首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on its PK/PD ratios, doxycycline hyclate (DOX-h), a time-dependant antibacterial, is ideally expected to achieve both sustained plasma drug concentrations at or slightly above the MIC level for as long as possible between dosing intervals. Pursuing this end, a poloxamer-based matrix was used to produce a long-acting injectable preparation (DOX-h-LA) and its serum concentrations vs. time profile investigated after its SC injection to dogs (≤ 0.3 mL per injection site), and results compared with the oral (PO) and IV pharmacokinetics of DOX-h, prepared as tablet or as freshly made solution. A crossover (4 x 4 x 4) study design was employed with 12 Mongrel dogs, with washout periods of 21 days, and at dose of 10 mg/kg in all cases. DOX-h-LA showed the greatest values for bioavailability (199.48%); maximum serum concentration (Cmax) value was 2.8 ± 0.3 with a time to reach Cmax (Tmax) of 2.11 ± 0.12 h and an elimination half-life of 133.61 ± 6.32 h. Considering minimum effective serum concentration of 0.5 μg/mL, a dose-interval of at least 1 week h can be achieved for DOX-h-LA, and only 48 h and 24 h after the IV or PO administration of DOX-h as a solution or as tablets, respectively. A non-painful small bulge, apparently non-inflammatory could be distinguished at injection sites. These lumps dissipated completely in 30 days in all cases.  相似文献   

2.
Two commercially available long-acting oxytetracycline (OTC) formulations were administered by the intramuscular (i.m.) route to six healthy pigs at the recommended dose of 30 mg/kg. After 2 h the mean maximum concentration (C(max)) reached values of 8.1 +/- 2.2 and 15.4 +/- 11.1 microg/mL, respectively. These concentrations remained higher than 0.5 microg/mL for more than 5 days after drug administration. The area under the concentration time curve (AUC09 days) of each formulation was 255 +/- 76.5 and 399.2 +/- 123 microg. h/mL, respectively, and the mean residence time (MRT) was around 3 days for both formulations. No significant differences were observed between the pharmacokinetic parameters of the two formulations, showing the bioequivalence of the two formulations studied according to the criteria established by the Food and Drug Administration (FDA) and the Committee for Veterinary Medicinal Products (CVMP).  相似文献   

3.
The pharmacokinetics of marbofloxacin were investigated in healthy (n=8) and Mannheimia haemolytica naturally infected (n=8) Simmental ruminant calves following intravenous (i.v.) and intramuscular (i.m.) administration of 2 mg kg(-1) body weight. The concentration of marbofloxacin in plasma was measured using high performance liquid chromatography with ultraviolet detection. Following i.v. administration of the drug, the elimination half-life (t(1/2 beta)) and mean residence time (MRT) were significantly longer in diseased calves (8.2h; 11.13 h) than in healthy ones (4.6 h; 6.1 h), respectively. The value of total body clearance (CL(B)) was larger in healthy calves (3 ml min(-1) kg(-1)) than in diseased ones (1.3 ml min(-1) kg(-1)). After single intramuscular (i.m.) administration of the drug, the elimination half-life, mean residence time (MRT) and maximum plasma concentration (C(max)) were higher in diseased calves (8.0, 12 h, 2.32 microg ml(-1)) than in healthy ones (4.7, 7.4 h, 1.4 microg ml(-1)), respectively. The plasma concentrations and AUC following administration of the drug by both routes were significantly higher in diseased calves than in healthy ones. Protein binding of Marbofloxacin was not significantly different in healthy and diseased calves. The mean value for MIC of marbofloxacin for M. haemolytica was 0.1+/-0.06 microg ml(-1). The C(max)/MIC and AUC(24)/MIC ratios were significantly higher in diseased calves (13.0-64.4 and 125-618 h) than in healthy calves (8-38.33 and 66.34-328 h). The obtained results for surrogate markers of antimicrobial activity (C(max)/MIC, AUC/MIC and T > or = MIC) indicate the excellent pharmacodynamic characteristics of the drug in diseased calves with M. haemolytica, which can be expected to optimize the clinical efficacy and minimize the development of resistance.  相似文献   

4.
The pharmacokinetic properties of ceftriaxone were investigated in 10 goats following a single intravenous (i.v.) and intramuscular (i.m.) administration of 20 mg kg(-1) body weight. After i.v. injection, ceftriaxone serum concentration-time curves were characteristic of a two-compartment open model. The distribution and elimination half-lives (t(1/2alpha), t(1/2beta)) were 0.12 and 1.44 h respectively. Following i.m. injection, peak serum concentration (C(max)) of 23.6 microg ml(-1) was attained at 0.70 h. The absorption and elimination half-lives (t(1/2ab), t(1/2el)) were 0.138 and 1.65 h respectively. The systemic bioavailability of the i.m. administration (F %) was 85%. Following i.v. and i.m. administration, the drug was excreted in high concentrations in urine for 24 h post-administration. The drug was detected at low concentrations in milk of lactating goats. A recommended dosage of 20 mg kg(-1) injected i.m. every 12 h could be expected to provide a therapeutic serum concentration exceeding the minimal inhibitory concentrations for different susceptible pathogens.  相似文献   

5.
The purpose of this study was to investigate the pharmacokinetics of ceftriaxone after single intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) doses in healthy dogs. Six mongrel dogs received ceftriaxone (50 mg/kg) by each route in a three-way crossover design. Blood samples were collected in predetermined times after drug administration. Results are reported as mean +/- standard deviation (SD). Total body clearance (Cl(t)) and apparent volume of distribution (V(z)) for the i.v. route were 3.61 +/- 0.78 and 0.217 +/- 0.03 mL/kg, respectively. Terminal half-life harmonic mean (t(1/2 lambda)) was 0.88; 1.17 and 01.73 h for the i.v., i.m and s.c. routes, respectively. Mean peak serum concentration (C(max)) was 115.10 +/- 16.96 and 69.28 +/- 14.55 microg/mL for the i.m and s.c. routes, respectively. Time to reach C(max) (t(max)) was 0.54 +/- 0.24 and 1.29 +/- 00.64 h for the i.m and s.c. routes, respectively. Mean absorption time (MAT) was 1.02 +/- 0.64 and 2.23 +/- 00.73 h for the i.m and s.c. routes, respectively. Bioavailability was 102 +/- 27 and 106 +/- 14% for the i.m and s.c. routes, respectively. Statistically significant differences were determined in C(max), t(max), MAT and t(1/2 lambda) of s.c. administered ceftriaxone when compared with the i.v and i.m. routes. These findings suggest that once or twice s.c. or i.m. daily administered ceftriaxone should be adequate to treat most susceptible infections in dogs.  相似文献   

6.
The present study was planned to investigate the serum disposition kinetics and the pattern of ceftriaxone elimination in milk and urine of lactating ewes (n = 6) following i.v. and i.m. administration. A crossover study was carried out in two phases separated by 15 days. Ceftriaxone was administered at a dosage of 10 mg/kg b.w. in all animals. Serum, milk and urine samples were collected between 0 and 72 h and a modified agar diffusion bioassay method was used to determine the percentage of protein binding and to measure serum, urine and milk concentrations of ceftriaxone. The drug was detected between 5 min and 48 h postdosing. Concentrations of 0.56 (10 h) and 0.52 (12 h), 0.22 (10 h) and 0.19 (12 h), and 2.18 (24 h) and 2.11 (48 h) mug/mL were measured in serum, milk and urine following i.v. and i.m. administration, respectively. Individual pharmacokinetic parameters were determined by fitting a two-compartment model to the serum and one-compartment open model to the milk concentration-time profiles. After i.v. dosing, the elimination rate constant and elimination half-life were 0.4 +/- 0.05/h and 1.75 +/- 0.02 h, respectively. The volume of distribution at steady state (V(dss)) of 0.28 +/- 0.15 L/kg reflected limited extracellular distribution of the drug with total body clearance (Cl(tot)) of 0.14 +/- 0.10 L/h/kg. Following i.m. administration, the mean T(max obs), C(max obs), t(1/2el) and AUC values for serum data were: 0.75 h, 23.16 +/- 2.94 microg/mL, 1.77 +/- 0.24 h and 67.55 +/- 6.51 microgxh/mL, respectively. For milk the data were: 1.0 h, 8.15 +/- 0.71 mug/mL, 2.2 +/- 0.34 h and 26.6 +/- 5.14 microgxh/mL, respectively. The i.m. bioavailability was 83.6% and the binding percentage of ceftriaxone to serum protein was 33%. Concentrations of ceftriaxone in milk produced by clinically normal mammary glands of ewes were consistently lower than in serum; the kinetic value AUC(milk)/AUC(serum) and C(max milk)/C(max serum) ratios was<0.4. These low values indicated poor distribution and penetration of ceftriaxone from the bloodstream to the mammary gland of lactating ewes following both routes.  相似文献   

7.
The purpose of this study was to determine the pharmacokinetics of buprenorphine following intravenous (i.v.) and intramuscular (i.m.) administration in horses. Six horses received i.v. or i.m. buprenorphine (0.005 mg/kg) in a randomized, crossover design. Plasma samples were collected at predetermined times and horses were monitored for adverse reactions. Buprenorphine concentrations were measured using ultra-performance liquid chromatography with electrospray ionization mass spectrometry. Following i.v. administration, clearance was 7.97±5.16 mL/kg/min, and half-life (T(1/2)) was 3.58 h (harmonic mean). Volume of distribution was 3.01±1.69 L/kg. Following i.m. administration, maximum concentration (C(max)) was 1.74±0.09 ng/mL, which was significantly lower than the highest measured concentration (4.34±1.22 ng/mL) after i.v. administration (P<0.001). Time to C(max) was 0.9±0.69 h and T(1/2) was 4.24 h. Bioavailability was variable (51-88%). Several horses showed signs of excitement. Gut sounds were decreased 10±2.19 and 8.67±1.63 h in the i.v. and i.m. group, respectively. Buprenorphine has a moderate T(1/2) in the horse and was detected at concentrations expected to be therapeutic in other species after i.v. and i.m. administration of 0.005 mg/kg. Signs of excitement and gastrointestinal stasis may be noted.  相似文献   

8.
Pharmacokinetics of mequindox and one of its major metabolites (M) was determined in chickens after intravenous (i.v.), intramuscular (i.m.) and oral administration of mequindox at a single dose of 10 (i.v. and i.m.) or 20 mg/kg b.w. (oral). Plasma concentration profiles were analyzed by a non-compartmental pharmacokinetic method. Following i.v., i.m. and oral administration, the areas under the plasma concentration-time curve (AUC(0-∞)) were 0.71±0.15, 0.67±0.21, 0.25±0.10 μg h/mL (mequindox) and 37.24±7.98, 36.40±9.16, 86.39±16.01 μg h/mL (M), respectively. The terminal elimination half-lives (t(1/2λz)) were determined to be 0.15±0.06, 0.21±0.09, 0.49±0.23 h (mequindox) and 5.36±0.86, 5.39±0.52, 5.22±0.35 h (M), respectively. The bioavailabilities (F) of mequindox were 89.4% and 16.6% for i.m. and oral administration. Steady-state distribution volume (V(ss)) of 1.20±0.34 L/kg and total body clearance (Cl(B)) of 13.57±2.16 L/kg h were determined for mequindox after i.v. dosing. After single i.m. and oral administration, peak plasma concentrations (C(max)) of 3.04±1.32, 0.36±0.13 μg/mL (mequindox) and 3.81±0.92, 5.99±1.16 μg/mL (M) were observed at t(max) of 0.08±0.02, 0.32±0.12 h (mequindox) and 0.66±0.19, 6.67±1.03 h (M), respectively. The results showed that mequindox was rapidly absorbed after i.m. or p.o. administration and most of mequindox was transformed to metabolites in chickens, with much higher C(max)s and AUCs of metabolite (M) than those of mequindox in plasma.  相似文献   

9.
A study on bioavailability and pharmacokinetics of florfenicol was conducted in 20 crossbred healthy sheep following a single intravenous (i.v.) and intramuscular (i.m.) doses of 20 and 30 mg/kg body weight (b.w.). Florfenicol concentrations in serum were determined by a validated high-performance liquid chromatography method with UV detection at a wavelength of 223 nm in which serum samples were spiked with chloramphenicol as internal standard. Serum concentration-time data after i.v. administration were best described by a three-compartment open model with values for the distribution half-lives (T(1/2alpha)) 1.51 +/- 0.06 and 1.59 +/- 0.10 h, elimination half-lives (T(1/2beta)) 18.83 +/- 6.76 and 18.71 +/- 1.85 h, total body clearance (Cl(B)) 0.26 +/- 0.03 and 0.25 +/- 0.01 L/kg/h, volume of distribution at steady-state (V(d(ss))) 1.86 +/- 0.11 and 1.71 +/- 0.20 L/kg, area under curve (AUC) 76.31 +/- 9.17 and 119.21 +/- 2.05 microg.h/mL after i.v. injections of 20 and 30 mg/kg b.w. respectively. Serum concentration-time data after i.m. administration were adequately described by a one-compartment open model. The pharmacokinetic parameters were distribution half-lives (T(1/2k(a) )) 0.27 +/- 0.03 and 0.25 +/- 0.09 h, elimination half-lives (T(1/2k(e) )) 10.34 +/- 1.11 and 9.57 +/- 2.84 h, maximum concentrations (C(max)) 4.13 +/- 0.29 and 7.04 +/- 1.61 microg/mL, area under curve (AUC) 67.95 +/- 9.61 and 101.95 +/- 8.92 microg.h/mL, bioavailability (F) 89.04% and 85.52% after i.m. injections of 20 and 30 mg/kg b.w. respectively.  相似文献   

10.
Pharmacokinetics and lung tissue concentrations of tulathromycin in swine   总被引:5,自引:0,他引:5  
The absolute bioavailability and lung tissue distribution of the triamilide antimicrobial, tulathromycin, were investigated in swine. Fifty-six pigs received 2.5 mg/kg of tulathromycin 10% formulation by either intramuscular (i.m.) or intravenous (i.v.) route in two studies: study A (10 pigs, i.m. and 10 pigs, i.v.) and study B (36 pigs, i.m.). After i.m. administration the mean maximum plasma concentration (C(max)) was 616 ng/mL, which was reached by 0.25 h postinjection (t(max)). The mean apparent elimination half-life (t(1/2)) in plasma was 75.6 h. After i.v. injection plasma clearance (Cl) was 181 mL/kg.h, the volume of distribution at steady-state (V(ss)) was 13.2 L/kg and the elimination t(1/2) was 67.5 h. The systemic bioavailability following i.m. administration was >87% and the ratio of lung drug concentration for i.m. vs. i.v. injection was > or =0.96. Following i.m. administration, a mean tulathromycin concentration of 2840 ng/g was detected in lung tissue at 12 h postdosing. The mean lung C(max) of 3470 ng/g was reached by 24 h postdose (t(max)). Mean lung drug concentrations after 6 and 10 days were 1700 and 1240 ng/g, respectively. The AUC(inf) was 61.4 times greater for the lung than for plasma. The apparent elimination t(1/2) for tulathromycin in the lung was 142 h (6 days). Following i.m. administration to pigs at 2.5 mg/kg body weight, tulathromycin was rapidly absorbed and highly bioavailable. The high distribution to lung and slow elimination following a single dose of tulathromycin, are desirable pharmacokinetic attributes for an antimicrobial drug indicated for the treatment of respiratory disease in swine.  相似文献   

11.
Pharmacokinetics of difloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of five (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analyzed by a compartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t(1/2beta)) were 17.14 +/- 4.14, 25.79 +/- 8.10, 16.67 +/- 4.04 (pigs) and 6.11 +/- 1.50, 5.64 +/- 0.74, 8.20 +/- 3.12 h (broilers), respectively. After single i.m. and p.o. administration, difloxacin was rapidly absorbed, with peak plasma concentrations (C(max)) of 1.77 +/- 0.66, 2.29 +/- 0.85 (pigs) and 2.51 +/- 0.36, 1.00 +/- 0.21 microg/mL (broilers) attained at t(max) of 1.29 +/- 0.26, 1.41 +/- 0.88 (pigs) and 0.86 +/- 0.4, 4.34 +/- 2.40 h (broilers), respectively. Bioavailabilities (F) were (95.3 +/- 28.9)% and (105.7 +/- 37.1)% (pigs) and (77.0 +/- 11.8)% and (54.2 +/- 12.6)% (broilers) after i.m. and p.o. doses, respectively. Apparent distribution volumes(V(d(area))) of 4.91 +/- 1.88 and 3.10 +/- 0.67 L/kg and total body clearances(Cl(B)) of 0.20 +/- 0.06 and 0.37 +/- 0.10 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), the half-lives of both absorption and distribution(t(1/2ka), t(1/2alpha)) were also determined. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 5 mg/kg given intramuscularly every 24 h in pigs, or administered orally every 24 h at the dosage of 10 mg/kg in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC(90) are <0.25 microg/mL and <0.1 microg/mL respectively.  相似文献   

12.
Enrofloxacin pharmacokinetics were studied in European cuttlefish, Sepia officinalis, after a single 5 mg/kg i.v. injection or a 2.5 mg/L 5 h bath. A pilot study with two animals was also performed following a 10 mg/kg p.o. administration. The concentration of enrofloxacin in hemolymph was assayed using high-performance liquid chromatography (HPLC) and pharmacokinetic parameters were derived from compartmental methods. In the i.v. study, the terminal half-life (t(1/2)), apparent volume of distribution, and systemic clearance were respectively 1.81 h, 385 mL/kg, and 4.71 mL/min/kg. Following bath administration the t(1/2), peak hemolymph concentration (C(max)), and area under the curve to infinity (AUC(0-infinity)) were 1.01 h, 0.5 +/- 0.12 mug/mL, and 0.98 microg.h/mL, respectively. After oral administration, the t(1/2), C(max), and AUC(0-infinity) were 1.01 h, 10.95 microg/mL, 26.71 mug.h/mL, respectively. The active metabolite of enrofloxacin, ciprofloxacin, was not detected in any samples tested. The hemolymph concentration was still above minimum inhibitory concentration (MIC) values for shrimp and fish bacterial isolates at 6 h after i.v. administration, therefore, a dose of 5 mg/kg i.v. every 8-12 h is suggested for additional studies of efficacy. The C(max) value for the water bath was lower than for the i.v. study, but a bath of 2.5 mg/L for 5 h once to twice daily is suggested for additional studies to test efficacy against highly susceptible organisms. Although only two animals were used for the oral study, a dose of 10 mg/kg produced hemolymph concentrations of enrofloxacin that were in a range consistent with therapeutic efficacy in other species.  相似文献   

13.
The vehicle in which endectocide compounds are formulated plays a relevant role in their absorption kinetics and resultant systemic availability. The pharmaceutical bioequivalence and comparative plasma disposition kinetics of ivermectin (IVM), following the subcutaneous administration of two injectable formulations to pigs and cattle were investigated using parallel experimental designs. Sixteen parasite-free male Duroc Jersey-Yorkshire crossbred pigs (90-110 kg) (Expt 1) and 16 parasite-free male Holstein calves (100-120 kg) (Expt 2) were divided into two groups and treated subcutaneously at either 300 (pigs) or 200 (calves) microg/kg with two different propylene glycol/glycerol formal (60: 40) based IVM formulations; in both experiments pigs or calves in Group A received the test (IVM-TEST) formulation and those in Group B were treated with the reference formulation (IVM-CONTROL). Heparinized blood samples were taken from 0 h up to either 20 (pigs) or 30 (calves) days post-treatment and plasma was extracted, derivatized and analysed by high performance liquid chromatography (HPLC) using fluorescence detection. Early detection of IVM (12 h) with a peak plasma concentration (C(max)) between 33 and 39 ng/mL was observed in pigs. The drug was detected in plasma up to 20 days post-administration of either formulation, resulting in elimination half-lives between 3.47 and 3.80 days. There were no differences between the IVM-TEST and IVM-CONTROL formulations in the kinetic parameters (except t(max)) obtained in pigs. IVM was detected in plasma between 12 h and 30 days post-administration of both formulations under investigation in cattle. The plasma disposition kinetics of IVM in calves was similar following treatment with both formulations. C(max) values (between 40.5 and 46.4 ng/mL) were achieved at 2 days post-administration of both formulations. None of the estimated kinetic parameters were statistically different between drug formulations. The injectable IVM formulations investigated were bioequivalent after their subcutaneous administration to both pigs and calves at recommended dose rates.  相似文献   

14.
The pharmacokinetic properties of cefpodoxime, and its prodrug, cefpodoxime proxetil, were evaluated in two separate studies, one following intravenous (i.v.) administration of cefpodoxime sodium and the second after oral (p.o.) administration of cefpodoxime proxetil to healthy dogs. After cefpodoxime administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). A single i.v. administration of cefpodoxime sodium at a dose of 10 mg cefpodoxime/kg body weight resulted in a cefpodoxime average maximum plasma concentration (Cmax) of 91 (+/-17.7) microg/mL, measured at 0.5 h after drug administration, an average half-life (t1/2) of 4.67 (+/-0.680) h, an average AUC(0-infinity) of 454 (+/-83.1) h.microg/mL, an average V(d(ss)) of 151 (+/-27) mL/kg, an average Cl(B) of 22.7 (+/-4.2) mL/h/kg and an average MRT(0-infinity) of 5.97 (+/-0.573) h. When dose normalized to 10 mg cefpodoxime/kg body weight, cefpodoxime proxetil administered orally resulted in Cmax of 17.8 +/- 11.4 microg/mL for the tablet formulation and 20.1 +/- 6.20 microg/mL for the suspension formulation and an average AUC(0-LOQ) of 156 (+/-76.1) h.microg/mL for the tablet formulation and 162 (+/-48.6) h.microg/mL for the suspension formulation. Relative bioavailability of the two oral formulations was 1.04 (suspension compared with tablet), whereas the absolute bioavailability of both oral formulations was estimated to be approximately 35-36% in the cross-study comparison with the i.v. pharmacokinetics. Combined with previous studies, these results suggest that a single daily oral dose of 5-10 mg cefpodoxime/kg body weight as cefpodoxime proxetil maintains plasma concentrations effective for treatment of specified skin infections in dogs.  相似文献   

15.
The objectives of this work were to compare the pharmacokinetics of erythromycin administered by the intramuscular (i.m.) and intravenous (i.v.) routes between nonlactating and lactating goats and to determine the passage of the drug from blood into milk. Six nonpregnant, nonlactating and six lactating goats received erythromycin by the i.m. (15 mg/kg) and the i.v. (10 mg/kg) routes of administration. Milk and blood samples were collected at predetermined times. Erythromycin concentrations were determined by microbiological assay. Results are reported as mean +/- SD. Comparison of the pharmacokinetic profiles between nonlactating and lactating animals after i.v. administration indicated that significant differences were found in the mean body clearance (8.38 +/- 1.45 vs. 3.77 +/- 0.83 mL/kg x h respectively), mean residence time (0.96 +/- 0.20 vs. 3.18 +/- 1.32 h respectively), area under curve from 0 to 12 h (AUC(0-12)) (1.22 +/- 0.22 vs. 2.76 +/- 0.58 microg x h/mL respectively) and elimination half-life (1.41 +/- 1.20 vs. 3.32 +/- 1.34 h); however, only AUC(0-12) showed significant differences after the i.m. administration. Passage of erythromycin in milk was high (peak milk concentration/peak serum concentration, 2.06 +/- 0.36 and AUC(0-12milk)/AUC(0-12serum),6.9 +/- 1.05 and 2.37 +/- 0.61 after i.v. and i.m. administrations respectively). We, therefore, conclude that lactation affects erythromycin pharmacokinetics in goats.  相似文献   

16.
Ceftiofur sodium, a broad-spectrum cephalosporin, is active against gram-positive and gram-negative pathogens of veterinary importance. Two studies were designed to compare the intramuscular bioavailability of the current sodium salt and the new hydrochloride salt in pigs at doses of either 3 mg or 5 mg ceftiofur equivalents (CE)/kg body weight. Twenty-six healthy young pigs were selected for these two-period, two-treatment crossover studies, 12 for the 3 mg/kg study and 14 for the 5 mg/kg study. Each animal received one intramuscular (i.m.) injection of ceftiofur sodium and one i.m. injection of ceftiofur hydrochloride with a 14-day washout period between the two treatments. Blood samples were collected serially for up to 96 h postinjection. Plasma samples were then analysed using a validated assay that measures ceftiofur and all desfuroylceftiofur-related metabolites by high-performance liquid chromatography. In the 3 mg/kg dosage study, average maximum plasma concentration (C(max)) after administration of ceftiofur sodium was 15.8+/-3.40 microg/mL at 0.4-4 h after injection. After administration of ceftiofur hydrochloride, the C(max) was 11.8+/-1.67 microg/mL at 1-4 h after injection. Concentrations of ceftiofur and metabolites 72 h after the injection were 0.392+/-0.162 microg/mL for ceftiofur hydrochloride and 0.270+/-0.118 microg/mL for ceftiofur sodium. The mean area under the curve (AUC), from time 0 to the limit of quantitation (AUC(O-LOQ)) after ceftiofur hydrochloride administration, was 216+/-28.0 microg x h/mL, compared to 169+/-45.4 microg x h/mL after ceftiofur sodium administration. The calculated time during which plasma concentrations remained above 0.02 microg/mL (t(>0.2)) was 85.3+/-10.6 h for ceftiofur sodium and 77.2+/-10.7 h for ceftiofur hydrochloride. In the 5 mg/kg dosage study, C(max) after administration of ceftiofur sodium was 28.3+/-4.45 microg/mL at 0.33-2 h after injection. After administration of ceftiofur hydrochloride, the C(max) was 29.7+/-6.72 microg/mL at 0.66-2 h after injection. Concentrations of ceftiofur and metabolites 96 h after the injection were 0.274+/-0.0550 microg/mL for ceftiofur hydrochloride and 0.224+/-0.0350 microg/mL for ceftiofur sodium. The mean AUC(O-LOQ) after ceftiofur hydrochloride administration was 382+/-89.8 microg x h/mL compared to 302+/-54.4 microg x h/mL after ceftiofur sodium administration. The t(>0.2) was 78.9+/-9.65 h for ceftiofur sodium and 94.2+/-8.64 h for ceftiofur hydrochloride. Based on the similarity of the pharmacokinetic parameters of the sodium and hydrochloride formulations of ceftiofur, similar therapeutic efficacy can be inferred for the two products.  相似文献   

17.
Enrofloxacin was given to broiler chickens, 3 groups of 6 birds each, at a dose of 5 mg/kg. Routes of administration were intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) and blood samples were collected from the jugular vein for determination of serum drug levels over a 54-hour period after administration. Drug levels were determined using Bacillus subtilis spore suspension on Meuller-Hinton antibiotic medium. Intravenous administration produced drug levels which followed a bi-exponential decay according to the model C = 101e(-1.84(t)) + 1.30e(-0.06(t)). After i.m. administration, the mean Cmax observed (2.01 microg/mL) occurred at 1 h and levels were detected for up to 48 h. The mean time to maximum concentration (Tmax) for the birds occurred at 0.79 h. The model describing serum concentrations after i.m. administration was C = 1.35e(-0.48(t)) + 1.27e(-0.07(t)) - 2.06e(-2.1(t)). Serum concentrations after oral administration were lower and the mean +/- standard error of mean, of the maximum concentrations (Cmax) was 0.99 microg/mL at 2 h after administration. The mean residence times after the 3 routes of administration were not significantly different and ranged from 12.5-13.7 h. Bioavailability by the oral route was 80.1%. Dialysis of chicken plasma vs saline indicated that the protein binding was 22.7%.  相似文献   

18.
The purpose of this study was to determine the pharmacokinetics and tissue fluid distribution of cephalexin in the adult horse following oral and i.v. administration. Cephalexin hydrate (10 mg/kg) was administered to horses i.v. and plasma samples were collected. Following a washout period, cephalexin (30 mg/kg) was administered intragastrically. Plasma, interstitial fluid (ISF) aqueous humor, and urine samples were collected. All samples were analyzed by high-pressure liquid chromatography (HPLC). Following i.v. administration, cephalexin had a plasma half-life (t(1/2)) of 2.02 h and volume of distribution [V(d(ss))] of 0.25 L/kg. Following oral administration, the average maximum plasma concentration (C(max)) was 3.47 mug/mL and an apparent half-life (t(1/2)) of 1.64 h. Bioavailability was approximately 5.0%. The AUC(ISF):AUC(plasma) ratio was 80.55% which corresponded to the percentage protein-unbound drug in the plasma (77.07%). The t(1/2) in the ISF was 2.49 h. Cephalexin was not detected in the aqueous humor. The octanol:water partition coefficient was 0.076 +/- 0.025. Cephalexin was concentrated in the urine with an average concentration of 47.59 microg/mL. No adverse events were noted during this study. This study showed that cephalexin at a dose of 30 mg/kg administered orally at 8 h dosage intervals in horses can produce plasma and interstitial fluid drug concentrations that are in a range recommended to treat susceptible gram-positive bacteria (MIC < or = 0.5 microg/mL). Because of the low oral bioavailability of cephalexin in the horse, the effect of chronic dosing on the normal intestinal bacterial flora requires further investigation.  相似文献   

19.
East Coast fever, caused by the protozoan parasite Theileria parva, kills about 600,000 cattle annually in Africa. The hydroxynaphthoquinone compound buparvaquone (BPQ) is curative. Sixteen calves were infected with T. parva. On manifestation of disease symptoms, eight were injected with the original (pioneer) BPQ product and eight with a test product containing BPQ. All 16 calves were cured by one injection of 2.5 mg BPQ/kg bodyweight. The concentration of BPQ in blood plasma was monitored by HPLC. The mean observed C(max) of BPQ was 0.229 and 0.253 microg/mL of plasma, the mean observed time to reach this concentration (T(max)) was 2.62 and 2.12 h and the AUC (area under curve) was 4.785 and 4.156 microg h/mL, respectively, for the pioneer and test product. Considerable variations occurred in the plasma concentration of BPQ within each group. They showed no relationship with either clinical or parasitological parameters following treatment.  相似文献   

20.
Ivermectin (IVM) is a broad-spectrum antiparasitic drug extensively used in veterinary medicine. The composition of the pharmaceutical preparation affects IVM absorption and its systemic availability. After the introduction of the first approved IVM formulation (propylene glycol/glycerol formal 60:40) used at 200 microg/kg, different pharmaceutical modifications have been assayed to extend IVM persistent endectocide activity. Recently, IVM 3.15% long-acting (IVM-LA) preparations to be administered at 630 microg/kg to cattle were introduced into the veterinary pharmaceutical market. The work reported here was designed to evaluate the comparative IVM absorption pattern and plasma concentration profiles obtained after subcutaneous administration of the classic pioneer IVM formulation (1%) and two different commercially available IVM-LA preparations (3.15%) to cattle. Twenty-eight Holstein heifers were divided in four experimental groups (n=7) and treated subcutaneously as follows--Group A: IVM 1% given at 200 microg/kg, Group B: IVM 1% administered at 630 microg/kg, Group C: IVM-LA (A) injected at 630 microg/kg and Group D: IVM-LA (B) given at 630 microg/kg. Blood samples were taken between 0.5 and 90 days post-treatment and IVM plasma concentrations were determined by HPLC with fluorescence detection. There were no differences in the persistence of IVM plasma concentrations after the administration of IVM 1% formulation at the two used dose levels (200 and 630 microg/kg). Higher peak plasma concentration (C(max)) and shorter mean residence time (MRT) were obtained for IVM 1% given at 630 microg/kg (Group B) compared to the treatments with both IVM-LA preparations. The IVM-LA (A) formulation showed a more extended absorption process than IVM-LA (B) preparation, which accounted for a longer persistence of detectable IVM plasma concentrations. The parasitological implications of the observed differences in peak plasma concentrations (C(max) values) and in the IVM concentration levels measured from day 20, and afterwards until day 90 post-treatment, between the different preparations assayed need to be elucidated. The characterization of the absorption patterns and kinetic behaviour obtained after injection of these novel long-acting formulations used at three times the therapeutic dose recommended for the classic IVM preparation in cattle is a further contribution to the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号