首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, durability of untreated and thermally modified sapwood and heartwood of Scots pine and Norway spruce was examined using a modified double layer test. Base layer samples were partly on contact with ground where exposure conditions were harder than that in a double layer test above the ground. The base layer on ground contact gave results already after one year of exposure in Finnish climate, but the top layer of a double layer test element simulated more the situation of decking exposure.

Significant differences in durability and moisture content (MC) between the wood materials were detected after six years of exposure in the field. Thermally modified pine heartwood performed very well in all layers of the test element and only minor signs of decay were found in some of the base samples. Both sapwood and heartwood of thermally modified spruce were suffering only slight amounts of decay while thermally modified pine sapwood was slightly or moderately decayed. Untreated sapwood samples of pine and spruce were severely decayed or reached failure rating after six years in the field. Untreated heartwood samples performed clearly better. The highest MCs were measured from untreated and thermally modified pine samples. Thermal modification increased significantly the durability and decreased the MC values of all wood materials.  相似文献   

2.
Abstract

Thermal modification has been developed for an industrial method to increase the biological durability and dimensional stability of wood. In this study the effects of thermal modification on resistance against soft- and brown-rot fungi of sapwood and heartwood of Scots pine and Norway spruce were investigated using laboratory test methods. Natural durability against soft-rot microfungi was determined according to CEN/TS 15083-2 (2005) by measuring the mass loss and modulus of elasticity (MOE) loss after an incubation period of 32 weeks. An agar block test was used to determine the resistance to two brown-rot fungi using two exposure periods. In particular, the effect of the temperature of the thermal modification was studied, and the results were compared with results from untreated pine and spruce samples. The decay resistance of reference untreated wood species (Siberian larch, bangkirai, merbau and western red cedar) was also studied in the soft-rot test. On average, the soft-rot and brown-rot tests gave quite similar results. In general, the untreated heartwood of pine was more resistant to decay than the sapwood of pine and the sapwood and heartwood of spruce. Thermal modification increased the biological durability of all samples. The effect of thermal modification seemed to be most effective within pine heartwood. However, very high thermal modification temperature over 230°C was needed to reach resistance against decay comparable with the durability classes of “durable” or “very durable” in the soft-rot test. The brown-rot test gave slightly better durability classes than the soft-rot test. The most durable untreated wood species was merbau, the durability of which could be evaluated as equal to the durability class “moderately durable”.  相似文献   

3.
Abstract

Thermal modification at elevated temperatures changes the chemical, biological and physical properties of wood. In this study, the effects of the level of thermal modification and the decay exposure (natural durability against soft-rot microfungi) on the modulus of elasticity (MOE) and modulus of rupture (MOR) of the sapwood and heartwood of Scots pine and Norway spruce were investigated with a static bending test using a central loading method in accordance with EN 408 (1995). The results were compared with four reference wood species: Siberian larch, bangkirai, merbau and western red cedar. In general, both the thermal modification and the decay exposure decreased the strength properties. On average, the higher the thermal modification temperature, the more MOE and MOR decreased with unexposed samples and increased with decayed samples, compared with the unmodified reference samples. The strength of bangkirai was least reduced in the group of the reference wood species. On average, untreated wood material will be stronger than thermally modified wood material until wood is exposed to decaying fungi. Thermal modification at high temperatures over 210°C very effectively prevents wood from decay; however, strength properties are then affected by thermal modification itself.  相似文献   

4.
This study was aimed at evaluating the effect of thermal modification temperature on the mechanical properties, dimensional stability, and biological durability of Picea mariana. The boards were thermally modified at different temperatures 190, 200 and 210 °C. The results indicated that the thermal modification of wood caused a significant decrease in the modulus of rupture (MOR) after 190 °C, while the modulus of elasticity (MOE) seemed less affected with a slight increase up to 200 °C and slight decrease with further increase in temperature. The hardness of the thermally modified wood increased in the axial direction. This increase was also observed in tangential and axial directions but at a lesser extent. The final value was slightly higher in axial direction and lower in radial and tangential directions compared to those of the untreated wood. Dimensional stability improved with thermal modification in the three directions compared to the dimensional stability of unmodified wood. The fungal degradation results showed that the decay resistance of thermally modified wood against the wood-rotting fungi Trametes versicolor and Gloephyllum trabeum improved compared to that of the untreated wood. By contrast, the thermal modification of P. mariana had a limited effect on the degradation caused by the fungus Poria placenta.  相似文献   

5.
Optimisation of a two-stage heat treatment process: durability aspects   总被引:1,自引:1,他引:1  
Heat treatment of wood at relatively high temperatures (in the range of 150–280°C) is an effective method to improve biological durability of wood. This study was performed to investigate the effect of heat treatment process optimisation on the resistance against fungal attack, including basidiomycetes, molds and blue stain fungi. An industrially used two-stage heat treatment method under relatively mild conditions (<200°C) was used to treat the boards. Heat treatment of radiata pine sapwood revealed a clear improvement of the resistance against the brown rot fungi Coniophora puteana and Poria placenta. Increasing process temperature and/or effective process time during the first process stage, the hydro thermolysis, appeared to affect the resistance against C. puteana attack, but the effect on the resistance against P. placenta was rather limited. Heat treated radiata pine showed a limited resistance against the white rot fungus Coriolus versicolor and process variations during the hydro thermolysis stage appeared not to affect this resistance. A clear difference between the resistance of heat treated Scots pine sapwood and heartwood against fungal attack is observed. Scots pine heartwood showed a higher resistance against C. puteana and P. placenta but also against the white rot fungus C. versicolor. Similar results were obtained when heat treated birch was exposed to brown and white rot fungi. Heat treatment showed an improved resistance against C. puteana attack, especially at higher temperatures during the hydro thermolysis stage. A clear improvement of the durability was also observed after exposure to the white rot fungus C. versicolor and especially Stereum hirsutum. Increasing the process temperature or process time during the hydro thermolysis stage appeared to have a limited effect on the resistance against C. versicolor attack. Heat treated radiata pine and Norway spruce were still susceptible to mold growth on the wood surface, probably due to the formation of hemicelluloses degradation products (e.g. sugars) during heat treatment. Remarkable is the absence of blue stain fungi on heat treated wood specimen, also because the abandant blue stain fungi were observed on untreated specimen. Molecular reasons for the resistance of heat treated wood against fungal attack are discussed in detail contributing to a better understanding of heat treatment methods.  相似文献   

6.
Abstract

Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) samples were exposed above ground in a durability test for 6 years. The samples consisted of three pieces of wood, 22×95×500 mm, screwed together; two pieces lengthwise with a third piece overlapping. Weight was measured, to calculate moisture content (MC), and samples checked regularly for cracks and fungal growth. Parameters investigated were heartwood/sapwood (pine), annual ring orientation (spruce), stand site, annual ring width and density. Stand site, annual ring width and density had no influence on MC or fungal growth for either pine or spruce. Spruce samples with vertical annual rings had fewer cracks than samples with horizontal annual rings. Pine sapwood samples had a high MC and a large amount of rot fungi, while heartwood had a lower MC and no rot. Most spruce samples were similar to pine heartwood, except from a few samples that had high MC and fungal growth. Those were all sawn from the outer part of the log. Therefore, it can be stated that spruce sawn from the inner part has almost the same properties as pine heartwood, while spruce from the outer part of the log has similar properties to pine sapwood.  相似文献   

7.
This research investigates wood defects, particularly the formation of surface cracks, during the production of thermally modified wood and its exposure to cyclic moisture changes. Boards of Norway spruce and Scots pine originating from different steps within the production of ThermoWood® were collected and wood defects were investigated at macroscopic and microscopic scale. Subsequently, the wood was exposed to capillary wetting cycles to record its sensitivity towards cracking. After the modification process, typical anatomical defects of conventional kiln-drying became more frequent and severe, with the magnitude being to some extent depending on the presence of defects in the raw material. At microscopic scale, damages to ray parenchyma and epithelial cells as well as longitudinal cracks within the cell walls of earlywood tracheids were evident in thermally modified wood. Despite a lower water uptake and higher dimensional stability, thermally modified wood was more sensitive to surface cracking during wetting cycles than unmodified wood, i.e. at the outside face of outer boards (near bark). For limiting surface cracking of thermally modified wood during service life, the use of high-quality raw material, the exposure of the inside face of the boards (near pith) and the application of a surface coating are considered beneficial.  相似文献   

8.
The species composition of wood-inhabiting fungi (polypores and corticoids) was investigated on 1138 spruce logs and 992 pine logs in 90 managed and 34 natural or near-natural spruce and pine forests in SE Norway.Altogether, the study included 290 species of wood-inhabiting fungi. Comparisons of logs with similar properties (standardized tree species, decay class, dimension class) in natural and managed forests showed a significant reduction in species number per log in managed spruce forests, but not in managed pine forests. The species number per log in managed spruce forests was 10-55% lower than on logs from natural spruce forests. The reduction was strongest on logs of large dimensions. A comparison of 200-400 spruce logs from natural and managed forests showed a 25% reduction in species richness corresponding to a conservative loss of ca. 40 species on a regional scale.A closer inspection revealed that species confined to medium and very decayed spruce logs were disfavored in managed forests, whereas species on early decay classes and decay generalists were unaffected. Similarly, species preferring large spruce logs were disfavored in managed forests. Forest management had strongest impact on low-frequent species in the spruce forests (more than 50% reduction), whereas common species were modestly affected. Corticoid fungi were more adversely affected than polypore fungi.These results indicate that wood-decaying fungi in pine forests are more adapted to forest disturbances than spruce-associated species. Management measures securing a continuous supply of dead wood are more important in spruce forests than in pine forests.  相似文献   

9.
Studying the impregnation and distribution of oil-based preservative in dried wood is complicated as wood is a nonhomogeneous, hygroscopic and porous material, and especially of anisotropic nature. However, this study is important since it has influence on the durability of wood. To enhance the durability of thermally modified wood, a new method for preservative impregnation is introduced, avoiding the need for external pressure or vacuum. This article presents a study on preservative distribution in thermally treated Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) sapwood using computed tomography scanning, light microscopy, and scanning electron microscopy. Secondary treatment of thermally modified wood was performed on a laboratory scale by impregnation with two types of preservatives, viz. Elit Träskydd (Beckers) and pine tar (tar), to evaluate their distribution in the wood cells. Preservative solutions were impregnated in the wood using a simple and effective method. Samples were preheated to 170 °C in a drying oven and immediately submerged in preservative solutions for simultaneous impregnation and cooling. Tar penetration was found higher than Beckers, and their distribution decreased with increasing sample length. Owing to some anatomical properties, uptake of preservatives was low in spruce. Besides, dry-induced interstitial spaces, which are proven important flow paths for seasoned wood, were not observed in this species.  相似文献   

10.
Abstract

In this study, two different methods were used to produce thermally modified wood. One was carried out in a typical kiln drying chamber using superheated steam (SS) and the other used pressurized steam in an autoclave cylinder (PS). Overall, both processes followed the same principles and the wood was not treated with any chemicals. Two wood species were studied, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Treatments in the autoclave were carried out under pressure using temperatures of 160°C, 170°C and 180°C. Temperatures of 190°C and 212°C were used in treatments in the chamber at normal air pressure. The colour was measured using L*C*H colour space. Results for both species showed that similar L* (lightness) can be reached at lower (20–30°C) temperatures using PS compared with SS treatment. The hue angle of PS-treated wood was smaller than that of SS-treated wood. No significant difference in C* (chroma) was detected. The difference in E value between PS- and SS-treated wood was smaller for Norway spruce than for Scots pine. The residual moisture content was about 10% higher in wood treated by the PS process compared with the SS process.  相似文献   

11.
ABSTRACT

Effects of climatic factors and material properties on the development of surface mould growth on wooden claddings were investigated in a laboratory experiment. Specimens of aspen (Populus tremula), Siberian larch (Larix Sibirica), American white oak (Querqus alba), Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and thermally modified pine were incubated in eight climatic chambers at specified wetting periods (2 or 4?h per day), relative humidity (58–86%) and temperature conditions (10–27°C). Surface mould growth was assessed weekly for 13 weeks, and the results were evaluated statistically using Generalized Estimating Equations logistic regression models. All tested climatic factors had significant effects on the mould growth, and there were significant differences between the materials. The ranking of the materials varied with temperature and over time. Aspen, pine sapwood and oak were overall most susceptible to mould growth, and thermally modified pine least susceptible. There were significant differences between sapwood and heartwood for pine and spruce. The effect of density was tested on the spruce heartwood material, but was not found to be significant. The results can be used to further develop prediction models for mould growth on wooden claddings.  相似文献   

12.
Abstract

Differences in durability between heartwood and sapwood of Norway spruce [Picea abies (L.) Karst.] were investigated to determine wood qualities most favourable for use in outdoor constructions above ground. Trees grown on sites with either good or poor access to water were used. Seventy-eight specimens measuring 20 × 50 × 300?mm3 separated into heartwood and sapwood, half untreated, half painted, were exposed horizontally outdoors above ground for 5.5?years with the pith side up and the bark side down. Crack length and crack number were measured. Fungus growth and surface changes were visually estimated. Fungus type was determined by microscopic analysis. The main finding was that spruce heartwood had fewer and shorter cracks and less surface-discolouring fungus growth than sapwood. This was valid for both painted and untreated wood. After 2?years’ exposure, the cracks in sapwood (upper surface) were more than three times longer and about five times more numerous than in heartwood for both painted and untreated boards. Microscopic study showed that surface discoloration was due mainly to Aureobasidium pullulans, together with a few other discolouring fungi. After 5.5?years, initial decay was established on the surface and in the end grain of four untreated test objects.  相似文献   

13.
以水蒸气作为保护气体,在170,185,200和215℃的条件下分别热处理橡胶木3h,对热改性橡胶木的生物耐久性进行研究.结果显示:高温热改性可提高橡胶木的耐腐性,其改善效果随着处理温度的升高而提高,当处理温度为185℃或更低温度时,改善效果不明显.215℃处理3h后,褐腐(密黏褶菌)质量损失率由51.6%降至21.6%,白腐(采绒革盖菌)质量损失率由27.6%降至6.8%.选用烟曲霉、哈茨木霉、产紫青霉和可可球二孢进行防霉试验,结果显示热改性橡胶木的防霉性能与对照相比没有明显的改善;经涂饰后,热改性试材的防霉性能优于未处理材.野外耐久性试验结果显示,高温热改性不能提高橡胶木的防白蚁性能.  相似文献   

14.
It is known that active peroxidase isozymes exist in mature wood of Norway spruce (Picea abies L. Karst.) and that they remain active for years and are found even in the heartwood (in Scots pine), where all cellular activity has ceased. This peroxidase activity was utilised in the impregnation of wood blocks with a natural monolignol, coniferyl alcohol and hydrogen peroxide. The hypothesis was that the internal wood peroxidases would oxidise the added monolignol and bind it stably into the cell wall matrix, which could hinder fungal decay. Since coniferyl alcohol is not very soluble in water, the impregnation was done under vacuum with an acetone–water solution containing 10% coniferyl alcohol and 0.4 mM H2O2 at room temperature (ca. 0.02 g of coniferyl alcohol was added to 1 g of wood). After impregnation, dimers of coniferyl alcohol and free coniferyl alcohol were found in acetone extracts with GC–MS analysis. Penetration of coniferyl alcohol and non-extractable reaction products were studied from the wood blocks with FTIR PAS technique. The wood samples treated were also subjected to a fungal decay test with Coriolus versicolor. This treatment hindered fungal decay in a 60-day experiment and led to a dry weight loss of 8.8% in comparison with 19.9% in the control. The reactions of coniferyl alcohol and H2O2 in the presence of peroxidases are discussed as well as the use of monolignols to increase wood decay resistance.  相似文献   

15.
Specimens of Scots pine sapwood (Pinus sylvestris L.) and beech wood (Fagus sylvatica L.) were treated with an amino-alkyl-functional oligomeric siloxane, a sodium water glass solution and 1,3-dimethylol-4,5-dihydroxyethylene urea (DMDHEU). Treated and untreated wood specimens were exposed outdoors without ground contact. After 9?months of outside exposure, all specimens showed discolouration caused by infestations of mould and staining fungi on the exposed wood surface. Fungi grown on the sample surface were isolated and identified by microscopic technique and sequencing of PCR-amplified DNA from the ITS region. Primarily, an infestation by ascomycetes and related deuteromycetes was found. The most dominant fungi were Trichoderma sp. and Epicoccum sp.. An infestation of Aureobasidium pullulans was only detected on untreated and DMDHEU-treated samples. There were only marginal differences of fungal infestation between the two wood species.  相似文献   

16.
We evaluated fungal decay and mold resistance, leaching, and water absorption of nano-compounds and Paraloid B72® (PB72) in treated wood specimens to develop new methods of consolidation by combining nano-particles and consolidants. Scots pine wood specimens were treated with dispersions of nano-CuO, nano-ZnO, nano-B2O3, nano-TiO2, and nano-CeO2. PB72 treatments of nano-particle-treated wood specimens were then carried out by either vacuum or immersion for 24 h. Previously, decayed wood specimens were also consolidated with the nano-compounds and PB72. PB72 treatments reduced element release from treated wood specimens. Nearly all nano-compounds + PB72 treatments increased the biological performance of treated wood specimens against decay fungi tested. PB72-only treated wood specimens had the highest weight losses in decay tests. No improvements were obtained in mold resistance tests when the nano-compounds and PB72 were combined. In nano-compound-only treatments, unleached specimens showed slightly lower water absorption values compared to untreated control specimens. Incorporation of PB72 into nano-compound-treated wood specimens resulted in considerably lower water absorption and volumetric swell. In previously decayed specimens treated with the nano-compounds and PB72 solution, water absorption after 2-h immersion declined compared to control specimens.  相似文献   

17.
18.
This study investigated whether the physiological condition of wood influenced patterns of colonization by mould and sapstain fungi. The extent of fungal defacement on sawn pine lumber Pinus nigra var. maritima that had been killed by gamma‐irradiation was compared with the defacement on untreated, still living timber that had been aged for up to 16 weeks prior to being sawn. All the sawn lumber was exposed to the natural inoculum of sapstain and mould fungi in a working sawmill environment over a 4‐week period. The results indicated that the pattern of fungal defacement differed markedly in dead or aged wood compared with untreated wood. Mould fungi were most prevalent on the dead irradiated wood, whereas sapstain fungi dominated the freshly sawn lumber which was still living. The differences appear to be independent of wood moisture content and may be related to the production of inhibitory compounds by living cells in wood as it becomes senescent and dies.  相似文献   

19.
Fomes annosus (Fr.) Cke. and other decay fungi in a Douglas fir stand, Pseudotsuga menziesii (Mirb.) Franco. 40% of the trees in a 40 years old Pseudotsuga menziesii stand showed butt rot. 85 trees were analysed for decay fungi. Fomes annosus, the most frequent fungus, also invaded the sap wood. Factors of the soil favourable to the rot and the possibility of transmission of the most frequent decay fungus, Fomes annosus, from (a) neighbouring spruce stands, (b) from the roots of Scots pine from the previous crop arc discussed. Caniophora puteana was isolated from about 10% of the butt rots. The importance of Calocera viscosa which grew out of the central decay of twelve trees as a decay fungus is still under investigation.  相似文献   

20.
  • ? Wood used in outdoor conditions out of ground contact is susceptible to weathering, inducing both fungal decay and leaching of components to the environment.
  • ? This paper presents a methodology to determine these two parameters for untreated, preservative-treated and modified wood. Therefore, the wood was first leached and subsequently exposed to fungal decay of the most prominent wood-rotting fungi. The crustacean Daphnia magna was exposed to the leachates to provide information on their impact on the environment.
  • ? Combining both parameters reveals that preservative-treated wood and modified wood are capable of protecting the wood adequately for application under use class 3 conditions without posing a threat to the environment.
  • ? This proves the suitability of the concept of combining efficacy and ecotoxicology for the evaluation of new types of wood treatments.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号