首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The separation of residual fats from whey protein concentrates (WPC) results in a better nutritional and functional utilization of this product. Bipolar membrane electroacidification (BMEA) technology allows acidification and demineralization of solutions without any salt addition. The principle of BMEA is based on proton formation from water molecule dissociation at the bipolar membrane interface. The objective of this work was to determine the effect of an electroacidification treatment at pH 4.5 on the precipitation of lipids. WPC electroacidification was carried out with or without preliminary demineralization by conventional electrodialysis. The effect of ionic strength on lipid precipitation rates was also evaluated by dilution of the WPC samples. Lipid precipitation levels of 35-39% were obtained using the electroacidification process without a dilution step, while the combination of BMEA and dilution of the WPC resulted in a decrease in lipid content by six-fold from 0.76 to 0.21%.  相似文献   

2.
Bipolar membrane electroacidification of demineralized skim milk.   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate the effect of decreasing the mineral content of skim milk by electrodialysis (ED) prior to electroacidification with bipolar membrane (BMEA) on the performance of the process, the chemical composition, and the physicochemical and functional properties of the isolates produced. ED used to demineralize the skim milk solution was very efficient. However, the electroacidification parameters were influenced by the demineralization level of the skim milk solution: the energy efficiency was decreased with an increase in demineralization, but it was still possible to perform BMEA at a very low conductivity level. Moreover, the isolates produced by BMEA after electrodialysis demineralization at different rates showed similar chemical composition, except on potassium and lactose contents for 75% demineralized isolate. These isolates, except on protein load for 75% demineralization rate, showed similar physicochemical and functional properties, whatever the demineralization rate.  相似文献   

3.
Bipolar membrane electroacidification (BMEA) uses the property of bipolar membranes to split water and the demineralization action of cation-exchange membranes (CEM). As milk mineral salt content is very sensitive to ionic strength and pH changes, the aim of this study was to better understand the effect of changes in mineral content during pH decrease and demineralization of skim milk. The objectives were to investigate the effect of different cationic permselective membranes (CSV and CMX membranes) on skim milk cation migration and protein precipitation during BMEA. The permselectivity of both membranes tested does not influence the final efficiency of BMEA. The purity of the bovine milk casein isolates produced was similar to or higher (97-98% versus 93.4-96.7) than those of commercial isolates, due to a reduced ash content (1.2 versus 2.0-3. 8%) resulting from the CEM demineralizing phenomenon. For both membranes, the main ionic species to migrate was the potassium ions.  相似文献   

4.
Bipolar membrane electroacidification to produce bovine milk casein isolate   总被引:4,自引:0,他引:4  
Bipolar membrane electroacidification (BMEA) has been developed previously (Bazinet et al., Report for the Canadian Electricity Association 9326 U 987, 1996; Bazinet et al., J. Agric. Food Chem. 1997, 45, 2419-2425, 3788-3794) and has been used for isoelectric precipitation of soybean proteins. The purpose of this study was to validate the feasibility of BMEA for the precipitation of milk casein and to investigate the effect of flow rate. High-purity isolates containing 1.23 and 2.00% ash and 85.4 and 91.6% total protein were obtained with flow rates of 0.2 and 1.2 gal/min. The molecular composition profiles of the isolates obtained by HPLC showed that only caseins were precipitated. However, except for protein precipitation curves, the flow rate did not influence the final composition and purity of the isolates. These results showed that BMEA is a new alternative process for the production of high-purity bovine milk casein isolate.  相似文献   

5.
Lipid separation from cheddar cheese whey allows a better valorization of protein fractions. In this study, bipolar membrane electroacidification (BMEA) was used to obtain precipitates with a high level of lipids. Whey samples with normal and low (by way of electrodialysis) mineral salt levels have been treated by a BMEA process and centrifuged. The composition of flocs and precipitation yields were determined. The BMEA process increased lipid precipitation rates by almost 50% in comparison with a centrifugation step only whereas a demineralization step prior to electroacidification had a limited effect on the precipitation level. Precipitates obtained were mainly composed of lipids (probably phospholipids) but also contained proteins. BMEA of cheddar cheese whey would allow the production of a lipid-enriched fraction and of a protein-enriched whey.  相似文献   

6.
Since the limiting factor of the bipolar membrane electroacidification (BMEA) process at 20% WPI (whey protein isolate) was hypothesized to be the lack of mobile ion inherent to the protein solution at pH 5.0, the aim of the present work is to study the effect of the conductivity control on the precipitation behavior of whey protein. BMEA performances were evaluated by measuring electrodialytic parameters, protein kinetic precipitation, molecular profiles, and isolate chemical composition and purity. The highest protein precipitation with 10% WPI solution was obtained at pH 4.6 and at a conductivity level of 200 microS/cm maintained with many 0.4-mL additions of 1.0 M KCl (200 microS[+]), with a 46% precipitation of the total protein, beta-lg composing the main part of the precipitated protein. With a 20% WPI solution, it was possible to reach pH 4.65 with conductivity control at 350 microS/cm. However, the 27% protein precipitation was still low. The changes in viscosity as pH decreases observed at 20% WPI would decreased the final precipitation rate of beta-lg, since the viscosity of the 20% WPI dispersion was very different.  相似文献   

7.
A procedure developed for soybean protein precipitation which was based on electrodialysis was tested for the production of acid casein from reconstituted skim milk. In a previous paper, the performance of bipolar membrane electroacidification (BMEA) was evaluated under different conditions of ionic strength (micro(added) = 0, 0.25, 0.5, or 1.0 M) and added salt (CaCl(2), NaCl, or KCl) (1). The aim of this study, which is the complement of the work on evaluation of BMEA performance, was to evaluate the functionality of the protein isolates produced by BMEA and to compare the BMEA isolates to commercial isolates and an isolate produced by chemical acidification. It was not possible to show differences between the functional properties of isolates produced by BMEA, except at 1 M CaCl(2) micro(added), due to the variability of the isolates. However, the results showed that it is possible to obtain isolates similar to commercial isolates and that the addition of salt during the process does not induce variations in functional properties. From results on mineral concentrations, it appeared that the addition of monovalent cations did not influence the retention of monovalent or divalent cations in the BMEA isolates, while addition of divalent cations (CaCl(2)) influenced the retention of magnesium. According to previous results on evaluation of BMEA performances under different conditions of ionic strength and added salt, the difference observed for the BMEA isolate produced at 1.0 M CaCl(2) was confirmed.  相似文献   

8.
Chitosan, a linear polysaccharide composed of beta-1,4 linked d-glucosamine residues, can be depolymerized into oligomers by enzymatic reaction with chitosanase. Recently, bipolar membrane electrodialysis (BMED) has been used for chitosan solubilization and for terminating the enzymatic reaction by action of electrogenerated acid and base, respectively. The aim of the present study was to test a complete "3-in-1" process using a three-compartment BMED configuration to perform simultaneously the solubilization of chitosan, the inactivation of chitosanase, and the demineralization of the oligomers. In addition, the BMED process was compared to a conventional process using chemical acid and base. The BMED method was found to be as effective as the conventional method for solubilizing the chitosan and for inactivating the chitosanase. Furthermore, the use of BMED allowed a demineralization rate of 53% of the chito-oligomer solution in the diluate compartment. A global process of chitosan hydrolysis into its oligomers using a BMED system was proposed. This technology has great potential for industrial application in chitosan oligomer preparation, because it is convenient and ecological and it produces chito-oligomers with a lower mineral content compared with the conventional method.  相似文献   

9.
Characterization of interactions between chitosan and an anionic surfactant   总被引:3,自引:0,他引:3  
Chitosan is a cationic biopolymer that has many potential applications in the food industry because of its unique nutritional and physiochemical properties. Many of these properties depend on its ability to interact with anionic surface-active molecules, such as phospholipids, surfactants, and bile acids. The purpose of this study was to characterize the interaction between chitosan and a model anionic surfactant (sodium dodecyl sulfate, SDS) using isothermal titration calorimetry (ITC), surfactant-selective electrode (SSE), and turbidity measurements. ITC and SSE indicated that SDS bound strongly to chitosan via a highly exothermic interaction. The turbidity measurements indicated that chitosan formed insoluble complexes with SDS that strongly scattered light. The chitosan bound approximately 4 mM of SDS per 0.1 wt % chitosan before becoming saturated with surfactant. The SDS-chitosan interaction was weakened appreciably by the presence of 100 mM NaCl, which suggested that it was electrostatic in origin. This study provides information about the origin and characteristics of molecular interactions between chitosan and anionic surface-active lipids that may be useful for the rational design of chitosan-based food ingredients with specific nutritional and functional characteristics, e.g., cholesterol lowering or fat replacement.  相似文献   

10.
Chitosan is a biodegradable cationic polymer that may be a potential substitute for aluminum salts in water treatment systems. In our study, we compared the coagulation performances of chitosan with those of coagulant mixtures of chitosan and aluminum sulfate and chitosan and poly-aluminum chloride, respectively. The coagulation efficiency was evaluated in terms of coagulant dosage, solution pH, settling velocity of flocs, floc diameter, and water turbidity. The optimum dosages for acid-soluble and water-soluble chitosan required for removal of a bentonite suspension (100 NTU) were only 1.25 and 1.50 mg/l, respectively, at a respective efficiency of 99.2% and 95.8%. The optimal dosage range for water-soluble chitosan was broader than that for acid-soluble chitosan. The coagulation of bentonite decreased with increasing pH when acid-soluble chitosan was the coagulant. In contrast, the coagulation efficiency of bentonite was not affected at pH 5?C9 when water-soluble chitosan was the coagulant. The mixing of chitosan with alum or PAC in a 1:1 mass ratio significantly improved the coagulation process in terms of preventing the occurrence of re-stabilization. The highest floc settling velocity occurred at a dosage of 5?C6 mg/l of the coagulant mixtures, which was also the highest coagulation efficiency. Given the relatively high cost of chitosan and the good coagulation performance of the coagulant mixtures, we suggest that a 1:1 mass ratio of chitosan mixed with alum or PAC may be an alternative method to the use of pure chitosan in water treatment systems.  相似文献   

11.
Arsenic, lead, and phosphorous contamination in soils represents a health risk. Chitosan (poly-N-acetyl glucosamine) inexpensive by-product derived from chitin has been used as a metals adsorbent. Objectives of this research were to evaluate the effectiveness of chitosan solution for arsenic, lead, and phosphorous extraction from lead-arsenate contaminated soils, and evaluate the effectiveness of protonated chitosan flakes (PCF) and ferric hydroxide chitosan beads (Fe(III)-CB) for water-soluble As removal from these soils. Percentage of arsenic, lead, and phosphorous removed from the soils by chitosan solution ranged from 0.96% to 17%, 1.80% to 31%, and 0.66% to 11%, respectively. Percentage of water-soluble arsenic removed by PCF and by Fe (III)-CB ranged from 12% to 47% and 36% to 77%, respectively. Averaged over soils, Fe (III)-CB removed slightly more arsenic (As) (42 mg kg?1) compared to Mehlich III (40 mg kg?1) extractant. Results indicate potential for the use of chitosan as an extraction for lead-arsenate contaminated soils.  相似文献   

12.
为考察壳聚糖对鱿鱼皮明胶膜的改性效果,将壳聚糖添加到明胶溶液中,考察壳聚糖的添加量对鱿鱼皮明胶复合膜机械性能、水蒸气透过率、透光性及其结构的影响。结果表明,壳聚糖能有效改善鱿鱼皮明胶膜的有关性能指标,当鱿鱼皮明胶溶液与壳聚糖溶液以60∶40(v/v)比例混合,制得复合膜的断裂伸长率相比单一明胶膜下降,但其抗拉伸强度、透光率和水蒸气阻隔能力分别比单一明胶膜提高了652%、11%和48%;差示扫描量热仪、红外及扫描电镜分析结果显示,壳聚糖能与鱿鱼皮明胶相互作用,形成结构致密的均相体系,提高复合膜的热变性温度。综上可知,鱿鱼皮明胶与壳聚糖之间具有良好的相容性,壳聚糖是一种较理想的明胶膜改性材料。本试验结果为鱿鱼皮明胶作为食品保鲜膜的应用提了供依据。  相似文献   

13.
Chitosan was modified by coupling with linoleic acid through the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-mediated reaction to increase its amphipathicity for improved emulsification. The micelle formation of linoleic acid-modified chitosan in the 0.1 M acetic acid solution was enhanced by O/W emulsification with methylene chloride, an oil phase. The fluorescence spectra indicate that without emulsification the self-aggregation of LA-chitosan occurred at the concentration of 1.0 g/L or above, and with emulsification, self-aggregation was greatly enhanced followed by a stable micelle formation at 2.0 g/L. The addition of 1 M sodium chloride promoted the self-aggregation of LA-chitosan molecules both with and without emulsification. The micelles of LA-chitosan formed nanosize particles ranging from 200 to 600 nm. The LA-chitosan nanoparticles encapsulated the lipid soluble model compound, retinal acetate, with 50% efficiency.  相似文献   

14.
高光谱成像快速检测壳聚糖涂膜草莓可溶性固形物   总被引:7,自引:6,他引:1  
为了对壳聚糖涂膜草莓可溶性固形物含量(soluble solids content, SSC)进行快速检测,该文采用高光谱成像仪(400~1 000 nm)对0,0.5%,1%浓度的壳聚糖(chitosan, CTS)涂膜草莓分别储藏1,2,4 d后进行成像,并测量样本SSC。通过分析SSC发现,0.5%和1%壳聚糖涂膜草莓,其SSC随着储藏天数的增加均高于0浓度壳聚糖涂膜草莓,说明了0.5%和1%壳聚糖涂层抑制了草莓中SSC的降低,能够延长草莓的新鲜口味。随后采用蒙特卡罗-偏最小二乘法(monte carlo-partial least squares, MCPLS)对异常样本进行剔除。对剔除异常样本后的光谱数据进行不同预处理,以确定最优的预处理方法。为提高运行速度和降低数据维数,采用竞争性自适应权重取样法(competitive adaptive reweighted sampling, CARS)和连续投影算法(successive projections algorithm, SPA)进行特征波段选择。最后,采用偏最小二乘回归(partial least square regression, PLSR)和支持向量回归(support vector regression, SVR)法建立回归模型。最终结果表明:SPA-SVR模型效果最佳,0浓度的壳聚糖涂膜的草莓,建模集精度Rc2为0.865,预测集精度Rv2为0.835;0.5%浓度的壳聚糖涂膜的草莓,建模集精度Rc2为0.808,预测集精度Rv2为0.799;1%浓度的壳聚糖涂膜的草莓,建模集精度Rc2为0.834,预测集精度Rv2为0.875。对储藏第4天的部分样本图像进行主成分分析(principal component analysis, PCA),结果显示除第二主成分图像(PC2)中有部分噪声影响外,PC1和PC3均能完整反映草莓信息,且PC3图像明显呈现出不同浓度壳聚糖涂膜草莓的褐变程度,说明不同浓度的壳聚糖涂膜也会对草莓货架期产生不同影响。综上说明利用高光谱成像技术可以实现壳聚糖涂膜草莓SSC快速检测,有效指导草莓保鲜处理。  相似文献   

15.
Chitosan was modified by coupling with linolenic acid through the 1-ethyl-3-(3-dimethylaminopropyyl)carbodiimide-mediated reaction. The degree of substitution was measured by 1H NMR, and it was 1.8%, i.e., 1.8 linolenic acids group per 100 anhydroglucose units. The critical aggregation concentration (CAC) of the self-aggregate of hydrophobically modified chitosan was determined by measuring the fluorescence intensity of the pyrene as a fluorescent probe. The CAC value in phosphate-buffered saline (PBS) solution (pH 7.4) was 5 x 10(-2) mg/mL. The average particle size of self-aggregates of hydrophobically modified chitosan in PBS solution (pH 7.4) was 210.8 nm with a unimodal size distribution ranging from 100 to 500 nm. A transmission electron microscopy study showed that the formation of near spherical shape nanoparticles had enough structural integrity. The loading ability of hydrophobically modified chitosan (LA-chitosan) was investigated by using bovine serum albumin (BSA) as a model protein. Self-aggregated nanoparticles exhibited an increased loading capacity (19.85 +/- 0.04 to 37.57 +/- 0.25%) with an increasing concentration of BSA (0.1-0.5 mg/mL).  相似文献   

16.
Oil-in-water emulsions containing cationic droplets stabilized by lecithin-chitosan membranes were produced using a two-stage process. A primary emulsion containing anionic lecithin-coated droplets was prepared by homogenizing oil and emulsifier solution using a high-pressure valve homogenizer (5 wt % corn oil, 1 wt % lecithin, 100 mM acetic acid, pH 3.0). A secondary emulsion containing cationic lecithin-chitosan-coated droplets was formed by diluting the primary emulsion with an aqueous chitosan solution (1 wt % corn oil, 0.2 wt % lecithin, 100 mM acetic acid, and 0.036 wt % chitosan). The stabilities of the primary and secondary emulsions with the same oil concentration to thermal processing, freeze-thaw cycling, high calcium chloride concentrations, and lipid oxidation were determined. The results showed that the secondary emulsions had better stability to droplet aggregation during thermal processing (30-90 degrees C for 30 min), freeze-thaw cycling (-10 degrees C for 22 h/30 degrees C for 2 h), and high calcium chloride contents (相似文献   

17.
Chitosan treatment (2-8 mg/mL) of wheat seeds significantly improved seed germination to recommended seed certification standards (>85%) and vigor at concentrations >4 mg/mL, in two cultivars of spring wheat (Norseman and Max), by controlling seed-borne Fusarium graminearum infection. The germination was <80% in the control and >85% in benomyl- and chitosan-treated seeds. Seed-borne F. graminearum was reduced to >50% at higher chitosan treatments compared to the control. Synthesis of phenolic acids was stimulated in primary leaves following chitosan treatment, and levels of these phenolic acids, especially ferulic acid, increased significantly with increasing chitosan concentration. Lignin content of primary leaves also showed a similar pattern. The synthesis of precursors of lignin such as p-coumaric, ferulic, and sinapic acids and phenolic acids having antimicrobial activity such as benzoic, p-coumaric, caffeic, protocatechuic, chlorogenic, ferulic, and gallic acids was also stimulated by chitosan treatment. The induction of phenolic acids and lignin was significantly lower in cv. Max compared to Norseman. Chitosan also inhibited fungal transmission to the primary roots of germinating seedlings. Results suggest that chitosan controlled seed-borne F. graminearum infection and increased the resistance in seedlings by stimulating the accumulation of phenolics and lignin. Thus, chitosan has a potential for improvement of seed quality and enhancement of crop yields as well as increased value of stored grains for food and feed.  相似文献   

18.
  【目的】  褪黑素可提高作物抗旱性,但容易降解。本研究试图开发具有缓释和抵御光降解能力的褪黑素壳聚糖微粒,并对其抗旱性进行评价。  【方法】  利用壳聚糖与三聚磷酸钠和果胶所产生的静电引力,使三者之间产生交联形成包裹褪黑素的杂化微粒,从而实现褪黑素的缓释和保活。确定投入褪黑素质量为5 mg时制备的褪黑素壳聚糖微粒作为试验材料(MP-MT)。利用扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR),对褪黑素壳聚糖微粒(MP-MT)表面形貌及官能团特性进行表征。采用超高效液相色谱技术,探究MP-MT对褪黑素的缓释性能和抵抗光降解的性能。以两叶一心的小麦幼苗为试材,进行灌根试验。将基质最大持水量的80%设为正常对照(CK1),基质最大持水量的40%设为干旱对照(CK2);在干旱胁迫下,设施用1.0 g/L褪黑素(MT1.0)、壳聚糖微粒(MP)和含褪黑素0.5、1.0、1.5 g/L的褪黑素壳聚糖微粒(MP-MT0.5、MP-MT1.0、MP-MT1.5),共7个处理。在处理后第8天,取样分析小麦幼苗株高、干重、鲜重、叶片SPAD值、根系生长、抗氧化酶活性及丙二醛含量。  【结果】  当褪黑素投入量为5 mg时MP-MT对褪黑素的包封率最稳定,为52.14%,之后的相关试验均以该比例制备的褪黑素壳聚糖微粒(MP-MT)作为试验材料。通过SEM照片发现,MP-MT微粒粒径相较于壳聚糖微粒增加且表面变粗糙。MP-MT微粒FTIR结果同时检测出现了壳聚糖、褪黑素等组分的特征峰,表明褪黑素在微粒中存在。模拟释放试验结果表明,MP-MT在pH 5.0和pH 7.0磷酸缓冲溶液下36 h的释放率分别为65.43%、50.13%。模拟光降解试验表明,可见光照射4 h时MP-MT中褪黑素的光降解率较普通MT降低了143.37%。小麦幼苗干旱胁迫试验结果表明,与MT1.0处理相比,3个MP-MT处理的小麦幼苗干重增加4.50%~22.73%,根系长度增加15.92%~32.56%,过氧化酶活性提高19.56%~20.34%,丙二醛含量降低9.77%~12.30% (P<0.05)。  【结论】  壳聚糖/三聚磷酸钠/果胶的褪黑素封装体系可以实现褪黑素的缓释和保活,显著提高干旱胁迫下小麦幼苗SPAD值,促进根系发育,提高抗氧化酶活性,从而提高小麦幼苗抗旱性。  相似文献   

19.
壳聚糖对不同种源柠条种子发芽及其酶活性的影响   总被引:1,自引:0,他引:1  
用不同浓度壳聚糖乙酸溶液分别对陕西省的吴起县和榆林市榆阳区两个产地的柠条种子浸种处理,以清水浸种处理为对照,调查种子发芽及幼苗生长特性,并测定了萌发过程中种子α-淀粉酶、脱氢酶、过氧化物酶、过氧化氢酶活性。结果表明,壳聚糖能促进柠条种子的萌发,缩短发芽时间;随着处理浓度的增大,各项发芽指标及各种酶活性先升高后降低,且不同种源柠条种子对壳聚糖浓度的反应不同。当壳聚糖浓度为0.5%时,榆阳柠条种子的发芽率是对照的1.2倍,平均发芽速率缩短0.9d,各种酶活性比对照显著提高,处理效果最佳。当壳聚糖浓度为1.0%时,吴起柠条种子发芽率比照提高13%,平均发芽速率缩短1.7d,各种酶活性比对照显著提高,处理效果最佳。当壳聚糖浓度达到1.5%时,对榆阳柠条种子的萌发有一定的抑制作用,而对吴起柠条种子萌发无抑制作用。壳聚糖对柠条幼苗的生长也有一定的影响,表现在幼苗的根长、苗高、干重、鲜重和叶绿素含量均显著高于对照,吴起柠条和榆阳柠条最佳的处理浓度分别为1.0%和0.5%。  相似文献   

20.
Microemulsions based on five-component mixtures for food applications and improved oil solubilization have been studied. The compositions included water, oil phase [such as R(+)-limonene and medium-chain triglycerides (MCT)], short-chain alcohols (such as ethanol), polyols (propylene glycol and glycerol), and several surfactants and their corresponding mixtures (nonionic, such as ethoxylated sorbitan esters, polyglycerol esters, sugar ester, and anionic, such as phosphatidylcholine). The phase behavior of these systems is discussed with respect to the influence of polyols and short-chain alcohols on the degree of solubilization of oils in the aqueous phase. The alcohol and polyols modify the interfacial spontaneous curvature and the flexibility of the surfactant film, enhancing the oil solubilization capacity of the microemulsions. The solubilization of R(+)-limonene was dramatically improved in the presence of the alcohol and polyols, whereas the improvement of solubilization for triglycerides containing MCT was less pronounced. In some systems high oil solubilization was achieved, and some of them can be easily diluted to infinity both with the aqueous phase and with the oil phase. Viscosity measurements along selected dilution lines [characterized by a single continuous microemulsion region starting from a pseudo binary solution (surfactant/oil phase) to the microemulsion (water/polyol corner)] indicate that at a certain composition the system inverts from a W/O to an O/W microemulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号