首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 3-yr experiment was conducted with cows and their calves to evaluate resource inputs, animal performance, and carcass characteristics of two production systems. In the control system, cows (CON; n = 99/yr) grazed pasture and were fed hay during the winter, and CON steer calves were finished in the feedlot for 211 d after weaning. In the treatment system (TRT; n = 100/yr), cows grazed pasture and crop residue during the winter and were fed hay. Treatment steer calves grazed crop residue after weaning, grazed pasture in the spring and summer, and were finished in the feedlot for 90 d. Body condition scores after TRT cows returned from crop residue grazing were greater (P < 0.01) for CON than for TRT cows. Calving rates were similar for both groups (CON = 91%; TRT = 93%). In the feedlot, CON steers had lower (P < 0.05) ADG and DMI, but were more efficient (P < 0.01) than TRT steers. Treatment steers had greater (P < 0.05) final weight, hot carcass weight and longissimus muscle area, and decreased marbling score. The cost per weaned calf and weaning breakeven were greater (P = 0.07) for the CON system than for the TRT system (CON = 455.12 dollars, 0.91 dollar/0.45 kg; TRT = 421.43 dollars, 0.84 dollar/0.45 kg). When steers were priced into the postweaning phase on an economic basis, slaughter breakeven was lower (P = 0.01), and profit potential tended (P = 0.14) to be greater for TRT steers when they were sold on a live basis. When steers were priced into the postweaning phase on a financial basis, slaughter breakeven was lower (P = 0.03) and profit potential from the sale of steers on a live basis was greater (P = 0.07) for TRT than for CON steers. Economic evaluation of the total system resulted in greater (P = 0.06) profit potential for the TRT system when steers were priced into the system on either an economic or a financial basis and when steers were sold on a live basis, but no differences were observed when steers were sold on a grid basis. Despite differences in cow weight and body condition, calving rates did not differ between systems. Although calves were herdmates, feedlot performance and carcass characteristics differed between systems. The TRT system had lower weaning and slaughter breakeven, lower cost per weaned calf, and greater profit potential when finished steers were sold on a live basis.  相似文献   

2.
A 3-yr study used 16 cows and their spring-born calves (yr 1) and 48 first-calf heifers (yr 2, n = 24; yr 3, n = 24) and their spring-born calves in a completely randomized design. All cows and heifers were Angus x Beefmaster, and calves were sired by Angus bulls. Cow-calf pairs were assigned randomly to one of two management systems: 1) an early-weaning system, in which steer and heifer calves were weaned at 108 d of age and fed a postweaning growing diet (EW), or 2) a normal weaning system, in which calves were weaned at 205 d without supplementation (NW). Before early weaning and within each management system, calves and their dams were maintained in two 1.4-ha, endophyte-infected tall fescue pastures for 35 d (yr 1) or 14 d (yr 2 and 3). Early-weaned calves and cow-calf pairs were then randomly allotted to 1.4-ha, endophyte-infected tall fescue pastures with two (yr 1) or three (yr 2 and 3) calves or cow-calf pairs per pasture (four pastures per management system). Cow weights and BCS changes and calf gains were measured from early to normal weaning. Dietary intakes and nutrient digestibilities by EW and NW calves were determined during two periods of yr 1 and three periods of yr 2 and 3. Total gains and BCS changes were greater (P < 0.01) for cows that produced EW calves in all years. Calf ADG from early to normal weaning did not differ (P = 0.32). Similar to ADG, BW of calves at normal weaning were not different (P = 0.11). Forage intake was greater (P < 0.01) by NW calves during Periods 2 and 3 of yr 1 and Periods 1 and 2 of yr 2 and 3; however, total DM and CP intakes were greater (P < 0.01) for EW calves in Periods 2 and 3 of each year. Intakes of NDF tended (P = 0.11) to be greater by EW calves across all years. Estimates of CP and NDF digestibilities were higher (P < 0.01) for EW calves during yr 1 and 2; however, all components of the diet consumed by NW calves in yr 3 were more digestible (P < 0.05) than those consumed by EW calves. These results show the condition of cows with EW calves was improved by early weaning and gains by calves weaned at 108 d to pasture plus a commercial grower diet were comparable to those by calves continuing to nurse dams until weaned at 205 d.  相似文献   

3.
Crossbred, spring-calving cows (yr 1, n = 136; yr 2, n = 113; yr 3, n = 113) were used in a 3-yr experiment to evaluate the influence of supplemental protein prepartum and grazing subirrigated meadow postpartum on pregnancy rates and calf feedlot performance. A 2 x 2 factorial arrangement of treatments was used in a switchback design. From December 1 to February 28, cows grazed dormant upland range in 8 pastures (32 +/- 2 ha each). The equivalent of 0.45 kg of supplement/cow per d (42% CP) was provided to half of the cows on a pasture basis 3 d/wk. For 30 d before the beginning of breeding (May 1 to May 31), half of the cows grazed a common subirrigated meadow (58 ha), and the remainder was fed grass hay in a drylot. Cow BW and BCS were monitored throughout the year, and steer calf performance was determined until slaughter. Feeding supplement prepartum improved (P = 0.01 to P < 0.001) BCS precalving (5.1 vs. 4.7) and prebreeding (5.1 vs. 4.9) and increased (P = 0.02) the percentage of live calves at weaning (98.5 vs. 93.6%) but did not affect (P = 0.46) pregnancy rate (93 vs. 90%). Calves born to dams fed supplement prepartum had similar (P = 0.29) birth weight (37 vs. 36 kg) but greater (P = 0.02) weaning weight (218 vs. 211 kg). However, steer feedlot DMI (8.53 vs. 8.48 kg), ADG (1.6 vs. 1.6 kg), and carcass weight (369 vs. 363 kg) were not affected (P = 0.23 to P = 0.89) by prepartum supplementation. Allowing cows to graze subirrigated meadow postpartum improved (P < 0.001) BCS prebreeding (5.2 vs. 4.9) but did not affect (P = 0.88) pregnancy rate (92 vs. 91%). Allowing cows to graze subirrigated meadow increased (P = 0.01) calf weaning weight (218 vs. 211 kg) but not (P = 0.62 to P = 0.91) feedlot DMI (8.4 vs. 8.3 kg), ADG (1.6 vs. 1.6 kg), or carcass weight (363 vs. 362 kg) of their steer calves. Increased percentage of live calves at weaning as a result of feeding supplemental protein increased net returns at weaning and after finishing in the feedlot. Net returns were increased by allowing cows to graze subirrigated meadow postpartum regardless of whether calves were marketed at weaning or after finishing in the feedlot.  相似文献   

4.
A winter grazing experiment was conducted to evaluate the effects of stocking rate and corn gluten feed supplementation on forage mass and composition and the BW and BCS of bred 2-yr-old cows grazing stockpiled forage during winter. Two 12.2-ha blocks containing Fawn, endophyte-free, tall fescue and red clover were each divided into 4 pastures of 2.53 or 3.54 ha. Hay was harvested from the pastures in June and August of 2003 and 2004, and N was applied at 50.5 kg/ha at the initiation of stockpiling in August. On October 22, 2003, and October 20, 2004, twenty-four 30-mo-old Angus-Simmental and Angus cows were allotted by BW and BCS to strip-graze for 147 d at 0.84 or 1.19 cow/ha. Eight similar cows were allotted to 2 dry lots and fed tall fescue-red clover hay ad libitum. Corn gluten feed was fed to cows in 2 pastures to maintain a mean BCS of 5 (9-point scale) at each stocking rate and in the dry lots (high supplementation level) or when weather prevented grazing (low supplementation level) in the remaining 2 pastures at each stocking rate. Mean concentrations of CP in yr 1 and 2 and IVDMD in yr 2 were greater (P < 0.10) in hay than stockpiled forage over the winter. At the end of grazing, cows fed hay in dry lots had greater (P < 0.05) BCS in yr 1 and greater (P < 0.10) BW in yr 2 than grazing cows. Grazing cows in the high supplementation treatment had greater (P < 0.10) BW than cows grazing at the low supplementation level in yr 1. Cows in the dry lots were fed 2,565 and 2,158 kg of hay DM/cow. Amounts of corn gluten feed supplemented to cows in yr 1 and 2 were 46 and 60 kg/ cow and did not differ (P = 0.33, yr 1; P = 0.50, yr 2) between cows fed hay or grazing stockpiled forage in either year. Estimated production costs were greater for cows in the dry lots because of hay feeding.  相似文献   

5.
A 3-yr study was conducted with heifers (n = 170) whose dams were used in a 2 x 2 factorial arrangement of treatments to determine the effects of late gestation (LG) or early lactation (EL) dam nutrition on subsequent heifer growth and reproduction. In LG, cows received 0.45 kg/d of a 42% CP supplement (PS) or no supplement (NS) while grazing dormant Sandhills range. During EL, cows from each late gestational treatment were fed cool-season grass hay or grazed sub-irrigated meadow. Cows were managed as a single herd for the remainder of the year. Birth date and birth weight of heifer calves were not affected (P > 0.10) by dam nutrition. Meadow grazing and PS increased (P = 0.02; P = 0.07) heifer 205-d BW vs. feeding hay and NS, respectively. Weight at prebreeding and pregnancy diagnosis were greater (P < 0.04) for heifers from PS dams but were unaffected by EL nutrition (P > 0.10). There was no effect (P > 0.10) of LG or EL dam nutrition on age at puberty or the percentage of heifers cycling before breeding. There was no difference (P > 0.10) in pregnancy rates due to EL treatment. Pregnancy rates were greater (P = 0.05) for heifers from PS dams, and a greater proportion (P = 0.005) of heifers from PS dams calved in the first 21 d of the heifers' first calving season. Nutrition of the dams did not influence (P < 0.10) heifers' average calving date, calving difficulty, and calf birth weight during the initial calving season. Weight at the beginning of the second breeding season was greater (P = 0.005) for heifers from PS dams but was not affected by maternal nutrition during EL (P > 0.10). Dam nutrition did not affect (P > 0.10) heifer ADG or G:F ratio. Heifers from PS dams had greater DMI (P = 0.09) and residual feed intake (P = 0.07) than heifers from NS cows if their dams were fed hay during EL but not if their dams grazed meadows. Heifers born to PS cows were heavier at weaning, prebreeding, first pregnancy diagnosis, and before their second breeding season. Heifers from cows that grazed meadows during EL were heavier at weaning but not postweaning. Despite similar ages at puberty and similar proportions of heifers cycling before the breeding season, a greater proportion of heifers from PS dams calved in the first 21 d of the heifers' first calving season, and pregnancy rates were greater compared with heifers from NS dams. Collectively, these results provide evidence of a fetal programming effect on heifer postweaning BW and fertility.  相似文献   

6.
A 3-yr study evaluated late winter (Feb), early spring (Apr), and late spring (Jun) calving systems in conjunction with varied weaning strategies on beef cow and calf performance from Northern Great Plains rangelands. Crossbred cows were randomly assigned to one of three calving systems (on average n= 168.calving system(-1).yr(-1)) and one of two weaning times (Wean 1, 2) within each calving system. The Feb and Apr calves were weaned at 190 and 240 d of age, whereas Jun calves were weaned at 140 and 190 d of age. Breeding by natural service occurred in a 32-d period that included estrous synchronization. Cows were managed throughout the year as appropriate for their calving season. Quantity and quality of hay and supplements were provided based on forage and weather conditions, physiological state of the cows, and available harvested feed resources within a year. After weaning, two-thirds of the early weaned steers were fed in confinement in Montana, and one-third were shipped to Oklahoma and were grazed or fed forage. One-half of the early weaned heifers grazed seeded pastures, and the other half was fed in confinement. Early weaned calves were weighed on approximately the same day as late-weaned calves. Birth weight and overall rate of gain from birth to weaning did not differ for calves from the three calving systems. Calf weaning weight differed by weaning age within calving system (P = 0.001), and calves from the Jun calving system that were weaned at 190 d of age tended (P = 0.06) to be lighter than calves of the same age from the Feb or Apr calving systems. Cow BW change and BCS dynamics were affected by calving system, but the proportion of cows pregnant in the fall was not. Cows suckled until later dates gained less or lost more BW during the 50 d between the first and second weaning than dry cows during this period. The previous year's weaning assignment did not affect production in the following year. Estimated harvested feed inputs were less for the Jun cows than for the Feb and Apr cows. We conclude that season of calving and weaning age affect outputs from rangeland-based beef cattle operations.  相似文献   

7.
Over a 5-yr period, spring-calving cows were used in a carry-over design experiment to evaluate effects of calf age at weaning on cow and calf performance and production economics. Weaning management groups were early (n = 60, calf age 150 d, EW), traditional (n = 60, calf age 210 d, NW), and late (n = 60, calf age 270 d, LW). Cow body condition score (BCS) and weights at the last weaning date were different (P < .05) for EW (5.8, 583 kg), NW (5.5, 560 kg), and LW (5.2, 541 kg) management groups. Pregnancy rates among groups were similar. Days on feed for groups differed (P = .001) and was 247 for EW, 204 for NW, and 164 d for LW steers. Average daily gain in the feedlot differed (P = .01) among groups and averaged 1.5 kg for LW, 1.4 kg for NW, and 1.3 kg for EW steers. Dry matter intake while steers were in the feedlot was greater (P = .001) for LW than for NW and EW calves. Hot carcass weight was greater (P = .01) for EW (328 kg) and NW (332 kg) calves than for LW (321 kg) steers, and fat depth was greater (P = .05) for EW and NW steers than for LW steers. When carcass data for the NW and LW steers were adjusted to the fat depth of EW steers, carcass characteristics among groups were similar. Net income per steer at slaughter for the feedlot phase was greater (P < .001) for the EW ($75.36) and NW ($62.16) steers than for the LW ($10.09) steers. Again, when carcass data for the NW and LW steers were adjusted to the same fat depth of the EW steers, net income differences among groups were reduced. Replacement heifers were developed in a drylot and costs were higher (P < .001) for the EW than for NW and LW heifers. Annual cow costs were greater (P < .10) for the LW ($443.45) than for the EW ($410.09) and NW ($421.35) groups. Break-even for each system on a steer financial basis was not different between the NW and LW groups, and both the NW and LW groups had lower (P = .08) break-evens than the EW group. Age of the calf at weaning affects cow weight and BCS. Net income in each system is influenced by cow costs, month of the year that steer calves are purchased into the feedlot and finished steers are sold, month of the year cull cows are marketed, and replacement heifer development costs.  相似文献   

8.
Body condition score is used as a management tool to predict competency of reproduction in beef cows. Therefore, a retrospective study was performed to evaluate association of BCS at calving with subsequent pregnancy rate, days to first postpartum ovulation, nutrient status (assessed by blood metabolites), and calf BW change in 2- and 3-yr-old cows (n = 351) managed and selected to fit their environment of grazing native range over 6 yr at the Corona Range and Livestock Research Center, Corona, NM. Cows were managed similarly before calving, without manipulation of management, to achieve predetermined BCS at parturition. Palpable BCS (scale of 1 to 9) were determined by 2 experienced technicians before calving. Cows were classified to 1 of 3 BCS groups prior calving: BCS 4 (mean BCS = 4.3 ± 0.02), 5 (mean BCS = 5.0 ± 0.03), or 6 (mean BCS = 5.8 ± 0.06). Cows were weighed weekly after calving and serum was collected once weekly (1 yr) or twice weekly (5 yr) for progesterone analysis to estimate first postpartum ovulation beginning 35 d postpartum. Year effects also were evaluated, with years identified as either above or below average precipitation. Days to first postpartum ovulation did not differ among calving BCS groups (P = 0.93). Pregnancy rates were not influenced by calving BCS (P = 0.83; 92%, 91%, 90% for BCS 4, 5, and 6, respectively). Days to BW nadir was not influenced by BCS at calving (P = 0.95). Cow BW was different at all measuring points (P < 0.01) with BCS 6 cows having the heaviest BW and cows with BCS 4 the lightest. Cows with calving BCS 4 and 5 lost more (P = 0.06) BW from the initiation of the study to the end of breeding than cows with BCS 6. However, cow BW change at all other measurement periods was not different (P ≥ 0.49) among calving BCS groups. Serum glucose and NEFA concentrations were not influenced by calving BCS (P ≥ 0.51). Calf BW at birth (P = 0.60), branding (55-d BW; P = 0.76), and weaning (205-d BW; P = 0.60) were not impacted by cow calving BCS. Body condition score did not influence overall pregnancy rates, indicating that young cows can have a reduced BCS and still be reproductively punctual. Therefore, these results indicate that reproductive performance of young cows with reduced BCS may not be affected when managed in extensive range conditions.  相似文献   

9.
Cow and calf performance was determined in a 2-yr, 2 x 2 factorial, grazing experiment using Coastal or Tifton 85 (T85) replicated Bermudagrass pastures (4 pastures each; each pasture 4.86 ha), without or with aeschynomene creep-grazing paddocks (n = 4, 0.202 ha each, planted in May of each year, 13.44 kg/ha). On June 10, 2004, and June 8, 2005, 96 winter-calving beef "tester" cows and their calves were grouped by cow breed (9 Angus and 3 Polled Hereford/group), initial cow BW (592.9 +/- 70.1 kg, 2-yr mean), age of dam, calf breed (Angus, Polled Hereford, or Angus x Polled Hereford), calf sex, initial calf age (117 +/- 20.1 d, 2-yr mean), and initial calf BW (161.3 +/- 30.4 kg) and were randomly assigned to pastures. Additional cow-calf pairs and open cows were added as the forage increased during the season. Forage mass was similar for all treatment pastures (P > 0.70; 2-yr mean, 6,939 vs. 6,628 kg/ha, Coastal vs. T85; 6,664 vs. 6,896 kg/ha, no creep grazing vs. creep grazing). Main effect interactions did not occur for performance variables (P > 0.10; 2-yr means), and year affected only the initial and final BW of the calves and cows. The 91-d tester calf ADG was greater for calves grazing T85 than Coastal (0.94 vs. 0.79 kg; P < 0.01), and for calves creep grazing aeschynomene compared with calves without creep grazing (0.90 vs. 0.82 kg; P < 0.03). Calf 205-d adjusted weaning weights were increased for calves grazing T85 compared with Coastal (252.9 vs. 240.3 kg; P < 0.01) and for calves with access to creep grazing (249.9 vs. 243.3 kg; P < 0.05). The IVDMD of esophageal masticate from pastures had a forage x creep grazing interaction (P < 0.05; Coastal, no creep grazing = 57.4%; Coastal, creep grazing = 52.1%; T85, no creep grazing = 59.1%; T85, creep grazing = 60.0%), and IVDMD was greater (P < 0.05) for T85 than for Coastal pastures. Cows were milked in August 2004, and in June and August 2005, with variable milk yields on treatments, but increased milk protein (P < 0.05) for cows grazing T85 compared with Coastal pastures in August each year, contributing to increased calf gains on T85 pastures. These results complement previous research with T85 and indicate increased forage quality and performance of cattle grazing T85 pastures. Calf gains on T85 pastures and for calves on creep-grazed aeschynomene paddocks were high enough to influence the efficiency of cow-calf operations.  相似文献   

10.
Pregnancy rate, calving interval, birth weight, weaning weight, and quarterly BCS were collected for 5 consecutive years on 454 fall-calving multiparous British crossbred cattle (3 to 10 yr of age) to evaluate associations of age with BCS and production parameters. Body weight and BCS were collected pre-calving, prebreeding, at weaning, and midway through the second trimester of pregnancy (August). Body condition score was correlated with age during all seasons (P < 0.01). At calving, breeding, and in August, 3-yr-old cows had the lowest BW and BCS, whereas 8-yr-old cows had the greatest. At weaning, these values were maximal in 10-yr-old cows. Pregnancy rate was near 80% up to 9 yr of age but decreased to 57% in 10-yr-old cows. The relationship of pregnancy rate with age appears to be correlated with the BCS decrease at breeding in the older cows, supported by the fact that inclusion of BCS at breeding in the statistical model eliminated the effect of age on pregnancy rate (P = 0.42). Calving interval was longer in 3-yr-old cows compared with 4- to 9-yr-old cows (P = 0.02); however, among older cows, there was little change in the calving interval. Birth weight reached a maximum at 8 yr of age (35 +/- 0.9 kg) and a minimum in 3-yr-old cows (32 +/- 0.7 kg). Birth weights of calves born to both 3- and 4-yr-old cows were lower than for those born to 5-, 6-, 7-, or 8-yr-old cows (P < 0.05). Ten-year-old cows weaned lighter calves (205-d adjusted weaning weight) than younger dams. Furthermore, 3-yr-old cows weaned calves 9 +/- 2.1 and 14 +/- 2.4 kg lighter than 4- and 5-yr-old cows, respectively (P < 0.001). Interpretation of the age analyses of calving interval, birth weight, and weaning weight was independent of the inclusion of BCS in the model. This study documents the effects of age on calving interval, birth weight, and weaning weight that are independent of BCS.  相似文献   

11.
Braham-Hereford F1 dams have been used to evaluate the influence of grazing pressure on forage attributes and animal performance at the Texas A&M University Agricultural Research Center at Overton. Data for this study were compiled from 1,909 records of Simmental-sired calves born to Braham-Hereford F1 cows from 1975 to 1990. Birth weight and weaning weight were analyzed independently to estimate the influence of year, season of birth, dam age, weaning age, and sex of calf. The effect of stocking rate as represented by levels of forage availability on weaning weights and subsequent birth weights was measured. Within the fall and winter calving seasons, lactating dams grazing at a high stocking rate produced calves with the lowest subsequent birth weights. Lactating dams assigned to creep-fed treatments had calves with the heaviest subsequent birth weights. Although dams that were less than 3.5 yr of age had calves with the lightest birth weights, there was no apparent decline in birth weight of calves from dams 12 to 17 yr old. Year, sex of calf, age of dam, stocking rate, season of birth, age at weaning, and birth weight were significant factors affecting weaning weight (P less than .01). Fall-born calves grazing cool-season annual pastures were heavier at weaning (267.6 kg) than either winter- (252.0 kg) or spring-born calves (240.9 kg). A stocking rate x season-of-birth interaction was observed for birth weight and weaning weight (P less than .05). Differences in weaning weight from low- vs high-stocked pastures were greater for fall-born calves (61.6 kg) than for winter-born calves (48.7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Two experiments were conducted to examine the effect of previous BW gain during winter grazing on subsequent growth, carcass characteristics, and change in body composition during the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) supplemented with 0.91 kg/d of cottonseed meal. Winter grazing ADG (kg/d) for HGW, LGW, and NR steers were, respectively, 1.31, 0.54, 0.16 (Exp. 1) and 1.10, 0.68, 0.15 (Exp. 2). At the end of winter grazing, four steers were selected randomly from each treatment to measure initial carcass characteristics and chemical composition of carcass, offal, and empty body. All remaining steers were fed a high-concentrate diet to a common backfat end point. Six steers were selected randomly from each treatment for final chemical composition, and carcass characteristics were measured on all steers. Initial fat mass and proportion in carcass, offal, and empty body were greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both experiments. Live BW ADG and gain efficiency during the finishing phase did not differ (P = 0.24) among treatments, but DMI (% of mean BW) for NR and LGW was greater (P < 0.003) than for HGW steers. Final empty-body composition did not differ (P = 0.25) among treatments in Exp. 1. In Exp. 2, final carcass and empty-body fat proportion (g/kg) was greater (P < 0.03) for LGW and NR than for HGW steers. Accretion of carcass fat-free organic matter was greater (P < 0.004) for LGW than for HGW and NR steers in Exp. 1, but did not differ (P = 0.22) among treatments in Exp. 2. Fat accretion in carcass, offal, and empty body did not differ (P = 0.19) among treatments in Exp. 1, but was greater (P < 0.05) for LGW and NR than for HGW steers in Exp. 2. Heat production by NR steers during finishing was greater (P < 0.02) than by HGW steers in Exp. 1 and 2. Differences in ADG during winter grazing and initial body fat content did not affect rate of live BW gain or gain efficiency during finishing. Feeding steers to a common backfat thickness end point mitigated initial differences in carcass and empty-body fat content. However, maintenance energy requirements during finishing were increased for nutritionally restricted steers that were wintered on dormant native range.  相似文献   

13.
A 2-yr study was conducted to determine the effects of three weaning management systems on cow and steer performance. Cow-calf pairs were randomly assigned to one of three treatments, in which the steer calves were 1) early-weaned (yr 1, 177 +/- 9 d; yr 2, 158 +/- 21 d of age) and placed on a finishing diet (EW), 2) supplemented with grain for 55 d on pasture (yr 1, 177 to 231 d; yr 2, 158 to 213 d of age) while nursing their dams and then placed on a finishing diet (NWC), and 3) on pasture for 55 d while nursing their dams (yr 1, 177 to 231 d; yr 2, 158 to 213 d of age) and then placed on a finishing diet (NW). In yr 2, potential breed differences were evaluated using steers of three breed types: 1) Angus x Hereford (BRI); 2) Angus x Simmental (CON); and 3) Angus x Wagyu (WAG). In yr 1, EW steers gained 100% faster (P = .0001) than the average of NWC and NW steers, and NWC steers gained 32% faster (P = .02) than NW steers before weaning. In the feedlot, EW steers had lower intakes (7.70 vs 8.16 kg/d, P = .008) and better feed conversions (.170 vs .153, P = .002) than the average of NWC and NW steers. Marbling score was improved for EW steers compared with the average of NWC and NW steers (P = .003). In yr 2, EW steers had higher gains (P = .0006) during the entire study than the average of NWC and NW steers, and NWC steers had higher gains (P = .003) than NW steers. The EW steers had lower intakes (7.29 vs 7.68 kg/d, P = .0008) and better feed conversions (.160 vs .141, P = .0001) than the average of NWC and NW steers. The CON steers were heavier at slaughter than BRI steers (P = .01), and BRI steers were heavier than WAG steers (P =.0004). Early weaning improved the percentage of steers grading Average Choice or higher by 40%. The percentage of BRI steers grading Choice or greater was 21% higher and percentage of steers grading Average Choice or greater was 33% higher than CON. Cows with EW steers had higher ADG than cows with NW steers (.38 vs -.17 kg/d, P = .0001) before weaning. Cows with EW steers gained in body condition score (.23 vs .00, P = .04), and cows with NW steers did not change. Early weaning improved feed efficiency and quality grades of beef steers.  相似文献   

14.
A winter grazing/feedlot performance experiment repeated over 2 yr (Exp. 1) and a metabolism experiment (Exp. 2) were conducted to evaluate effects of grazing dormant native range or irrigated winter wheat pasture on subsequent intake, feedlot performance, carcass characteristics, total-tract digestion of nutrients, and ruminal digesta kinetics in beef cattle. In Exp. 1, 30 (yr 1) or 67 (yr 2) English crossbred steers that had previously grazed native range (n = 38) or winter wheat (n = 59) for approximately 180 d were allotted randomly within previous treatment to feedlot pens (yr 1 native range = three pens [seven steers/pen], winter wheat = two pens [eight steers/pen]; yr 2 native range = three pens [eight steers/pen], winter wheat = four pens [10 or 11 steers/pen]). As expected, winter wheat steers had greater (P < 0.01) ADG while grazing than did native range steers. In contrast, feedlot ADG and gain efficiency were greater (P < 0.02) for native range steers than for winter wheat steers. Hot carcass weight, longissimus muscle area, and marbling score were greater (P < 0.01) for winter wheat steers than for native range steers. In contrast, 12th-rib fat depth (P < 0.64) and yield grade (P < 0.77) did not differ among treatments. In Exp. 2, eight ruminally cannulated steers that had previously grazed winter wheat (n = 4; initial BW = 407 +/- 12 kg) or native range (n = 4; initial BW = 293 +/- 23 kg) were used to determine intake, digesta kinetics, and total-tract digestion while being adapted to a 90% concentrate diet. The adaptation and diets used in Exp. 2 were consistent with those used in Exp. 1 and consisted of 70, 75, 80, and 85% concentrate diets, each fed for 5 d. As was similar for intact steers, restricted growth of cannulated native range steers during the winter grazing phase resulted in greater (P < 0.001) DMI (% of BW) and ADG (P < 0.04) compared with winter wheat steers. In addition, ruminal fill (P < 0.01) and total-tract OM digestibility (P < 0.02) were greater for native range than for winter wheat steers across the adaptation period. Greater digestibility by native range steers early in the finishing period might account for some of the compensatory gain response. Although greater performance was achieved by native range steers in the feedlot, grazing winter wheat before finishing resulted in fewer days on feed, increased hot carcass weight, and improved carcass merit.  相似文献   

15.
In a 2-yr study, we evaluated the effect of different forage allocations on the performance of lactating beef cows and their calves grazing stockpiled tall fescue. Allocations of stockpiled tall fescue at 2.25, 3.00, 3.75, and 4.50% of cow-calf pair BW/d were set as experimental treatments. Conventional hay-feeding was also evaluated as a comparison to grazing stockpiled tall fescue. The experiment had a randomized complete block design with 3 replications and was divided into 3 phases each year. From early December to late February (phase 1) of each year, cows and calves grazed stockpiled tall fescue or were fed hay in the treatments described above. Immediately after phase 1, cows and calves were commingled and managed as a single group until weaning in April (phase 2) so that residual effects could be documented. Residual effects on cows were measured after the calves were weaned in April until mid-July (phase 3). During phase 1 of both years, apparent DMI of cow-calf pairs allocated stockpiled tall fescue at 4.50% of BW/d was 31% greater (P < 0.01) than those allocated 2.25% of BW/d. As allocation of stockpiled tall fescue increased from 2.25 to 4.50% of cow-calf BW/d, pasture utilization fell (P < 0.01) from 84 +/- 7% to 59 +/- 7%. During phase 1 of both years, cow BW losses increased linearly (P < 0.02) as forage allocations decreased, although the losses in yr 1 were almost double (P < 0.01) those in yr 2. During phases 2 and 3, few differences were noted across treatment groups, such that by the end of phase 3, cow BW in all treatments did not differ either year (P > 0.40). Calf ADG in phase 1 increased linearly (P < 0.01) with forage allocation (y = 0.063x + 0.513; R(2) = 0.91). However, calf gain per hectare decreased linearly (P < 0.01) as stockpiled tall fescue allocations increased (y = -26.5x + 212; R(2) = 0.97) such that gain per hectare for cow-calf pairs allocated stockpiled tall fescue at 4.50% BW/d was nearly 40% less (P < 0.01) than for those allocated 2.25% of BW/d. Allocating cow-calf pairs stockpiled tall fescue at 2.25% of BW/d likely optimizes its use; because cow body condition is easily regained in the subsequent spring and summer months, less forage is used during winter, and calf gain per hectare is maximized.  相似文献   

16.
Our objective was to evaluate a replicated (n = 2) Midwestern year-round grazing system's hay needs and animal production compared with a replicated (n = 2) conventional (minimal land) system over 3 yr. Because extended grazing systems have decreased hay needs for the beef herd, it was hypothesized that this year-round system would decrease hay needs without penalizing animal production. In the minimal land (ML) system, two replicated 8.1-ha smooth bromegrass-orchardgrass-birdsfoot trefoil (SB-OG-BFT) pastures were rotationally stocked with six mature April-calving cows and calves and harvested as hay for winter feeding in a drylot. After weaning, calves were finished on a high-concentrate diet. Six mature April-calving cows, six mature August-calving cows, and their calves were used in the year-round (YR) grazing system. During the early and late summer, cattle grazed two replicated 8.1-ha SB-OG-BFT pastures by rotational stocking. In mid-summer and winter, April- and August-calving cows grazed two replicated 6.1-ha, endophyte-free tall fescue-red clover (TF-RC) and smooth bromegrass-red clover (SB-RC) pastures, respectively, by strip-stocking. In late autumn, spring-calving cows grazed 6.1-ha corn crop residue fields by strip-stocking. Calves were fed hay with corn gluten feed or corn grain over winter and used as stocker cattle to graze SB-OG-BFT pastures with cows until early August the following summer. First-harvest forage from the TF-RC and SB-RC pastures was harvested as hay. Body condition scores of April-calving cows did not differ between grazing systems, but were lower (P < or = 0.03) than those of August-calving cows from mid-gestation through breeding. Preweaning calf BW gains were 47 kg/ha of perennial pasture (P < 0.01) and 32 kg/cow (P = 0.01) lower in the YR grazing system than in the ML system. Total BW gains ofpreweaning calf and grazing stocker cattle were 12 kg/ha of perennial pasture less (P = 0.07), but 27 kg/cow greater (P = 0.02) in pastures in the YR grazing system than in the ML system. Amounts of hay fed to cows in the ML system were 1,701 kg DM/cow and 896 kg DM/cow-stocker pair greater (P < 0.05) than in the YR grazing system. Extended grazing systems in the Midwest that include grazing of stocker cattle to utilize excess forage growth will decrease stored feed needs, while maintaining growing animal production per cow in April- and August-calving herds.  相似文献   

17.
Three-year-old Angus x Gelbvieh beef cows, which were nutritionally managed to achieve a BCS of 4 +/- 0.07 (479 +/- 36 kg of BW) or 6 +/- 0.07 (580 +/- 53 kg of BW) at parturition, were used in a 2-yr experiment (n = 36/yr) to determine the effects of maternal BCS at parturition and postpartum lipid supplementation on fatty acid profile of suckling calf plasma and adipose tissue. Beginning 3 d postpartum, cows within each BCS were assigned randomly to 1 of 3 treatments in which cows were all fed hay and either a low-fat (control) supplement or supplements with either high-linoleate cracked safflower seeds (linoleate) or high-oleate cracked safflower seeds (oleate) until d 61 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed supplements were provided to achieve 5% of DMI as fat. Total concentration of fatty acids in plasma did not differ (P = 0.48) due to maternal BCS at parturition. Percentage of 20:5n-3 in plasma tended (P = 0.06) to be greater for calves suckling cows with a BCS of 6 at parturition. No other differences (P = 0.12 to 0.99) were noted in calf plasma fatty acid profile due to maternal BCS at parturition. Likewise, no differences were detected for total fatty acid concentration (P = 0.88) in calf adipose tissue due to maternal BCS at parturition. Weight percentage of 14:1 (P = 0.001) was greatest in adipose tissue of calves suckling cows fed control and oleate; however, the percentages of 14:0, 15:0, 16:0, 16:1, 17:0, and 18:3n-3 were greater (P < 0.001) in adipose tissue from calves suckling cows fed control compared with calves suckling cows fed linoleate or oleate. Percentages of 18:0, 18:1trans-11, 18:2n-6, and cis-9, trans-11 CLA were greater (P < 0.001) in adipose tissue from calves suckling cows fed linoleate compared with calves suckling cows fed control and oleate. Calves suckling cows fed oleate had greater (P < 0.001) percentages of 18:1trans-9, 18:1trans-10, and 18:1cis-9 in adipose tissue than calves suckling cows fed control or linoleate. Calf plasma and adipose tissue fatty acid profiles were reflective of milk fatty acids. Because fatty acids play an important role in metabolic regulatory functions, changes in milk fatty acid profile should be considered when beef cows are fed lipid supplements.  相似文献   

18.
Grazing experiments may use steers or cow-calf pairs for measuring animal performance on pasture treatments, but the validity of extrapolation between these classes of cattle has not been verified. A grazing study was conducted in the spring and summer of both 1988 and 1989 to determine stocking equivalents and stocking rate-weight gain relationships for steers and cow-calf pairs grazing Coastal bermuda grass (Cynodon dactylon [L.] pers.) oversown with rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.). Average daily gain and stocking rate (SR; 3.2, 4.2, 6.2, and 7.4 animals per hectare for steers and 1.7, 2.5, 3.7, and 4.9 pairs per hectare for cow-calf pairs) were both adjusted so that comparisons could be made on an equal BW basis. Disk meter height readings were used as measurements of forage accessibility. Disk meter height responses to SR did not differ (P greater than .10) between steer and cow-calf paddocks. There was a linear (P less than .001) decrease in ADG as SR increased, but this decline was steeper (P less than .001) for steers than for cows or suckling calves. Steers tended to be more productive than calves at low SR but less productive at high SR. Disk meter heights for the range of SR used in the study did not differ (P greater than .10) for steers and cow-calf pairs at equivalent BW per hectare. Our study suggests that live BW is a reasonable basis for determining forage requirements of steers and cow-calf pairs under grazing conditions, but extrapolation of production between classes of livestock will not be reliable.  相似文献   

19.
This experiment was conducted to determine the effects of interval feeding of whole sunflower seeds on the performance of beef cows and their progeny. During mid to late gestation, 144 multiparous, spring-calving beef cows (588 kg of initial BW; 5.6 initial BCS; 4 to 13 yr old) were individually fed 1 of 3 supplements 4 d/wk for a 76-d period. Supplements (DM basis) included: 1) 0.68 kg of soybean meal/feeding (NCON); 2) 3.01 kg of a soybean hull-based supplement/feeding (PCON); and 3) 1.66 kg of whole sunflower seeds high in linoleic acid/feeding (WSUN). Supplements were formulated to provide similar amounts of CP and ruminally degraded intake protein; PCON and WSUN were also formulated to be isocaloric. During the supplementation period, cows had free-choice access to bermudagrass (Cynodon dactylon) and tall-grass prairie hay. By the end of the 76-d supplementation period, cows fed PCON (P < 0.01) and NCON (P < 0.01) had gained more BW than cows fed WSUN (33, 23, and 10 kg, respectively). However, from the end of this supplementation period to the beginning of the breeding season 84 d later, cows supplemented with PCON had lost more (P < 0.01) BW than cows supplemented with WSUN (-123 kg vs. -111 kg). Cow BW change through weaning (-50 kg, P = 0.43) and final cow BW (536 kg, P = 0.70) at weaning were not different among supplement groups. Furthermore, cow BCS was similar among supplement treatment groups at the end of the supplementation period (5.3, P = 0.09), at the beginning of the breeding season (4.8, P = 0.38), and at weaning (4.7, P = 0.08). No difference among treatments was detected for calf birth weight (36 kg, P = 0.42), calf weaning weight (235 kg, P = 0.67), percentage of cows exhibiting luteal activity at the beginning of the breeding season (57%, P = 0.29), or pregnancy rate (88%, P = 0.44). However, first service conception rate was greater (P = 0.01) for cows fed PCON (79%) and tended (P = 0.07) to be greater for cows fed WSUN (74%) than for cows fed NCON (53%). After weaning, all steer calves were placed in a feedlot and fed a high-concentrate finishing diet for an average of 188 d. Supplements fed to dams during gestation did not influence feedlot performance or carcass characteristics. Prepartum energy supplementation, regardless of energy source or prepartum energy balance, resulted in improved conception rate, but other measures of reproduction, calf and feedlot performance, and carcass characteristics were not affected.  相似文献   

20.
Six year-round, all-forage, three-paddock systems for beef cow-calf production were used to produce five calf crops during a 6-yr period. Forages grazed by cows during spring, summer, and early fall consisted of one paddock of 1) tall fescue (Festuca arundinacea Schreb.)-ladino clover (Trifolium repens L.) or 2) Kentucky blue-grass (Poa pratensis L.)-white clover (Trifolium repens L.). Each of these forage mixtures was combined in a factorial arrangement with two paddocks of either 1) fescue-red clover (Trifolium pratense L.), 2) orchardgrass (Dactylis glomerata L.)-red clover, or 3) orchardgrass-alfalfa (Medicago sativa L.), which were used for hay, creep grazing by calves, and stockpiling for grazing by cows in late fall and winter. Each of the six systems included two replications; each replicate contained 5.8 ha and was grazed by eight Angus cow-calf pairs for a total of 480 cow-calf pairs. Fescue was less than 5% infected with Acremonium coenophialum. Pregnancy rate was 94%. Cows grazing fescue-ladino clover maintained greater (P less than .05) BW than those grazing bluegrass-white clover, and their calves tended (P less than .09) to have slightly greater weaning weights (250 vs 243 kg, respectively). Stockpiled fescue-red clover provided more (P less than .05) grazing days and required less (P less than .05) hay fed to cows than stockpiled orchardgrass plus either red clover or alfalfa. Digestibilities of DM, CP, and ADF, determined with steers, were greater (P less than .05) for the orchardgrass-legume hays than for the fescue-red clover hay. All systems produced satisfactory cattle performance, but fescue-ladino clover combined with fescue-red clover required minimum inputs of harvested feed and maintained excellent stands during 6 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号