首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Over a 5-yr period, spring-calving cows were used in a carry-over design experiment to evaluate effects of calf age at weaning on cow and calf performance and production economics. Weaning management groups were early (n = 60, calf age 150 d, EW), traditional (n = 60, calf age 210 d, NW), and late (n = 60, calf age 270 d, LW). Cow body condition score (BCS) and weights at the last weaning date were different (P < .05) for EW (5.8, 583 kg), NW (5.5, 560 kg), and LW (5.2, 541 kg) management groups. Pregnancy rates among groups were similar. Days on feed for groups differed (P = .001) and was 247 for EW, 204 for NW, and 164 d for LW steers. Average daily gain in the feedlot differed (P = .01) among groups and averaged 1.5 kg for LW, 1.4 kg for NW, and 1.3 kg for EW steers. Dry matter intake while steers were in the feedlot was greater (P = .001) for LW than for NW and EW calves. Hot carcass weight was greater (P = .01) for EW (328 kg) and NW (332 kg) calves than for LW (321 kg) steers, and fat depth was greater (P = .05) for EW and NW steers than for LW steers. When carcass data for the NW and LW steers were adjusted to the fat depth of EW steers, carcass characteristics among groups were similar. Net income per steer at slaughter for the feedlot phase was greater (P < .001) for the EW ($75.36) and NW ($62.16) steers than for the LW ($10.09) steers. Again, when carcass data for the NW and LW steers were adjusted to the same fat depth of the EW steers, net income differences among groups were reduced. Replacement heifers were developed in a drylot and costs were higher (P < .001) for the EW than for NW and LW heifers. Annual cow costs were greater (P < .10) for the LW ($443.45) than for the EW ($410.09) and NW ($421.35) groups. Break-even for each system on a steer financial basis was not different between the NW and LW groups, and both the NW and LW groups had lower (P = .08) break-evens than the EW group. Age of the calf at weaning affects cow weight and BCS. Net income in each system is influenced by cow costs, month of the year that steer calves are purchased into the feedlot and finished steers are sold, month of the year cull cows are marketed, and replacement heifer development costs.  相似文献   

2.
Crossbred, spring-calving cows (yr 1, n = 136; yr 2, n = 113; yr 3, n = 113) were used in a 3-yr experiment to evaluate the influence of supplemental protein prepartum and grazing subirrigated meadow postpartum on pregnancy rates and calf feedlot performance. A 2 x 2 factorial arrangement of treatments was used in a switchback design. From December 1 to February 28, cows grazed dormant upland range in 8 pastures (32 +/- 2 ha each). The equivalent of 0.45 kg of supplement/cow per d (42% CP) was provided to half of the cows on a pasture basis 3 d/wk. For 30 d before the beginning of breeding (May 1 to May 31), half of the cows grazed a common subirrigated meadow (58 ha), and the remainder was fed grass hay in a drylot. Cow BW and BCS were monitored throughout the year, and steer calf performance was determined until slaughter. Feeding supplement prepartum improved (P = 0.01 to P < 0.001) BCS precalving (5.1 vs. 4.7) and prebreeding (5.1 vs. 4.9) and increased (P = 0.02) the percentage of live calves at weaning (98.5 vs. 93.6%) but did not affect (P = 0.46) pregnancy rate (93 vs. 90%). Calves born to dams fed supplement prepartum had similar (P = 0.29) birth weight (37 vs. 36 kg) but greater (P = 0.02) weaning weight (218 vs. 211 kg). However, steer feedlot DMI (8.53 vs. 8.48 kg), ADG (1.6 vs. 1.6 kg), and carcass weight (369 vs. 363 kg) were not affected (P = 0.23 to P = 0.89) by prepartum supplementation. Allowing cows to graze subirrigated meadow postpartum improved (P < 0.001) BCS prebreeding (5.2 vs. 4.9) but did not affect (P = 0.88) pregnancy rate (92 vs. 91%). Allowing cows to graze subirrigated meadow increased (P = 0.01) calf weaning weight (218 vs. 211 kg) but not (P = 0.62 to P = 0.91) feedlot DMI (8.4 vs. 8.3 kg), ADG (1.6 vs. 1.6 kg), or carcass weight (363 vs. 362 kg) of their steer calves. Increased percentage of live calves at weaning as a result of feeding supplemental protein increased net returns at weaning and after finishing in the feedlot. Net returns were increased by allowing cows to graze subirrigated meadow postpartum regardless of whether calves were marketed at weaning or after finishing in the feedlot.  相似文献   

3.
Effects of calving season and finishing system on forage and concentrate consumption and carcass characteristics of calves were compared. In each of 3 yr, two replicates of three growing and finishing systems were compared including 1) spring calves finished on a high-grain diet in a feedlot immediately post-weaning (WF); 2) spring calves backgrounded on a hay-corn gluten diet over winter for 179 +/- 18 d after weaning, grazed for 98 +/- 9 d in cool-season grass-legume pastures, and finished on a high-grain diet in a feedlot (SGF); and 3) fall calves backgrounded on a hay-corn gluten feed diet over winter for 69 +/- 31 d after weaning, grazed for 98 +/- 9 d in cool-season grass-legume pastures, and finished on a high-grain diet in a feedlot (FGF). During the grazing phase, calves on the SGF and FGF treatments were equally stocked with spring-calving cow-calf pairs before grazing by pregnant fall-calving cows in a first-last rotational stocking system at a rate of 1.9 standard livestock units/ha. As designed, retained calves in the FGF system spent 110 fewer days in the drylot during backgrounding than retained calves in the SGF system (P = 0.01), resulting in less feed provided during winter. A greater (P < 0.01) quantity of hay was fed to SGF calves after weaning over winter (1,305 kg of DM per calf) than the quantity fed to FGF calves (305 kg of DM per calf). Quantity of grain (including commercial starter) fed to SGF calves after weaning did not differ (P = 0.28) from that fed to FGF calves (126 vs. 55 kg of DM per calf); however, calves in the FGF system required 80 and 71 kg of DM per calf more concentrate to finish to an equivalent external fat thickness compared with SGF and WF calves, respectively (P = 0.02). Average daily gains in the feedlot were greater (P < 0.01) for SGF and FGF calves than for WF calves during all 3 yr. There were no differences (P = 0.69) in carcass quality grades among calves in all groups, but SGF calves had greater (P < 0.01) hot carcass weight and LM area measurements at slaughter than FGF or WF calves. Although calves in the FGF system were 25 kg lighter than calves in the WF system at slaughter (P = 0.03), and had a lower dressing percent (P = 0.03), other carcass characteristics did not differ between these two groups. Lower stored-feed requirements and similar carcass quality characteristics made retention of a fall calf crop advantageous over retention of a spring calf crop for use as stocker animals before finishing.  相似文献   

4.
A 2 x 2 factorial study evaluated effects of cow wintering system and last trimester CP supplementation on performance of beef cows and steer progeny over a 3-yr period. Pregnant composite cows (Red Angus x Simmental) grazed winter range (WR; n = 4/yr) or corn residue (CR; n = 4/yr) during winter and within grazing treatment received 0.45 kg/d (DM) 28% CP cubes (PS; n = 4/yr) or no supplement (NS; n = 4/yr). Offspring steer calves entered the feedlot 14 d postweaning and were slaughtered 222 d later. Precalving BW was greater (P = 0.02) for PS than NS cows grazing WR, whereas precalving BCS was greater (P < 0.001) for cows grazing CR compared with WR. Calf birth BW was greater (P = 0.02) for CR than WR and tended to be greater (P = 0.11) for PS than NS cows. Prebreeding BW and BCS were greater (P 0.32) by PS. Calf weaning BW was less (P = 0.01) for calves from NS cows grazing WR compared with all other treatments. Pregnancy rate was unaffected by treatment (P > 0.39). Steer ADG, 12th-rib fat, yield grade, and LM area (P > 0.10) were similar among all treatments. However, final BW and HCW (P = 0.02) were greater for steers from PS-WR than NS-WR cows. Compared with steers from NS cows, steers from PS cows had greater marbling scores (P = 0.004) and a greater (P = 0.04) proportion graded USDA Choice or greater. Protein supplementation of dams increased the value of calves at weaning (P = 0.03) and of steers at slaughter regardless of winter grazing treatment (P = 0.005). Calf birth and weaning BW were increased by grazing CR during the winter. Calf weaning BW was increased by PS of the dam if the dam grazed WR. Compared with steers from NS cows, steer progeny from PS cows had a greater quality grade with no (P = 0.26) effect on yield grade. These data support a late gestation dam nutrition effect on calf production via fetal programming.  相似文献   

5.
To evaluate effects of previous forage systems on feedlot performance, yearling Hereford steers (average initial weight of 249 kg) were grazed on tall fescue (TF), smooth bromegrass-red clover (BG-RC) or orchardgrass-red clover (OG-RC) pastures before finishing. Serial slaughter was utilized during the first 2 yr of this study to determine changes in carcass characteristics throughout finishing, while steers were slaughtered at approximately 29% body fat during the third year. Steers grazing TF entered the feedlot at lighter weights and maintained lighter weights throughout finishing (P less than .05) even though dry matter intakes and feed conversions were similar (P greater than .05) among treatments. Steers that previously grazed TF had less (P less than .05) body fat, body protein, fat thickness and marbling, smaller (P less than .05) ribeye areas and lower (P less than .05) USDA yield and quality grades than than those that grazed BG-RC and OG-RC. However, linear contrasts indicated that steers grazing TF were compensating in ribeye area, marbling and quality grade as days in feedlot increased. This was confirmed in the third-year study, since carcass characteristics were similar among all steers. During the third year, linear and quadratic contrasts indicated that steers that grazed TF partially compensated in body protein. As days in feedlot increased, live and hot carcass weights, body fat, fat thickness, kidney, pelvic and heart fat, marbling, and USDA yield and quality grades increased (P less than .05), while ribeye area and body protein plateaued. Although carcass characteristics were similar among treatments, steers backgrounded on TF entered the feedlot at lighter weights, and partially compensated in weight after 134 d of finishing.  相似文献   

6.
A 2-yr study was conducted to determine the effects of three weaning management systems on cow and steer performance. Cow-calf pairs were randomly assigned to one of three treatments, in which the steer calves were 1) early-weaned (yr 1, 177 +/- 9 d; yr 2, 158 +/- 21 d of age) and placed on a finishing diet (EW), 2) supplemented with grain for 55 d on pasture (yr 1, 177 to 231 d; yr 2, 158 to 213 d of age) while nursing their dams and then placed on a finishing diet (NWC), and 3) on pasture for 55 d while nursing their dams (yr 1, 177 to 231 d; yr 2, 158 to 213 d of age) and then placed on a finishing diet (NW). In yr 2, potential breed differences were evaluated using steers of three breed types: 1) Angus x Hereford (BRI); 2) Angus x Simmental (CON); and 3) Angus x Wagyu (WAG). In yr 1, EW steers gained 100% faster (P = .0001) than the average of NWC and NW steers, and NWC steers gained 32% faster (P = .02) than NW steers before weaning. In the feedlot, EW steers had lower intakes (7.70 vs 8.16 kg/d, P = .008) and better feed conversions (.170 vs .153, P = .002) than the average of NWC and NW steers. Marbling score was improved for EW steers compared with the average of NWC and NW steers (P = .003). In yr 2, EW steers had higher gains (P = .0006) during the entire study than the average of NWC and NW steers, and NWC steers had higher gains (P = .003) than NW steers. The EW steers had lower intakes (7.29 vs 7.68 kg/d, P = .0008) and better feed conversions (.160 vs .141, P = .0001) than the average of NWC and NW steers. The CON steers were heavier at slaughter than BRI steers (P = .01), and BRI steers were heavier than WAG steers (P =.0004). Early weaning improved the percentage of steers grading Average Choice or higher by 40%. The percentage of BRI steers grading Choice or greater was 21% higher and percentage of steers grading Average Choice or greater was 33% higher than CON. Cows with EW steers had higher ADG than cows with NW steers (.38 vs -.17 kg/d, P = .0001) before weaning. Cows with EW steers gained in body condition score (.23 vs .00, P = .04), and cows with NW steers did not change. Early weaning improved feed efficiency and quality grades of beef steers.  相似文献   

7.
Productivity and profitability of twin births in beef cattle   总被引:1,自引:0,他引:1  
Data from 1,277 single and 85 twin calvings, occurring in both spring and fall from 1980 through 1987, were used to examine the productivity and profitability associated with twin births in beef cattle. Pregnancies in pure and crossbred cattle resulted from both AI and embryo transfer. Cows and calves were confinement-housed. Cows were individually fed to specification. Calves were given ad libitum access to creep feed and those born in 1986 and 1987 were fed to slaughter. The influence of birth number of gestation length, total calf birth and weaning weights, lactation yield, and cow fed intake during both the dry and lactating periods were examined. Twin-bearing cows had their gestation length shortened by 6.4 d (2%); yielded 25.5 (59) and 186.0 kg (73%) more weight of calf at birth and weaning, respectively; had lactation yield and lactation feed intake increased by 25 and 20%, respectively; and had precalving (dry) period feed intake no different from their single-bearing counterparts (P = .12). Postweaning growth was not different for single and twin calves (P = .50); twin gain, relative to initial size, was higher. Feedlot feed intake of twins was 85% of that for singletons (P = .20). Twins were 90% of singleton live weight at slaughter and yielded 93% of singleton hot carcass weight (P = .12). Twins were slightly older and significantly leaner at slaughter. Returns less feed costs showed twin births to be associated with increased profit for cow-calf programs. Returns less feed and overhead costs were higher for twin calves than for singles in the feedlot.  相似文献   

8.
Data from 403 Polled Hereford-sired calves from Angus, Brahman, and reciprocal-cross cows were used to evaluate the effects of preweaning forage environment on postweaning performance. Calves were spring-born in 1991 to 1994 and managed on either endophyte-infected tall fescue (E+) or common bermudagrass (BG) during the preweaning phase. After weaning, calves were shipped to the Grazinglands Research Laboratory, El Reno, OK and stratified to one of two winter stocker treatments by breed and preweaning forage; stocker treatments were winter wheat pasture (WW) or native range plus supplemental CP (NR). Each stocker treatment was terminated in March, calves grazed cool-season grasses, and calves were then moved to a feedlot phase in June. In the feedlot phase, calves were fed to approximately 10 mm fat over the 12th rib and averaged approximately 115 d on feed. When finished, calves were weighed and shipped to Amarillo, TX for slaughter. Averaged over calf breed group, calves from E+ gained faster during the stocker phase (P<.10), had lighter starting and finished weights on feed (P< .01), lighter carcass weights (P<.01), and smaller longissimus muscle areas (P<.05) than calves from BG. Calves from E+ were similar to calves from BG in feedlot ADG, percentage kidney, heart, and pelvic fat, fat thickness over 12th rib, yield grade, marbling score, and dressing percentage. Maternal heterosis was larger in calves from E+ for starting weight on feed (P<.01), finished weight (P<.10), and carcass weight (P<.16). These data suggest that few carryover effects from tall fescue preweaning environments exist, other than lighter, but acceptable, weights through slaughter. These data further suggest that the tolerance to E+ in calves from reciprocal-cross cows, expressed in weaning weights, moderated postweaning weight differences between E+ and BG compared to similar comparisons in calves from purebred cows.  相似文献   

9.
Steers (n = 165) of known percentage Brahman (B) and Angus (A) breeding were used to study effects of breed group (A, 3/4A:1/4B, 1/2A:1/2B, 1/4A:3/4B), age-season of feeding (calves fed during the cool season vs yearlings fed during the warm season) and slaughter end point (less than .90, 1.0 to 1.15, 1.27 to 1.40, greater than or equal to 1.5 cm of adjusted fat over the ribeye) on feedlot performance and carcass characteristics. The 1/2B and 3/4B steers had heavier (P less than .05) initial and final feedlot weights than the A and 1/4B steers and higher (P less than .05) unshrunk ADG than the A steers did. Breed types did not differ for feed efficiency. Yearling steers fed in the warm season had higher (P less than .05) unshrunk ADG than calves fed in the cool season, but ADG calculated on an empty-rumen basis did not differ between the two age-seasons of feeding. Calves fed in the cool season were more efficient (P less than .05) than yearlings fed in the warm season when efficiency was expressed on an empty-rumen basis; however, on a live weight basis there was no difference in feed efficiency. No breed group by age-season of feeding interactions on performance were detected. Slaughter end point did not significantly affect feed efficiency on an empty-rumen basis. The 1/2B and 3/4B steers had smaller ribeye areas (REA) per 100 kg hot carcass and lower marbling scores than the 1/4B and A steers. Yearlings fed in the warm season produced heavier carcasses (P less than .05) than calves fed in the cool season. As s.c. fat thickness at slaughter increased, hot carcass weight and numerical yield grade increased, whereas REA per 100 kg of hot carcass decreased. Marbling also increased as fatness increased up to about 1.5 cm subcutaneous fat.  相似文献   

10.
In each of 2 yr, 20 Holstein steers (185+/-7 kg initial BW) were allocated to each of three treatments: pastured for 4.5 mo on grass/legume pastures and then fed 80% corn diets (DM basis) until slaughter; pastured for 4.5 mo on grass/legume pastures with ad libitum access to molasses-based protein supplements and fed 80% corn diets until slaughter; and placed in a feedlot and fed only 80% corn diets until slaughter (FEEDLOT). Half of the steers in each treatment were initially implanted with Revalor-S and not reimplanted. Supplemented steers on pasture had greater (P < 0.05) ADG than unsupplemented steers, and FEEDLOT steers gained faster and were fatter (P < 0.05) after 4.5 mo. Implanted steers had greater (P < 0.05) ADG with no significant treatment x implant status effect. Supplement intake was variable and related to ambient temperature. During the feedlot phase, steers previously on pasture had greater DMI and ADG (P < 0.05) but were not more efficient than FEEDLOT steers. Percentage of USDA Choice carcasses, fat thickness, dressing percentage, yield grade, and final weight were greater (P < 0.05) for FEEDLOT steers than for steers on other treatments. Implanting increased ADG of all steers but did not affect carcass traits, carcass composition, or feedlot performance during the finishing phase. Holstein steers consuming supplemented and unsupplemented pasture before slaughter will be leaner, have lower carcass weights, and have generally lower quality grades than those fed exclusively in a feedlot when slaughtered at similar ages.  相似文献   

11.
A 2-yr experiment was conducted to compare carcass characteristics and meat palatability attributes of steers ((3/4) British, (1/4) Continental) finished postweaning as calves or yearlings. Calves and yearlings of the same contemporary group were designated to a finishing system at weaning. Calves (n = 73) were finished in the feedlot (191 d) on a high-concentrate diet. Yearlings (n = 84) grazed crop residues after weaning, followed by spring and summer pasture grazing, and concluded with a short finishing period (91 d) in the feedlot. All steers were fed to a constant, fat thickness endpoint of 1 cm. The M. longissimus lumborum steaks from each production system were aged for 7, 14, or 21 d for Warner-Bratzler shear force determination and for 7 or 14 d for in-house sensory panel evaluation. Insoluble, percent soluble, and total collagen were determined. Yearlings produced heavier (P < 0.001) carcasses with larger (P < 0.001) LM areas and lower (P < 0.001) marbling scores and quality grades. Calves possessed greater amounts of total collagen (P < 0.001), with a significantly greater percentage of soluble collagen compared with yearlings (39.72 vs. 24.38%). Calves produced steaks with lower (P < 0.001) shear force values and greater (P < 0.001) sensory ratings for flavor. The USDA Choice steaks from the calves were more (P < 0.001) tender and more (P < 0.050) palatable than Choice steaks from yearlings, and USDA Select steaks from calves were rated more tender (P < 0.001), juicy (P = 0.012), and desirable (P < 0.001) than Select steaks from yearlings. As expected, increasing aging time from 7- to 14- to 21-d produced steaks with lower (P < 0.001) shear force values, regardless of the production system. Risk probabilities showed 1.24% of the steaks from calf-finished steers and 21.22% of steaks from yearling-finished steers to be tough. Sensory rating probabilities showed the steaks from the calves were most likely to be desirable for tenderness, whereas steaks from the yearlings were most likely to be undesirable for tenderness, juiciness, flavor, and overall acceptability. Thus, calf-finished steers produce carcasses superior in quality and palatability compared with those from yearling-finished steers. However, yearling-finished steers can produce tender beef with extended aging.  相似文献   

12.
OBJECTIVE: To determine the seroprevalence for Neospora caninum in a population of beef calves in a feedlot and the association of serologic status with postweaning weight gain and carcass measurements. DESIGN: Longitudinal observational study. ANIMALS: 1,009 weaned beef steers from 92 herds. PROCEDURE: Samples were obtained from all steers at time of arrival at a feedlot. Serologic status for Neospora spp was determined, using an agglutination test. Results of serologic testing were compared with calf growth and carcass data, using multivariate regression with generalized estimating equations. RESULTS: Of 1,009 calves, 131 (12.98%) were seropositive, and 54 of 92 (58.7%) consignments had > or = 1 seropositive calf. Median within-consignment prevalence for consignments in which there was > or = 1 seropositive calf was 20%. Seropositive status was associated with significant reductions in average daily gain, live body weight at slaughter, and hot carcass weight and an increase in ribeye area-to-hot carcass weight ratio. Seropositive status also was associated with significant increases in cost of treatment and significant reductions in income. Sick seropositive calves had the highest cost of treatment. An economic loss of $15.62/calf was projected for seropositive calves. CONCLUSIONS AND CLINICAL RELEVANCE: Significant reductions in postweaning weight gain, carcass weight, and economic return were associated with detection of antibodies to N caninum in beef calves in a feedlot.  相似文献   

13.
Sixty-three Angus x Simmental calves were allotted to a bull or a steer group based on sire, birth date, and birth weight to determine effects of castration status on performance, carcass characteristics, and circulating insulin-like growth factor I (IGF-I) concentrations in early-weaned cattle. At 75 d of age, calves in the steer group were castrated. Calves were not creep-fed prior to weaning. All calves were weaned and weighed at an average age of 115 d and transported by truck to the OARDC feedlot in Wooster, OH. Performance and carcass characteristics were measured in three phases. Phase 1 was from 115 to 200 d of age, phase 2 was from 201 to 277 d of age, and phase 3 was from 278 d of age to slaughter. Before implantation, four bulls and four steers were selected for serial slaughter and carcass evaluation. Steers were implanted with Synovex-C at 130 d of age and with Revalor-S at 200 and 277 d of age. Serum samples were collected from all calves on the day of implantation, 28 and 42 d after implantation, and at slaughter and analyzed for circulating IGF-I concentration. Bulls gained 9.7% faster (1.75 vs 1.60 kg/d; P < 0.01), consumed 25 kg more DM (521 vs 496 kg; P = 0.11), and were 3.3% more efficient (282 vs 273 g/kg, P < 0.10) than steers in phase 1. However, steers gained 10.5% faster (1.62 vs 1.46 kg/d; P < 0.02), consumed similar amounts of DM, and were 6.5% more efficient than bulls (214 vs 201 g/kg; P < 0.06) in phase 2. Overall gains and efficiency were similar between bulls and steers; however, bulls consumed 140 kg more DM (P < 0.05), were 27 kg heavier (P < 0.05), and had to stay in the feedlot 18 more days (P < 0.05) than steers to achieve a similar amount of fat thickness. Implanted steers had greater concentrations of circulating IGF-I than bulls (P < 0.01), and the pattern of IGF-I concentration over time was affected by castration status (castration status x time interaction; P < 0.01). Synovex-C had a lower impact on circulating IGF-I concentration (implant effect, P < 0.01) than either Revalor-S implant. Eighty-five percent of both bulls and steers had marbling scores sufficient to grade low Choice or better. Bulls achieved their target fat thickness later, increased muscle growth, and deposited fat more favorably than steers, possibly due to a gradual increase in IGF-I concentration as the testicles grew rather than the large fluctuations in IGF-I concentration observed in steers following implantation.  相似文献   

14.
Over three consecutive years, 180 (60/yr) fall-born steer calves were weaned in May (average initial BW = 238 kg, SD = 36.2 kg) and allocated to one of three groups: 1) calf-fed steers that entered the feedlot at weaning; 2) short yearlings that grazed irrigated pasture for another 4 mo and entered the feedlot in September; and 3) long yearlings that grazed with short yearlings during the summer, remained on annual California foothills range through the fall, winter, and spring, and entered the feedlot the following May. All steers were fed until the average group backfat (BF), determined by ultrasound, reached 11 to 12 mm. On pasture, short- and long-yearling steers gained weight in the summer; long yearlings then slightly lost weight in the fall and winter, and then gained weight again the following spring. Average days in the feedlot were 188, 158, and 94 (P < 0.10) for calves, short yearlings, and long yearlings, respectively. Feedlot DMI increased with age (and weight) at feedlot entry, with no difference among groups in gain:feed ratio. The gain of BF was nil on pasture, even when animals were gaining weight, and then increased rapidly when animals were placed on a high-energy diet. Final body weights were heaviest (P < 0.10) in long yearlings, followed by short yearlings and then calves, indicating that a prolonged growing period increases the apparent mature size of the animal. Moreover, total carcass fat contents and percentage of Choice or above were all lower (P < 0.10) in cattle that were older at feedlot entry (i.e., long yearlings) compared with the other groups. In conclusion, increasing the backgrounding period decreased time and total concentrate requirements in the feedlot of Angus-Hereford steers. Older cattle reached 10 mm of BF at heavier weights. Grazing animals gained weight without increasing BF; however, BF increased rapidly in the feedlot. Prolonged grazing may decrease quality grade, either by impairing the ability of the animal to deposit intramuscular fat or by decreasing the time during which dietary energy supply is adequate for intramuscular fat deposition to occur.  相似文献   

15.
A study was conducted to compare Brangus, Beefmaster, Gelbray, and Simbrah breed influences for economically important traits. Brangus (9), Beefmaster (12), Gelbray (10), and Simbrah (7) sires were used in purebred and crossbred (Brahman x Hereford F1 cows) matings to generate calves (326) in eight breed groups. Beefmaster cows were of similar size (448 kg), Brangus and Gelbray cows were 11% heavier (501 and 503 kg), and Simbrah cows were 21% heavier (548 kg) compared to Brahman x Hereford F1 cows (452 kg). Calves sired by Brangus and Beefmaster bulls had lower birth weights (35 vs 38 kg; P < 0.05), preweaning growth rates (0.87 vs 0.91 kg x d(-1); P < 0.01), and weaning weights (206 vs 219 kg; P < 0.01) than Gelbray- and Simbrah-sired calves. Birth weights, preweaning ADG, and weaning weight and hip heights were similar between Brangus- and Beefmaster-sired calves. Simbrah-sired calves had greater preweaning growth rates (0.94 vs 0.88 kg x d(-1); P < 0.05), weaning weights (227 vs 211 kg; P < 0.01), and adjusted 205-d hip heights (126 vs 122 cm; P < 0.05) than Gelbray-sired calves. Straightbred Angus steers were introduced in the postweaning portion of the study. Steer calves were placed on feed at an average age of 14.5 mo. Steers were removed from the feedlot upon attaining a targeted 10 mm of backfat. Feedlot ADG did not differ among sire breeds. Brahman-derivative sired steers required an additional 54 d on feed (P < 0.01) and were 86 kg heavier (P < 0.01) at harvest than Angus steers. Continental-Brahman steers spent an additional 25 d on feed (P < 0.05) and were 35 kg heavier (P < 0.01) at harvest than British-Brahman steers. Simbrah-sired steers were 52 kg heavier (P < 0.01) at harvest than Gelbray-sired steers when fed for a similar number of days (211 vs 203 d). However, straightbred Simbrah steers required an additional 12 d on feed (P < 0.01) and weighed 47 kg more (P < 0.01) than Simbrah-sired crossbred steers. The economic value of the heavier calf weaning weights may be offset by the attendant larger cow size of the Continental-Brahman compared to the British-Brahman breeds. Similarly, the heavier weights of Continental-Brahman compared to British-Brahman steers, when harvested at a prescribed level of fatness may be viewed as a benefit, but the increased number of requisite days in the feedlot is a disadvantage.  相似文献   

16.
Seventy Angus x Simmental calves (BW = 166.3 +/- 4.2 kg) were used in a 3 x 2 factorial arrangement to determine the effect of age at feedlot entry and castration on growth, performance, and carcass characteristics. At 82 d of age, steers were castrated. Calves were placed in the feedlot at 111 (early-weaned), 202, or 371 (yearling) d of age. Steers were implanted with Synovex-S followed 93 d later with Revalor-S. Calves were harvested on an individual basis when fat thickness was estimated to be 1.27 cm. During the feedlot phase, yearlings gained faster (P < 0.01) than calves placed in the feedlot at 202 or 111 d of age (1.88, 1.68, and 1.62 kg/d, respectively); however, from 111 d of age until harvest, ADG was greatest for early-weaned calves, intermediate for cattle placed in the feedlot at 202 d of age, and lowest for yearlings (1.62, 1.47, and 1.21 kg/d, respectively; P < 0.01). Early-weaned calves spent the most days in the feedlot, followed by calves placed in the feedlot at 202 d of age; yearlings spent the fewest days in the feedlot (221, 190, and 163 d, respectively; P < 0.01). Total DMI when in the feedlot was similar (P = 0.22) among age groups; however, daily DMI was lowest for early-weaned calves, intermediate for calves placed in the feedlot at 202 d of age, and the highest for yearlings (7.1, 8.1, 10.5 kg/ d, respectively; P < 0.01). Early-weaned calves were the most efficient, followed by calves placed in the feedlot at 202 d of age; yearlings were the least efficient (227, 207, 180 g gain/kg feed, respectively; P < 0.01). Weight at harvest (682, 582, 517 kg, respectively; P < 0.01) and hot carcass weight (413, 358, 314 kg, respectively; P < 0.01) were greatest for yearlings, intermediate for cattle placed in the feedlot at 202 d of age, and lowest for early-weaned calves. Early-weaned calves had the smallest longissimus area, followed by calves placed in the feed-lot at 202 d of age; yearlings had the largest longissimus area (77, 86, 88 cm2, respectively; P < 0.01). Calves placed in the feedlot at 111 and 202 d of age had lower yield grades (3.2, 3.1, 3.5, respectively; P < 0.04), and produced fewer select carcasses than yearlings (25, 13, 48%, respectively; P < 0.01). Bulls and implanted steers both had an ADG of 1.7 kg/d when in the feedlot; however, bulls had a greater (P < 0.09) hot carcass weight (370 vs 354 kg) and a larger (P < 0.01) longissimus area (85.8 vs 81.3 cm2) than steers. Earlier feedlot placement resulted in greater quality grades but lower carcass weights.  相似文献   

17.
A winter grazing/feedlot performance experiment repeated over 2 yr (Exp. 1) and a metabolism experiment (Exp. 2) were conducted to evaluate effects of grazing dormant native range or irrigated winter wheat pasture on subsequent intake, feedlot performance, carcass characteristics, total-tract digestion of nutrients, and ruminal digesta kinetics in beef cattle. In Exp. 1, 30 (yr 1) or 67 (yr 2) English crossbred steers that had previously grazed native range (n = 38) or winter wheat (n = 59) for approximately 180 d were allotted randomly within previous treatment to feedlot pens (yr 1 native range = three pens [seven steers/pen], winter wheat = two pens [eight steers/pen]; yr 2 native range = three pens [eight steers/pen], winter wheat = four pens [10 or 11 steers/pen]). As expected, winter wheat steers had greater (P < 0.01) ADG while grazing than did native range steers. In contrast, feedlot ADG and gain efficiency were greater (P < 0.02) for native range steers than for winter wheat steers. Hot carcass weight, longissimus muscle area, and marbling score were greater (P < 0.01) for winter wheat steers than for native range steers. In contrast, 12th-rib fat depth (P < 0.64) and yield grade (P < 0.77) did not differ among treatments. In Exp. 2, eight ruminally cannulated steers that had previously grazed winter wheat (n = 4; initial BW = 407 +/- 12 kg) or native range (n = 4; initial BW = 293 +/- 23 kg) were used to determine intake, digesta kinetics, and total-tract digestion while being adapted to a 90% concentrate diet. The adaptation and diets used in Exp. 2 were consistent with those used in Exp. 1 and consisted of 70, 75, 80, and 85% concentrate diets, each fed for 5 d. As was similar for intact steers, restricted growth of cannulated native range steers during the winter grazing phase resulted in greater (P < 0.001) DMI (% of BW) and ADG (P < 0.04) compared with winter wheat steers. In addition, ruminal fill (P < 0.01) and total-tract OM digestibility (P < 0.02) were greater for native range than for winter wheat steers across the adaptation period. Greater digestibility by native range steers early in the finishing period might account for some of the compensatory gain response. Although greater performance was achieved by native range steers in the feedlot, grazing winter wheat before finishing resulted in fewer days on feed, increased hot carcass weight, and improved carcass merit.  相似文献   

18.
One hundred forty spring-born Angus x Gelbvieh and purebred Angus steers were selected for study as early weaned (EW; average age at weaning = 90 +/- 30 d) or traditionally weaned (TW; average age at weaning = 174 +/- 37 d) steers that were non-implanted or implanted (Synovex-S, Fort Dodge Animal Health, Overland Park, KS). Initially, steers were sorted by age, sire, and farm, and then allotted randomly in a 2 x 2 factorial arrangement of treatments of EW implanted (EWI), EW nonimplanted (EWN), TW implanted (TWI), or TW nonimplanted (TWN). Ultrasound measurements (US) of LM area (LMA), 12th rib fat thickness (US-BF), and marbling (US-M) were collected every 28 d during the time that steers were on feed. At 202 d of age, EW calves had larger US-LMA, US-BF, and BW than TW calves (37.9 vs. 32.3 cm2, 0.38 vs. 0.26 cm, and 271.6 vs. 218.9 kg, respectively; P < 0.001). At slaughter, EW calves had heavier HCW (290.4 vs. 279.7 kg, respectively; P < 0.05) and greater USDA marbling scores (51.25 vs. 46.26, respectively; P < 0.05) than TW calves; more EW steers graded USDA Choice or greater (P = 0.05). However, no differences were detected in BW (P = 0.15), LMA (P = 0.39), BF (P = 0.45), or liver abscess scores (P = 0.41). Twenty-four implanted steers were selected from the original group of 140 and sorted into two slaughter groups of 12. Twelve implanted steers from each weaning group, matched in slaughter BW but differing in age, were subsampled at slaughter to assess the effect of weaning age and chronological age on muscle tenderness. Younger animals had lower Warner-Bratzler shear force values (P < 0.001) than older calves after 14 d of postmortem aging; however, no differences were found in tenderness after 21 d of aging. Furthermore, there was greater variance (P < 0.001) in Warner-Bratzler shear force values among younger, EW steers vs. older, TW steers. These data provide evidence that early weaning of beef calves may be used as a tool to more effectively manage the cow-calf production system without compromising the quality of the offspring.  相似文献   

19.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

20.
Fall-weaned crossbred steer calves (n = 300; 184 +/- 2.9 kg) received either no implant (Control) or were implanted with Synovex-C (SC = 10 mg estradiol benzoate + 100 mg progesterone), Synovex-S (SS = 20 mg estradiol benzoate + 200 mg progesterone), or Revalor-G (RG = 8 mg estradiol-17beta + 40 mg trenbolone acetate) to determine the effects of implants on weight gain during winter grazing on dormant tallgrass prairie, subsequent grazing and finishing performance, and carcass characteristics. Steers grazed two dormant tallgrass prairie pastures from October 16, 1996, until March 29, 1997 (164 d), and received 1.36 kg/d of a 25% CP supplement that supplied 100 mg of monensin/steer. Following winter grazing, all steers were implanted with Ralgro (36 mg zeranol) and grazed a common tallgrass prairie pasture until July 17 (110 d). After summer grazing, all steers were implanted with Revalor-S (24 mg estradiol-17beta + 120 mg trenbolone acetate), and winter implant treatment groups were equally allotted to four feedlot pens. Steers were harvested November 17, 1997, after a 123-d finishing period. Daily gains during the winter grazing phase averaged .28, .32, .32, or .35 kg/d, respectively, for Control, SC, SS, or RG steers and were greater (P < .01) for implanted steers than for Controls. Summer daily gains were similar (1.05 +/- .016 kg/d; P > or = .61) for all treatment groups. Feedlot daily gains were also similar (1.67 +/- .034 kg/d; P > or = .21), with implanted steers weighing 14 kg more than Control steers (P = .05) at harvest, despite similar management during summer grazing and feedlot phases. Control steers tended (P = .06) to have lower yield grades. There were no differences (P = .99) in marbling between implanted and nonimplanted steers. Steers implanted during the wintering phase had increased skeletal and overall (P < .01) carcass maturities compared with nonimplanted steers, which resulted in more "B" and "C" maturity carcasses. Because carcass maturity score affects quality grade, the increased maturities of implanted steers resulted in a $9.04 decrease in carcass value/100 kg (P < .01) compared with Controls. The results of this study indicate that growth-promoting implants are efficacious for cattle wintered on dormant native range despite low daily gains. This increased weight is maintained through the summer grazing and feedlot phases; however, the benefit of the increased weight may be offset by decreased carcass quality grade and value due to increased carcass maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号