首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leaching of nitrogen from pastures at the end of the grazing season A trial was carried out to describe nitrogen dynamics under excrement patches. On three grassland sites differing in water capacity, soil water was extracted by porous ceramic cups placed under the patches. Soil water was analyzed for different nitrogen fractions. Infiltration water and the amount of leached nitrogen was calculated by a simulation model. The rapid rise in concentrations under the urine patches to 30–60 mg NH4?N/I was due to the rapid hydrolysis of urea in spite of low soil temperatures. While the rates of ammonium decreased, the concentration of nitrate increased continuously up to 160 mg NO3?N/I and did not fall until the beginning of plant growth in early spring. Under the dung patches almost no nitrogen was found. For the urine patches the calculated nitrogen leaching was between 150 and 320 kg/ha, for the dung patches between 3 and 28 kg/ha. From the total of leached nitrogen the nitrate fraction (83%) was the most significant, followed by the organic nitrogen fraction (11%) and ammonium (6%). Taking account of an estimated grazing pressure, the urine-affected soil surface was calculated between 1% and 3  相似文献   

2.
Nitrate leaching from intensively and extensively grazed grassland measured with suction cup samplers and sampling of soil mineral‐N II Variability of NO3 and NH4 values and degree of accuracy of the measurement methods Data from a grazing experiment — comparison of mean values, see Anger et al. (2002) — were used to estimate within‐field variability to asses the accuracy of two frequently used methods of estimating NO3 leaching on pastures: (1) the ceramic suction cup sampling (with 34 cups ha—1 minimum, calculated climatic water balance, 4 leaching periods) and (2) using the soil mineral‐N method (vertical soil NO3 and NH4 content in 0—0.9 m (Nmin) measured at the beginning and end of two winters on a minimum of 10 different areas of 50 m2 each with a minimum of 7 different sample cores). These methods were used on two permanent pastures with high mean stocking density of cattle of 4.9 LU ha—1 on 1.3 ha with N‐fertilization of 250 kg N ha—1 (= intensive [I]) and 2.9 LU without N fertilization on a 2.2 ha pasture (= extensive [E]). The results show that NO3 leaching on pastures was largely due to few selectively extremely high NO3 amounts under a few excrement spots — mainly urine spots — which would not be sampled representatively with an acceptable effort in a conventional grazing experiment. In both grazing treatments, very large spatial variation occurred. This was greater between the different suction cups than between the compound mineral N samples of each area. Therefore, a marked skewness and kurtosis demonstrated a non‐normal distribution of samples from suction cups, while mineral N values did not show this effect consistently. Sampling selected mostly spots without noticeable influence of excrement, but a few samples with very high values identified evidently urine spots from summer or autumn grazing. The differences in mean coefficient of variation (CV) between the grazing treatments and estimation methods were mainly based on the stocking rate and the density of excrement spots. CV values were 131 % [I] / 242 % [E] for NO3 leaching measured with suction cup samplers and of 71 % [I] / 116 % [E] for soil NO3 values and 24 % [I] / 34 % [E] for soil NH4 values in 0—0.9 m according Nmin‐method. Results of the Nmin method are obviously inaccurate even with a sampling intensity much greater than 70 cores ha—1; and so making an estimation of NO3 leaching by this method is unsatisfactory for pastures. Compared to this, the results of suction cup sampling are more convincing; but even with a tolerated deviation of ± 20 % from the empirically estimated average and with a 95 %‐confidence interval, the calculated mean minimum number of samples in our experiment should be increased to 146 and 265 suction cups ha—1 for the intensively and extensively grazed treatments, respectively. This requirement would be prohibitive for many field experiments.  相似文献   

3.
Grazing of winter forage crops is a common management option used in the dairy industry of New Zealand, particularly in the South Island, where they are used to feed nonlactating, pregnant dairy cows prior to calving. However, there is concern that the large crop yields per hectare grazed, combined with a high stocking density of cows, lead to large amounts of urinary nitrogen (N) deposited on bare, wet soil that, in turn, could lead to large nitrate leaching losses. We report the results of a simulated winter forage grazing event using field lysimeters planted with a kale (Brassica oleracea L.) crop. The effect of sowing a ‘catch crop’ of oat (Avena sativa L.) following the simulated winter forage grazing on nitrate leaching losses from urine applied at different times throughout the winter was measured. A catch crop sown between 1 and 63 days after the urine deposition in early winter reduced N leaching losses from urine patches by ~34% on average (range: 19–49%) over the winter–spring period compared with no catch crop. Generally, the sooner the catch crop was sown following the crop harvest, the greater the uptake of N by the catch crop and the greater the reduction in nitrate leaching losses. The results indicate that sowing of a catch crop following winter crop grazing could be an effective management strategy to reduce nitrate leaching as well as increase the N‐use efficiency of dairy winter forage grazing systems.  相似文献   

4.
Nitrate leaching from intensively and extensively grazed grassland measured with suction cup samplers and sampling of soil mineral‐N I Influence of pasture management Leaching of nitrate (NO3) from two differently managed cattle pastures was determined over four winters between 1993 and 1997 using ceramic suction cup samplers (with min. 34 cups ha—1); additionally, vertical soil mineral‐N content in 0—0.9 m (Nmin) was measured at the beginning and end of two winters (with min. 70 different sample cores ha—1). The experimental site in the highlands north‐east of Cologne, Germany, is characterized by high annual precipitation (av. 1,362 mm between 1993 and 1996). An intensive continuous grazing management (1.3 ha, fertilized with 250 kg N ha—1 yr—1, average stocking density 4.9 LU ha—1, = [I]) was tested against an extensive continuous grazing system (2.2 ha, av. 2.9 LU ha—1; no N‐fertilizer but an estimated proportion of Trifolium repens up to 15 % of total dry matter in the final year, = [E]). The results can be summarized as follows: (1) Mean leaching losses of NO3‐N, estimated from suction cup sampling and balance of drainage volume, were 85 kg NO3‐N ha—1 [I] and 15 kg NO3‐N ha—1 [E] during three wet winters with drainage volumes between 399 and 890 mm; in a dry winter with 105 mm calculated percolation, nitrate leaching decreased by a factor of 5 for both grazing treatments. (2) Although the amount of mineral N in soil (Nmin) sampled in late autumn showed differences between intensive and extensive grazing, the Nmin method permits no certain indication of the risk of NO3 leaching. For example, during the winter period 1994/95 a reduction of mineral N in the soil (0—0.9 m) in both grazing treatments was found (—33 [I] / —8 [E] kg NO3‐N ha—1 and —26 [I] / —21 [E] kg NH4‐N ha—1) whereas during the winter 1996/97 an increase in almost all mean mineral N values occurred (+10 [I] / +2 [E] kg NO3‐N ha—1 and +10 [I] / —10 [E] kg NH4‐N ha—1). (3) In spite of the differences between both methods, the experiment shows that NO3‐N leaching under extensive grazing could be reduced almost to levels close to those under mown grassland.  相似文献   

5.
Catch crop strategy and nitrate leaching following grazed grass-clover   总被引:1,自引:0,他引:1  
Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0, 60 or 120 kg of ammonium‐N ha?1 in cattle slurry. In spring 2003, two grass‐clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley/perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley/Italian ryegrass reduced leaching by 163–320 kg N ha?1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg N ha?1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catch crops was reduced compared with the bare soil treatment. It was concluded that the green barley/Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers.  相似文献   

6.
Abstract. Nitrate leaching after one year of a cut grass/clover ley was measured in two succeeding years to investigate how the postponing of ploughing leys from early to late autumn or spring, in combination with spring or winter cereals affected leaching of nitrate. The experiment was conducted as three field trials, two on a coarse sandy soil and one on a sandy loam soil. For calculation of nitrate leaching, soil water samples were taken using ceramic suction cups. The experiments started in spring in a first year ley and ended in spring three years later. Total nitrate leaching for the three year periods for each trial ranged between 160–254 and 189–254 kg N/ha on the coarse sand and 129–233 kg N/ha on the sandy loam. The results showed that winter wheat ( Triticum aestivum L.) did not have the potential for taking up the mineralized N in autumn after early autumn ploughing of grass/clover leys, and that the least leaching was generally found when ploughing was postponed until spring, and when winter rye ( Secale cereale L.) was grown as the second crop rather than spring barley ( Hordeum vulgare L.). Nevertheless, leaching was generally high in the winter period even when winter rye was grown. On these soil types ploughing out should be postponed, whenever possible, to spring. Crop systems that maximize the utilization of mineralized N and thereby minimize nitrate leaching need to be further developed. Based on N balances, the data were further used to estimate the biological N fixation by the clover.  相似文献   

7.
Nitrate leaching as affected by long-term N fertilization on a coarse sand   总被引:17,自引:0,他引:17  
Abstract. A field experiment on a coarse sand (1987–92) was conducted with spring barley ( Hordeum vulgare L.), in order to evaluate the effects of increasing N fertilization on nitrate leaching under temperate coastal climate conditions. The N fertilizer levels were 60 and 120 kg N/ha. The experiment was conducted on a 19-year old permanent field trial with continuous spring barley, initiated in 1968, and included treatments with ploughing in autumn or spring, with or without perennial ryegrass ( Lolium perenne L.) as a catch crop undersown in spring. Prior to 1987, the low and high levels of N fertilizer were 70 and 150 kg N/ha, respectively. To calculate nitrate leaching, soil water samples were taken from a depth of 0.8 m using ceramic cups. The average annual nitrate leaching from plots with 60 and 120 kg N/ha was 38 and 52 kg N/ha/y, respectively. The increased leaching associated with increasing fertilizer application was not caused by inorganic N in the soil at harvest, but rather by greater mineralization, mainly in autumn. Growing of a catch crop was relatively more efficient for reducing nitrate leaching than a long-term low fertilizer application. A 50% reduction in N application decreased average yield by 26%, while nitrate leaching decreased by 27%.  相似文献   

8.
Abstract. The effects on nitrate leaching of incorporation of paper mill waste at three cultivation depths in fields previously cropped to iceberg lettuce and calabrese are reported. In the lettuce experiment, incorporation of 40 t DM paper mill waste/ha resulted in a decrease in N leaching (measured with suction cups) from 177 to 94 kg/ha (S.E.d= 23). Deep ploughing with and without paper waste increased N leaching from 105 kg/ha (normal ploughing or surface incorporation) to 172 kg/ha (S. E. d= 27). Measurements of nitrate leaching using deep soil cores showed a less clear cut effect. Nitrous oxide (N2O) emissions were very high immediately after paper waste was ploughed in to a depth of 35 cm. Non–significant increases in biomass N content were measured in the spring following paper waste application. There was no significant reduction in plant N uptake in subsequent crops. Removal of above–ground crop residues did not have a significant effect on nitrate leaching or N2O losses. In the calabrese experiment, application of 40 t DM paper mill waste/ha followed by summer cropping with iceberg lettuce caused a decrease in N leaching (measured using deep soil cores) from 227 to 152 kg/ha (S. E.d= 22, mean of all cultivation treatments).  相似文献   

9.
Comparisons were made between 1988 and 1991 to evaluate three methods of estimating the leaching of mineral nitrogen (N) from unstructured freely draining sandy loam and loamy sand soils. The studies compared the drainage patterns and quantities of N (almost exclusively nitrate) leached from monolith lysimeters with those estimated from ceramic suction cups and soil core extracts. The latter two methods gave direct measurements of the mineral N concentrations in drainage, but required an estimate of the drainage volume calculated from meteorological observations and evapotranspiration equations to give total N leached. A bromide tracer was also used to confirm conclusions from nitrate leaching studies. There was a delay in the onset of drainage from free draining lysimeters because they lack the subsoil matric potential of field soils. However, total annual drainage measured by lysimeters or calculated from meteorological observations was similar, providing that return to field capacity was correctly identified in the field soil. During the first year there were discrepancies between methods which were attributed to soil disturbance during lysimeter and/or ceramic cup installation. In the second and third years of the experiment, estimates of N leaching losses using the lysimeters and ceramic cups were in good agreement. Nitrate concentrations in soil solution at a depth of 130 cm measured from soil core extracts were smaller than found by the other methods during the second year and the peak concentrations were significantly different (P<0.05). However, total overwinter N leached was not significantly different. Thus, while lysimeters and cups can be used to quantify leaching losses on unstructured, free draining soils if used correctly, the use of soil core extracts is questionable.  相似文献   

10.
Nitrogen (N) leaching from soil into water is a significant concern for intensively grazed forage‐based systems because it can cause a decline in water quality and is a risk to human health. Urine patches from grazing animals are the main source of this N. The objective of this study was to quantify the effect that forage type and gibberellic acid (GA) application had on N leaching and herbage N uptake from urine patches on perennial ryegrass–white clover (RGWC), Italian ryegrass and lucerne. A lysimeter study was conducted over 17 months to measure herbage growth, N uptake and N loss to water beneath each of the three forage types with the following treatments: control, urine (700 kg N/ha) and urine with GA (8 g GA active ingredient/ha). Compared with RGWC (205 kg N/ha), N leaching losses were 35.3% lower from Italian ryegrass (133 kg N/ha) and 98.5% higher from lucerne (407 kg N/ha). These differences in leaching loss are likely to be due to winter plant growth and N uptake. During the winter months, Italian ryegrass had higher N uptake, whereas lucerne had lower N uptake, compared with RGWC. The application of GA had no effect on N leaching losses, DM yield or N uptake of forage treated with 700 kg N/ha urine.  相似文献   

11.
Abstract

The relationships between nitrogen (N) and phosphorus (P) concentrations in surface flooding water and those in the leachate of various soil depths were monitored, and temporal variation of leaching losses of N and P from a paddy plot during rice cultivation was estimated under the conditions of southern Korea. Even flooded conditions nitrification in subsurface soil was identified, but nitrate concentrations in leachate were less than 10 mg/L, the standard drinking water nitrate concentration set by the World Health Organization (WHO). The NO3‐N and ortho‐P concentrations in the leachate were generally higher than those in the surface flooding water. Field data implied that leaching losses would not be accurately estimated under the flooded conditions of the paddy field when using the N and P concentrations of surface flooding water and infiltration depth. The leaching losses of NO3‐N from paddy fields were high immediately after fertilization. The study results suggested that proper fertilization and irrigation strategies are required to reduce leaching losses of NO3‐N from paddy fields.  相似文献   

12.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

13.
To determine boundary effects on leaching, we investigated (1) how filter materials affect the concentrations of dissolved organic carbon (DOC) and nitrate (NO3‐N) in soil percolates and (2) whether ion exchange resins and suction plates are equally suited to capture NO3‐N. DOC leaching was higher with PE suction plates and plate material did not affect NO3‐N leachate concentrations. Cumulative NO3‐N leaching was similar for glass suction plates and ion exchange resins.  相似文献   

14.
Abstract. Field peas (Pisum sativum L.) were grown in sequence with winter wheat (Triticum aestivum L.) or spring barley (Hordeum vulgare L.) in large outdoor lysimeters. The pea crop was harvested either in a green immature state or at physiological maturity and residues returned to the lysimeters after pea harvest. After harvest of the pea crop in 1993, pea crop residues (pods and straw) were replaced with corresponding amounts of 15N‐labelled pea residues grown in an adjacent field plot. Reference lysimeters grew sequences of cereals (spring barley/spring barley and spring barley/winter wheat) with the straw removed. Leaching and crop offtake of 15N and total N were measured for the following two years. These treatments were tested on two soils: a coarse sand and a sandy loam. Nitrate concentrations were greatest in percolate from lysimeters with immature peas. Peas harvested at maturity also raised the nitrate concentrations above those recorded for continuous cereal growing. The cumulative nitrate loss was 9–12 g NO3‐N m–2 after immature peas and 5–7 g NO3‐N m–2 after mature peas. Autumn sown winter wheat did not significantly reduce leaching losses after field peas compared with spring sown barley. 15N derived from above‐ground pea residues accounted for 18–25% of the total nitrate leaching losses after immature peas and 12–17% after mature peas. When compared with leaching losses from the cereals, the extra leaching loss of N from roots and rhizodeposits of mature peas were estimated to be similar to losses of 15N from the above‐ground pea residues. Only winter wheat yield on the coarse sand was increased by a previous crop of peas compared to wheat following barley. Differences between barley grown after peas and after barley were not statistically significant. 15N lost by leaching in the first winter after incorporation accounted for 11–19% of 15N applied in immature pea residues and 10–15% of 15N in mature residues. Another 2–5% were lost in the second winter. The 15N recovery in the two crops succeeding the peas was 3–6% in the first crop and 1–3% in the second crop. The winter wheat did not significantly improve the utilization of 15N from the pea residues compared with spring barley.  相似文献   

15.
Traditional irrigation and nitrogen (N) fertilization in North China may elevate water drainage and nitrate concentrations in soil and groundwater. A field experiment was conducted in an intensively irrigated vegetable (cauliflower, amaranth, and spinach) field for three consecutive years (1999–2002). The main objective was to test to what extent an improved water and fertilizer management, based on the maintenance of field capacity a defined range of the water content in the 0–50 cm soil layer and an N expert system, could reduce drainage and nitrate leaching without impairing vegetable yield. Rates of water drainage and related nitrate leaching were calculated based on measurements of soil water potential and soil‐water nitrate concentrations. Soil water potential was monitored with tensiometers at depths of 75 cm and 105 cm. Nitrate concentrations were analyzed in soil leachates collected at 90 cm soil depth using ceramic suction cups. The results revealed that the average annual drainage related to the cultivation season for cauliflower, amaranth, and spinach was reduced from 275 mm in the traditional system to 29 mm with improved management practice. The average annual cumulative nitrate leaching during the vegetable‐growing period amounted to 301 kg ha–1 and 13 kg ha–1 in the traditional and improved management practices, respectively. Vegetable yields were not significantly different under the traditional and improved management practices.  相似文献   

16.
Nitrate leaching from short-rotation coppice   总被引:1,自引:0,他引:1  
In the UK, short‐rotation coppice (SRC) is expected to become a significant source of ‘bio‐energy’ over the next few years. Thus, it is important to establish how nitrate leaching losses compare with conventional arable cropping, especially if SRC is grown in Nitrate Vulnerable Zones. Nitrate leaching was measured using porous ceramic cups in each of the three phases in the lifespan of SRC, establishment, harvest and removal and was compared with conventional arable cropping. Nitrogen concentrations were increased in drainage water as soon as the crop cover was destroyed to plant the SRC (peak 70 mg L?1 nitrate‐N) and increased further (peak 134 mg L?1 nitrate‐N) on cultivation. Once the coppice crop was established, concentrations returned to a smaller level (average 18 mg L?1 nitrate‐N). Concentrations were not affected by the harvesting operation, and annual applications of nitrogen (40, 60 and 100 kg ha?1 N in the first, second and third years, respectively) had little effect. By contrast, concentrations in the arable rotation showed a regular pattern of increase in the autumn, and the average peak value over the 4 years was 54 mg L?1 nitrate‐N. When the SRC was ‘grubbed up’ and roots removed, the soil disturbance resulted in a flush of mineralization which, combined with a lack of crop cover, led to increased nitrate‐N in leachate (peak 67 mg L?1 nitrate‐N). In a normal life‐span of SRC (15–30 years), the relatively large nitrate losses on establishment and at final grubbing up would be offset by small losses during the productive harvest phase, especially when compared with results under the arable rotation.  相似文献   

17.
Abstract

The relationship between animal urine deposition and variability in soil chemical composition and crop growth is not well established in the semi‐arid region of West Africa. This study was conducted to examine the changes over time in soil pH and mineral nitrogen (N) concentrations at the micro sites of cattle and sheep urine patches in comparison to those occurring in fertilizer urea placement zones. The urine and fertilizer solution containing each 400 mg N (800 kg N ha‐1) were spread onto individual plots covering a surface area of 4‐cm radius. The treatments included a control, which consisted of distillate water. Soil samples from three replicate plots were taken in 4‐cm increments to a depth of 16 cm and distance of 16 cm on a grid pattern at days 1, 7, 21, 49, 90, 120, and 150 after application. Significant pH and mineral N gradients develop in the vicinity of the fertilizer and urine placement zones declining towards the periphery and the deeper soil layers. The pH at the center of the urine zone remained above 7.5 throughout the 150 days of the study period. After the initial increase, the soil pH below the fertilizer placement sites declined to the control level by day 90. Concentrations of ammonium (NH4) + nitrate (NO3) also increased markedly in the immediate soil layers of the urine and urea placement zones, and then decreased over time probably due to N losses by volatilization and leaching. Concentrations of mineral N at the periphery of the placement site were similar for all treatments throughout the study period, indicating very little lateral N diffusion. These results provided evidence that animal urine causes significant variabilities in soil chemical composition, even in short distance from the deposition zones. The high soil solution pH in the vicinity of the urine patches alleviate the potential of aluminum (Al) toxicity while increasing the phosphorus (P) availability to crop plants.  相似文献   

18.
Impact of excreted nitrogen by grazing cattle on nitrate leaching   总被引:2,自引:0,他引:2  
Abstract. At De Marke experimental farm, data on water and nitrogen flows in the unsaturated zone were gathered on two grazed pastures on sandy soils during the years 1991 to 1994. These provided a basis for calibration and validation of simulation models. The different levels of nitrate-N concentrations of the two plots could largely be explained by differences in crop uptake and simulated denitrification as influenced by different groundwater levels. The irregular distribution of excreta was taken into account by a simulation study quantifying the variability of nitrate-N concentrations under a grazed field. The resulting distribution of simulated nitrate-N concentrations explained the average and peak values of the measured concentrations. Temporal variability of weather was used to assess the nitrate leaching risk under urine patches deposited in either July or September. At site A the probability of exceeding the EC-directive by drinking water (11.3 mg/1 nitrate-N) under a urination deposited in either July or September was respectively 10 and 25%. The average field concentration at this site will hardly ever be a high risk for the environment under the current farm management. At site B the EC-directive will be exceeded under any urine patch in almost 100% of the years, affecting the field average concentration. In field B careful grazing management would result in less nitrate leaching, but the environmental goals would not be reached.  相似文献   

19.
Abstract. Artificial urine containing 20.2 g N per patch of 0.2 m2 was applied in May and September to permanent grassland swards of a long‐term experiment in the western uplands of Germany (location Rengen/Eifel), which were fertilized with 0, 120, 240, 360 kg N ha?1 yr?1 given as calcium ammonium nitrate. The effect on N2O fluxes measured regularly during a 357‐day period with the closed‐chamber technique were as follows. (1) N2O emission varied widely among the fertilized control areas without urine, and when a threshold water‐filled pore space >60% was exceeded, the greater the topsoil nitrate content the greater the flux from the individual urine patches on the fertilized swards. (2) After urine application in May, 1.4–4.2% of the applied urine‐N was lost as N2O from the fertilized swards; and after urine application in September, 0.3–0.9% of the applied urine‐N was lost. The primary influence on N2O flux from urine patches was the date of simulated grazing, N‐fertilization rate being a secondary influence. (3) The large differences in N2O emissions between unfertilized and fertilized swards after May‐applied urine contrasted with only small differences after urine applied in September, indicating an interaction between time of urine application and N‐fertilizer rate. (4) The estimated annual N2O emissions were in the range 0.6–1.6 kg N2O‐N per livestock unit, or 1.4, 3.6, 4.1 and 5.1 kg N2O‐N ha?1 from the 0–360 kg ha?1 of fertilizer‐N. The study demonstrated that date of grazing and N‐fertilizer application could influence the N2O emission from urine patches to such an extent that both factors should be considered in detailed large‐scale estimations of N2O fluxes from grazed grassland.  相似文献   

20.
Numerous studies have examined the nutritive quality of fodder plants in different seasons but few have related this seasonal response to long‐term grazing intensity. Our objective was to examine the effect of long‐term grazing on the concentrations of total nitrogen, δ15N, and total phosphorus in selected forage species from the fescue grassland near Stavely, Alberta. Plants were selected from paddocks that had been stocked at 0 (control), 2.4 (moderate grazing), and 4.8 (heavy grazing) animal unit months ha–1 for 58 years. Plant material from ten species was sampled and analyzed at monthly intervals from May to September in 2007. Total N and P concentrations were not (p > 0.05) affected by grazing for most species, but total N and P concentrations in Poa. pratensis L. were higher (p < 0.05) in grazed treatments than in the control. These results reflect an altered plant phenology through defoliation and illustrate delayed phenology in P. pratensis when grazed. The higher δ15N concentration for most species in the grazed treatments than the control is an indication of accelerated nitrogen cycling through dung and urine deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号