进一步提高该复合材料的物理力学性能,利用浓度分别为1%,3%和5%的氢氧化钠溶液对木材纤维和工业大麻杆纤维进行处理,结果表明,经过碱处理后复合材料的吸水厚度膨胀率减小了,静曲强度和弹性模量仍可满足标准要求。  相似文献   

5.
利用甘蔗渣纤维作为增强剂,回收的聚丙烯塑料作为基体,并添加MAPP为偶联剂,通过熔融混合、注射成型法制成蔗渣纤维/PP 复合材料,研究蔗渣纤维和偶联剂对复合材料静态及动态力学性能的影响。结果表明:与PP相比,添加了蔗渣纤维和MAPP后,除抗拉强度外,复合材料的静态力学强度有所提高;复合材料的储能模量和损耗模量增加,而损耗因子降低;蔗渣纤维/PP复合材料的玻璃化转变温度Tg为61.8℃。  相似文献   

6.
为促进结构保温材料的可持续发展,以竹纤维和聚丙烯纤维为原料,制备不同密度的竹纤维/聚丙烯纤维保温复合材料,并探讨该材料作为结构保温板(SIPs)芯材的可行性。结果表明:随着密度增加,复合材料的力学性能增加,保温性能呈先升后降的趋势;综合考虑复合材料的保温性能和力学性能,当复合材料密度为0.20 g/cm~3时,可用来代替聚苯乙烯泡沫作为结构保温板的芯材。  相似文献   

7.
研究了用异氰酸酯树脂为胶粘剂,木材刨花与回收聚丙烯为主要材料的复合材料的主要力学性能和尺寸稳定性。结果表明,密度对复合材料的性能有很大的影响,密度越大,力学强度越高,吸水厚度膨胀率基本越低;木塑配比对复合材料的力学性能有一定的影响,力学性能均随着配比的增加呈现不同程度的下降趋势;配比对吸水厚度膨胀率影响明显,配比越大,吸水厚度膨胀率越低,且密度大时,影响就越显著。  相似文献   

8.
为开发适用于汽车内饰件的竹纤维增强复合材料,以福建省资源丰富的绿竹和聚丙烯膜(PP)为原料,通过分析碱液预处理工艺对竹片得率、竹纤维得率和白度等的影响,优化预处理工艺,制备生产效率高、长径比大的竹原长纤维(LBF);进一步研究热压工艺参数和LBF添加量对LBF/PP复合材料物理力学性能的影响,确定较佳的热压工艺和原料配方。实验结果表明:在处理温度100℃条件下,采用10%(质量分数)氢氧化钠、处理时间180 min的工艺预处理制得的LBF较竹片中的纤维素含量增加,木素含量下降,结晶度增大;LBF纤维平均长度为25.79 mm,长径比为173.02∶1.00,拉伸强度和拉伸模量分别为584.85 MPa和45.41 GPa。热压温度190℃、热压压力8 MPa、热压时间20 min、LBF质量分数为50%时,LBF/PP复合材料力学性能和耐水性能较佳,其拉伸强度、弯曲强度、弯曲模量、冲击强度分别达到31.55 MPa、46.11 MPa、2 833.80 MPa和28.55 kJ/m~2,24 h的吸水率和厚度膨胀率分别为14.19%和8.11%,可应用于硬质仪表板、杂物箱等汽车内饰件。扫描电镜结果显示,纤维表面粗糙,热压过程使熔融状态的PP渗透到LBF表面的孔隙,形成较好的物理机械结合。  相似文献   

9.
三种塑料与木纤维复合性能的研究   总被引:6,自引:2,他引:6  
选用线性低密度聚乙烯(LLDPE)、聚丙烯(PP)、聚苯乙烯(PS)为原料,以2种比率与木纤维复合,用热压法制备了3种木塑复合材料,分析了塑料种类对复合材料的物理力学性能的影响.结果表明,LLDPE与木纤维的复合性能最好,其复合材料的抗冲击性好,但弯曲强度和弹性模量最低;PS与木纤维的复合性最差,其复合材料抗冲击性很差,但弯曲强度和弯曲弹性模量高;木纤维与PP复合材料的综合性能最佳.由此提出用LLDPE与PS共混改性制造木/塑复合材料的设想.  相似文献   

10.
以慈竹(Bambusa distegia)为原料,探讨了浸胶方式对慈竹竹基纤维复合材料力学性能和耐水性能的影响。结果表明:采用一次浸胶的方式,随着胶黏剂固含量的增大浸胶量逐渐增加,力学性能和耐水性能随着浸胶量的增加而增强。采用二次浸胶的方式,板材的静曲强度和弹性模量整体差别不显著,耐水性能和内结合强度随着第二次浸胶胶液固含量的增加而增强。采用二次浸胶的方式压制的竹基纤维复合材料较一次浸胶的相比,可以在保持板材强度的情况下,提高板材的耐水性能,同时大幅降低浸胶量,从而节省板材的压制成本。  相似文献   

11.
采用模压和热压两种成型方法制备高木材纤维含量的聚丙烯(PP)基木塑复合材料,研究不同工艺方法和木材纤维质量分数(50%~90%)对木塑复合材料吸水性、接触角、表面自由能以及力学性能的影响,并通过扫描电子显微镜对复合材料的层间断面形貌进行观察。结果表明,木材纤维质量分数的提高使复合材料表面润湿性增强,力学性能有所下降,储能模量降低,玻璃化转变温度提高。当木材纤维质量分数达到80%时,复合材料仍可保持较好的弹性模量和冲击韧性;24 h吸水厚度膨胀率小于15%,可在潮湿环境下使用;表面自由能极性分量与中密度纤维板相当。扫描电镜结果表明,木材纤维质量分数增加可使复合材料的界面结合减弱。采用模压工艺制备的复合板材密度较大,抗弯性能较好;热压工艺所制复合板材的润湿性和冲击强度均优于模压工艺,在贴面装饰方面具有潜在优势。  相似文献   

12.
采用异氰酸酯胶(PMDI)制备超低密度阻燃纤维板,考察工艺因子对试板性能的影响。结果表明:随着热压温度升高、热压时间延长、PMDI用量增加,板材的力学性能及耐水性能均呈上升趋势,阻燃性能基本不变;而阻燃剂用量增加,使得板材阻燃性能增强,但耐水性能和力学性能有所降低。按优化工艺制备的板材,耐水性和力学性能满足LY/T 1718-2017干状家具型超低密度纤维板的要求,阻燃性能达到GB 8624-2012的难燃B_1-C级。  相似文献   

13.
采用异氰酸酯(ISO)改性的脲醛树脂胶制造低密度稻壳-木材复合材料。稻壳与木质刨花的混合比例为1:1,施胶量为7%,试验结果表明,异氰酸酯改性的脲醛树脂胶黏剂适用于低密度稻壳-木材复合材料,其物理力学性能明显优于使用传统的脲醛树脂胶黏剂。低密度稻壳-木材复合材料的物理力学性能随着改性剂异氰酸酯用量的增加而提高。密度是稻壳-木材复合材料物理力学性能的重要影响因素,低密度稻壳-木材复合材料的物理力学性能随着密度的增加而提高。在设定密度为0.45g/m~3和0.5g/cm~3的条件下,3:4的ISO/UF的稻壳-木材复合材料的物理力学性能均达到日本刨花板工业标准(JIS A5908)的要求。  相似文献   

14.
为开发竹材人造板新产品,利用4~5年生寿竹为原料,采用热压生产工艺制备竹基纤维复合材料,并分析复合材料密度对其物理和力学性能的影响。结果表明:随着密度增加,复合材料厚度方向上的吸水膨胀率增加,宽度方向的吸水膨胀率下降,力学性能逐渐增加。  相似文献   

15.
通过偶联剂KH550改性纳米Al_2O_3后加入到木纤维中,再与PP进行混炼,热压成型,制得复合材料。测试其力学性能并利用红外、扫描电镜进行表征。分析表明KH550能够很好地改性纳米Al_2O_3,添加纳米Al_2O_3改善了PP和木纤维之间的界面相容性,宏观上表现为力学性能提高。当纳米Al_2O_3添加质量分数为5%时,复合材料的力学性能提升最大,其弯曲强度、弯曲模量、冲击强度分别是43.79 MPa,3817 MPa,7.515 KJ·M2,对比未添加纳米粒子的复合材料分别提升55%、34%、21%。  相似文献   

16.
该文探讨了亚麻纤维对木材-聚丙烯(PP)复合材料力学性能的增强,尝试调节亚麻的添加量,对比亚麻纤维含量对复合材料的增强效果。并介绍了亚麻纤维增强木材-聚丙烯复合材料的挤出成型工艺流程。发现随着亚麻含量的增加,木材-聚丙烯复合材料的力学性能有先升后降的趋势,即亚麻纤维对木粉-聚丙烯复合材料有一定的增强效果;由本实验数据分析得出亚麻含量为50%时,复合材料的冲击强度、拉伸强度最大,亚麻含量为30%时,复合材料的弯曲强度最大。  相似文献   

17.
落叶松树皮与聚苯乙烯复合保温材料研究   总被引:1,自引:0,他引:1  
介绍了落叶松树皮与聚苯乙烯泡沫复合保温材料的制备与研究;以导热系数和压缩强度为主要技术指标对复合材料进行评价;考察落叶松树皮与聚苯乙烯泡沫的混合配比、胶粘剂施加量和密度等工艺参数对复合材料性能的影响.研究结果表明,落叶松树皮与聚苯乙烯配比为12:88、施胶量10%、密度0.19g/cm3条件下制成的保温板,其物理力学性能达到使用要求.  相似文献   

18.
制造工艺对竹基纤维复合材料性能的影响   总被引:3,自引:1,他引:2  
采用冷、热压两种生产工艺,分别制备不同密度(0.85~1.20 g/cm(3))的竹基纤维复合材料.并检测其物理力学性能.结果表明:两种生产工艺均可制备出物理力学性能优良的竹基纤维复合材料,其中:冷压生产的竹基纤维复合材料的耐水性能较好,热压生产的竹基纤维复合材料的抗弯性能和抗剪切性能更优.  相似文献   

19.
以中等密度木材刺槐和桉树为原料,利用纤维可控分离技术,将6~7厚单板制备成纤维化木单板,经过浸胶、干燥、热压,制备重组木,探讨中等密度木材制备重组木的工艺特点和产品性能。结果表明,2种木材均适合制备高密度重组木;当密度为1.10 g/cm~3时,2种木材重组木的力学性能是其木材的1.5~2.0倍,MOR、MOE和HSS均高于GB/T 20241-2006《单板层积材》最高指标值要求,且刺槐重组木的力学性能与耐水性能更优。  相似文献   

20.
许民  朱毅  姜晓冰 《林业科技》2007,32(2):39-41
以木材纤维和废旧聚丙烯塑料为原料,异氰酸酯(MDI)或马来酸酐(MA)为偶联剂,压制木材纤维/聚丙烯复合材料;通过正交试验,研究聚丙烯(PP)用量对木塑复合材料性能的影响.结果表明:PP比例对复合材料的内结合强度、吸水厚度膨胀率、静曲强度和弹性模量有不同程度的影响.在热压时间、热压温度、复合材料密度相同的条件下,在用MDI做偶联剂,PP用量为40%时,复合材料的性能最佳;在用MA做偶联剂,PP用量为50%时,复合材料的性能最佳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号