首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
基于塔里木盆地19个气象站2000−2019年生长季逐日气象数据,采用FAO−56PM公式计算各站逐日ET0,运用敏感系数、ArcGIS反距离权重插值、气候倾向率和Mann-Kendall非参数检验等方法,对该地区ET0的时空变化规律及ET0对关键气象因子的敏感性进行分析。结果表明:(1)近20a来,塔里木盆地生长季ET0日均值在空间上呈北低南高的趋势,多年ET0日均值从大到小依次为6、7、5、8、4、9和10月,其值分别为5.84、5.73、5.29、4.95、4.23、3.65和2.17mm⋅d−1,气候倾向率分别为−0.09、0.24、0.11、−0.07、0.16、0.07和0.08mm⋅10a−1,ET0日均值在盆地中、西部以负倾向率为主,盆地东部则以正倾向率为主。(2)整个生长季,塔里木盆地的相对湿度逐月增加,2m处风速逐月减小,日照时数则呈先增加后降低的趋势,最低气温和最高气温均呈倒U形分布,且均在7月达到最大值。相对湿度的变化以负倾向率为主,2m处风速和最低气温的变化以正倾向率为主,日照时数和最高气温变化的倾向率无明显规律。(3)在生长季(4−10月),塔里木盆地ET0对关键气象因子的敏感性表现为最高气温>相对湿度>日照时数>2m处风速>最低气温,ET0对最低气温的敏感性以较低敏感性为主,对其余气象因子均以高敏感性为主。ET0对最低气温和最高气温最敏感的月份是7月,而对相对湿度、2m处风速和日照时数最敏感的月份分别是10月、4月和8月。ET0对相对湿度的敏感系数绝对值的空间分布呈由北向南递减的趋势,对2m处风速和最高气温的敏感系数均以塔克拉玛干沙漠为高值中心,对日照时数无明显规律,对最低气温则呈由西向东递减的趋势。  相似文献   

2.
新疆额尔齐斯河流域气温日较差变化特征及影响因子分析   总被引:1,自引:0,他引:1  
利用新疆额尔齐斯河流域5个国家气象地面基准站1961—2013年最低、最高气温及年平均气温、降水量、风速、日照时数、相对湿度等逐日资料,通过累计距平法、滑动平均、线性回归法,对该流域DTR变化特征及空间分布进行分析,以探讨该地区气温变化的规律。结果表明:额尔齐斯河流域各地年、年代DTR总体上呈减小趋势,除阿勒泰市以外,其余各地减小趋势显著;四季DTR变化趋势不太一致,总体上呈现减小趋势;年DTR极大值和极小值均呈减小趋势。年均最高、最低气温均呈升高趋势,最低气温的快速升高和最高气温的缓慢升高是额尔齐斯河流域DTR减小的直接原因。年均DTR与热力因子中的平均气温、动力因子中的平均风速呈正相关,与热力因子中的日照时数、水分因子中的降水量、动力因子中的相对湿度呈负相关,影响流域DTR的主要因子为平均气温、降水量、平均风速,关联性最强的是平均气温,其次是降水量。影响各地DTR的主要因子有所不同。  相似文献   

3.
陕西关中地区参考作物蒸发蒸腾量变化及原因   总被引:7,自引:2,他引:7  
根据关中地区30个气象站41年的气象资料,采用FAO推荐的Penman-Monteith公式计算参考作物蒸发蒸腾量(ET0),分析了陕西关中地区ET0的变化及原因,结果表明,从长期来看,关中地区ET0在减少趋势的基础上表现出周期性变化,从阶段性来看,1980年之前和之后则主要表现为增加趋势。关中地区年内ET0的最大值在1980年前主要出现在6月,1980年以后则主要出现在6月和7月,且以7月为多;1980年后5~8月ET0所占比值在减少,但仍在全年中占50%以上。关中地区平均气温、最高气温和最低气温表现为增加趋势,风速、日照时数和相对湿度表现为减少趋势。关中地区ET0与平均气温、最高气温和最低气温表现为不显著正相关,与风速和日照时数表现为显著正相关,与水汽压表现为显著负相关,与年降水量表现为不显著负相关,近一半地区的ET0与年蒸发量显著正相关。对关中地区ET0影响显著的气象因子的顺序为:风速〉日照时数〉水汽压〉年蒸发量。即风速和日照时数的减少趋势是引起关中地区ET0降低趋势的主要原因。  相似文献   

4.
根据大凌河流域1978—2018年10个气象台站的基础气象资料,对流域内近40a蒸散发(ET0)及各气象要素变化趋势运用FAO56P-M估算法与M-K检验法研究,为更好的揭示驱动ET0变动的关键因子探讨了各要素敏感性。结果表明:大凌河流域1978—2018年ET0总体呈显著下降趋势,平均下降速率为12.2mm/10a,均值为1012.4mm/a,自东北向西南呈低-高-低的空间分布格局;太阳辐射与风速的下降趋势、最高与最低温度的上升趋势极显著,而相对湿度的改变相对较弱;按从弱到强的次序排列各要素敏感性为:最低温度<太阳辐射<风速<最高温度<相对湿度,ET0变化与相对湿度呈负相关,而与其它要素呈正相关;太阳辐射与风速为驱动ET0变动的负因子,相对湿度的降低、最高和最低气温的升高为正因子,贡献率最大和最小的要素为风速、相对湿度;大凌河流域ET0降低的主导因素为风速的降低。  相似文献   

5.
东北地区参考作物蒸散量对主要气象要素的敏感性分析   总被引:13,自引:1,他引:12  
利用国家气象局提供的地面气候资料日值数据集,通过FAO推荐的Penman-Monteith公式计算了东北地区1961-2008年生长季(5-9月)逐日的参考作物蒸散量(ET0),分析了ET0及主要气象要素的变化趋势,并通过响应曲线、敏感矩阵、敏感系数等方法分析了ET0对气温、日照时数、平均风速、平均相对湿度的敏感性。结果表明:(1)近50a来,东北地区的气温呈极显著上升趋势(P0.01),日照时数、平均风速、平均相对湿度呈极显著下降趋势(P0.01);东北地区生长季平均日ET0在以3.60mm.d-1为平均值、±0.3mm.d-1的范围内波动,总体上比较稳定,最大值出现在2001年(3.87mm.d-1),最小值出现在1990年(3.28mm.d-1);(2)当气温、日照时数、平均风速的变化量从-20%变化到20%时,ET0表现为逐渐增加的趋势,当平均相对湿度的变化量从-20%增加到20%时,ET0则逐渐减小;(3)气温、日照时数、平均风速、平均相对湿度的生长季平均日敏感系数均具有较强的空间分异特性,其中气温变化对ET0的影响最为明显,其次是平均相对湿度,日照时数、平均风速对ET0的影响较小。  相似文献   

6.
黑龙港流域参考作物蒸散量的时序变化和分形特征   总被引:1,自引:0,他引:1  
利用位于黑龙港流域的武强、深泽、饶阳、晋州、献县5站1957-2009年日最高气温、日平均气温、日最低气温、日平均相对湿度、日平均风速、日照时数资料,采用Penman-Monteith算法,计算各站不同时间尺度ET0,采用线性趋势分析法分析其趋势倾向,并应用滑动R/S分析方法研究该流域不同时间尺度ET0时间序列的分形特征。线性趋势分析显示,各站历史上自1957年以来的ET0年总值的气候倾向率在-33.81-10.79mm.10a^-1,即均呈下降趋势,但变化倾向率不同;各月ET0倾向率在-11.27-2.02mm.10a^-1,大多数为负值,其中5、6月份各站的下降趋势最大;春、夏、秋、冬季ET0倾向率为-15.87-1.30mm.10a^-1,且夏季各站之间的差异较大,尤以饶阳站与其他4站间的差异最大。气候要素倾向率的对比分析表明,5站参考作物蒸散量总体下降趋势的基本特征主要是由于风速下降、日照时数减少、日最高最低气温上升造成的;5、6月份下降趋势明显则主要是由于风速下降、日照时数减少、日平均气温上升减缓、相对湿度上升明显造成的;饶阳站与其他4站差异较大的主要原因在于2、3、11、12月风速下降和日照时数减少以及日最高最低气温上升趋势减缓、相对湿度和气压下降明显,以致这些月份的ET0倾向率大于0,形成秋季和冬季ET0倾向率大于0,年尺度ET0年际变化下降趋势不明显。R/S分析结果显示,5站全年和各季ET0时间序列的Hurst指数均大于0.5,相关系数均在0.98以上,分维数均小于1.5,说明各站全年和各季节ET0时间序列变化趋势在未来一段时间内具有持续性,即ET0在未来将呈较明显的下降趋势,这种趋势在除饶阳外的其他站月均有不同程度的表现。  相似文献   

7.
利用青海省同德县1961-2000年小型蒸发皿蒸发量资料,采用气候倾向率和Mann-Kendall非参数趋势检验法分析了同德蒸发量的变化趋势及引起蒸发量变化的因子。结果表明:同德1961-2000年40 a平均蒸发量呈显著增加趋势,气候倾向率为34.5 mm/10 a,四季蒸发量均呈增加趋势,但仅秋季蒸发量增加趋势显著。影响蒸发皿蒸发量的主要气候因子日照时数、平均气温呈现显著的上升趋势,平均相对湿度、降水量表现为下降趋势,平均风速变化微弱,平均日最低气温的升温速率(0.23℃/10 a)明显比平均日最高气温的升温速率(0.14℃/10 a)大,导致气温日较差减少(-0.10℃/10 a)。因此,同德地区平均气温、日照时数的显著上升,以及年平均相对湿度和降水量的明显下降,可能是年蒸发量显著上升的主要原因。  相似文献   

8.
赵璐    梁川 《水土保持研究》2014,21(4):26-30
利用FAO-56 Penman-Monteith法计算四川省4个分区1960—2010年逐月的潜在蒸散量(ET0),采用贡献率法分析ET0近50 a来变化成因。结果表明:整个四川省、四川盆地和盆周山地日照时数和风速下降对ET0的负贡献超过平均、最高和最低气温上升以及相对湿度下降对ET0的正贡献,使ET0呈下降趋势;川西北高原平均、最高和最低气温上升以及相对湿度下降对ET0的正贡献超过风速和日照时数下降对ET0的负贡献,使ET0呈上升趋势;川西南山地平均、最低气温、日照时数和风速的下降对ET0的负贡献超过了最高气温上升和相对湿度下降对ET0的正贡献,使ET0呈下降趋势。四川省和四川盆地日照时数下降是ET0下降的主要原因,盆周山地和川西南山地风速下降是ET0下降的主要原因,川西北高原最低温度上升是ET0上升的主要原因。  相似文献   

9.
GFDL-ESM2M气候模式下京津冀地区未来潜在蒸散量时空变化   总被引:3,自引:3,他引:0  
为探究未来潜在蒸散量时空变化特征,该研究以京津冀地区为例,基于美国GFDL提供的GFDL-ESM2M全球气候模式,得到京津冀地区92个格点2000-2050年的平均气温、最高气温、最低气温、太阳总辐射、平均相对湿度和近地面平均风速,应用Penman-Monteith公式计算京津冀地区未来92个格点的逐日潜在蒸散量(ET0),分析其时空分布特征及其与气象要素的相关关系。结果表明:未来年ET0总体呈增加趋势,RCP8.5情景下ET0上升速度最快,且随着时间推移增幅越来越大。夏季ET0增长速度最快,其次为春季、秋季与冬季,意味着未来ET0季节差异将愈加明显,可能出现更为严重的季节性干旱。ET0空间分布呈由西南向东北逐渐递减趋势,其中中部地区增速最快,增长趋势由中部向南北递减。不同气候情景下平均气温均呈逐年上升趋势,风速、太阳总辐射略微上升,而相对湿度下降。ET0与太阳总辐射的相关系数最大,呈由东北向西南递增趋势,其次为最高气温,呈由西北向东南递增趋势。ET0与相对湿度变化呈显著负相关,相关系数绝对值呈东北向西南递增趋势,ET0与风速相关度不明显。该研究可为农业需水预测与灌溉管理、科学应对气候变化提供基础支撑。  相似文献   

10.
京津冀地区潜在蒸散量时空演变特征及归因分析   总被引:5,自引:5,他引:0  
为了深入认识京津冀地区潜在蒸散量的时空变化特征及其对气候变化的响应,该研究基于京津冀地区23个气象站57 a逐日气象观测资料,应用Penman-Monteith公式计算各站点日潜在蒸散量(ET0),剖析ET0的时空变化特征,运用敏感性分析法定量研究ET0对各气象要素的敏感性及其时空变化特征,定量识别各气象要素变化对ET0变化的贡献。研究结果表明:1)京津冀地区ET0空间分布整体呈由南向北递减趋势(除中部地区的塘沽站、黄烨站与保定站点ET0较高外)。ET0整体呈下降趋势,线性趋势率为-0.92 mm/a。ET0变化趋势空间分布由西北向东南递减,以春季减幅最为明显。2)京津冀地区ET0对相对湿度的最为敏感(-0.44),其次为风速(0.31)、日照时数(0.28)与平均气温(0.26)。随时间推移,ET0对平均风速与相对湿度敏感性整体呈下降趋势,而ET0对平均气温与日照时数的敏感性逐渐增强。敏感性系数空间分布从西北到东南:风速与平均气温敏感性系数逐渐递增,而日照时数与相对湿度敏感性系数逐渐递减。3)风速变化对京津冀地区ET0变化的贡献最大,平均气温次之。风速为主导因素的站点个数随时间呈下降趋势,平均气温与日照时数为主导的站点个数随时间呈上升趋势,说明近年来平均气温与日照时数对潜在蒸散量变化的影响愈加明显,这可能是由于近年来京津冀地区雾霾尤其是冬季雾霾对日照时数、气温与风速的产生一定影响,进而影响ET0。  相似文献   

11.
渭河流域潜在蒸散发时空演变与驱动力量化分析   总被引:5,自引:5,他引:0  
潜在蒸散发(ET0)是水文循环和能量循环的重要组成部分,揭示ET0的时空演变特征及其对气候变化的响应,有助于进一步了解变化环境下水循环演变机理。该研究利用渭河流域16个气象站1960-2019年的逐日气象资料,基于FAO-56 Penman-Monteith(FAO-56 PM)公式计算ET0,采用线性倾向估计、趋势检验和插值方法对其时空变化特征进行分析,并基于敏感性分析和贡献率定量识别影响ET0变化的主导因子。结果表明:1)年尺度上,渭河流域气压(0.04 k Pa/10a)和平均气温(0.30℃/10a)呈显著上升趋势,风速(-0.05 m/(s·10a))和日照时数(-18.79 h/10a)呈显著下降趋势,相对湿度(-0.32%/10a)呈不显著下降趋势;2)年ET0以2.51 mm/10a的速率呈不显著上升趋势,除夏季外,其余季节ET0呈上升趋势,其中春季ET0呈显著上升趋势;空间上,年ET0自东北向西南递减,变化范围为763.49~954.32 mm;3)年ET0变化的主导因子为相对湿度与风速,贡献率分别为2.36和-2.32;季尺度上,春、秋季ET0变化的主导因子为相对湿度,夏季为日照时数,而冬季为风速。研究结果可为区域制定合理的作物需水灌溉政策及实现水资源高效利用提供依据。  相似文献   

12.
利用淮河流域171个站点1971-2010年的气象资料,采用FAO Penman-Monteith公式计算该区近40a的参考作物蒸散量(ET0),并对ET0的时空分布特征和影响因子进行定量分析。结果表明:淮河流域年ET0为898mm,近40a总体以17.5mm/10a的速率减小(P〈0.05);空间分布显示西北部大部站点ET0呈显著下降趋势(P〈0.05),仅东南部个别站点呈显著上升趋势(P〈0.05)。各气象因子对ET0变化的贡献表现为两方面,即ET0对气象因子的敏感性和气象因子的多年相对变化率,在4个主要因子中(平均温度、相对湿度、日照时数和风速),ET0对相对湿度的变化最敏感(敏感系数最大),而风速的多年平均变化率最大。从各因子的贡献率看,对ET0贡献最大的是风速,平均温度的贡献最小,4个因子对ET0变化的总贡献率为-4.96%,总贡献率为负在很大程度上解释了ET0呈下降趋势的原因。  相似文献   

13.
石羊河流域近53 a参考作物蒸散量的敏感性分析   总被引:1,自引:0,他引:1  
利用国家气象信息中心提供的地面气候资料日值数据集,基于FAO Penman-Monteith公式计算了石羊河流域4个测站1959-2011年的逐日参考作物蒸散量(ET0)。利用敏感系数法计算了其对平均最高气温、平均最低气温、风速、平均相对湿度和日照时数的敏感系数,并分析了敏感系数的时空变化特征。结果表明,石羊河流域ET0对相对湿度最敏感,其次为风速和气温,而对日照时数的敏感性最低。由于气象要素分布不均,敏感系数的空间差异显著,相对湿度的敏感系数在上游祁连山区形成高值区,同时,气温在该区的敏感系数也相对较大,而风速的敏感系数在下游民勤盆地较大,日照时数的敏感系数在全区无明显差异。各气象因子的敏感系数均存在一定程度的波动,风速的敏感系数冬高夏低,气温和日照时数的敏感系数均为夏季最高,相对湿度敏感系数的绝对值持续上升在秋季达到最大。53 a来,相对湿度敏感系数波动变化,近20 a来其绝对值上升趋势显著,而风速、日照时数和气温的敏感系数无明显变化趋势。  相似文献   

14.
利用内蒙古典型草原地区锡林浩特国家气候观象台1954-2013年蒸发皿蒸发资料和同期气温、日照时数、云量、风速、相对湿度等资料,运用线性趋势法、相关分析法、完全相关系数法,对蒸发量变化趋势及其与各气象因子的关系进行分析,并试图解释引起蒸发变化的气候成因.结果表明:研究区近60a蒸发皿蒸发量表现为极显著上升趋势(51.49mm/10a,P<0.01);完全相关系数法分析表明,最低气温、平均气温、相对湿度与蒸发皿蒸发量呈极显著相关性(P<0.01),是影响蒸发量的主要因子.气温上升、相对湿度降低是造成内蒙古典型草原区锡林浩特地区蒸发量上升的主要原因.研究结果对典型草原区气候变化评价有一定参考价值.  相似文献   

15.
河南省参考作物蒸散量变化特征及其气候影响分析   总被引:1,自引:0,他引:1  
基于河南省111个气象站1971-2010年逐日平均气温、最高气温、最低气温、相对湿度、风速和日照时数等气候要素资料,应用Penman-Monteith模型计算各站点逐日参考作物蒸散量(ET0),结合数理统计方法,分析近40a来河南省年ET0的时空变化特征,并对其主要影响因子进行探讨.结果表明,Penman-Monteith模型对河南省ET0的模拟能力较强,模拟值与同期小型蒸发皿蒸发量的相关系数r=0.84(P <0.01).近40a,河南省年ET0平均值为796.1mm(±102.2mm,n=4169),在空间分布上,总体表现出北高南低的特征,并以24.7mm·10a-1(P <0.01)的线性倾向率减少,呈明显减少的站点主要分布在34°N以北地区.偏相关分析表明,全省各地(市)年ETo与各气象要素关系密切,除济源外,年ET0均表现出与风速呈负相关且相关系数最大.逐步回归分析显示,年ETo与平均气温、日照时数、风速和相对湿度的关系密切;风速、日照时数和平均气温对年ET0的贡献为正效应,而相对湿度为负效应.近40a,风速减小是导致河南省年ET0呈显著减小的主要原因;但从综合影响看,这是各气象因素综合作用的效果,且各因子的贡献存在区域差异.  相似文献   

16.
中国粮食主产区参考作物蒸散量演变特征与成因分析   总被引:3,自引:0,他引:3  
在全球变暖的背景下,参考作物蒸散量(reference crop evapotranspiration,ET0)的改变及其空间分布势必对中国粮食主产区农业水资源规划、农业用水管理等产生重要影响。本文将中国粮食主产区划分为温带湿润半湿润地区(I区)、温带干旱半干旱地区(II区)、暖温带半湿润地区(III区)和亚热带湿润地区(IV区)4个子区域,基于粮食主产区265个站点1961-2013年53a气象数据,采用FAO-56 Penman-Monteith公式计算各站点逐日ET0,利用ArcGIS空间插值、Mann-Kendall趋势检验、敏感性分析和贡献率分析等方法,对该区域ET0的时空分布规律及其成因进行分析。结果表明:(1)近53a来,中国粮食主产区年均ET0为878.9mm,整体呈显著下降趋势,速率为0.47mm·a-1(P<0.05),I、II区和IV区年均ET0分别为741.8、1079.8和924.2mm且均有所减小,但变化趋势并不明显,III区年均ET0为940.2mm,呈极显著下降趋势,速率为1.21mm·a-1(P<0.01)。(2)全区及I-IV区ET0最敏感气象因子均为相对湿度,其敏感系数分别为-1.060、-1.232、-0.784、-1.114和-1.009。(3)全区及I-III区对ET0变化贡献最大的气象因子为风速,IV区为相对湿度。(4)风速的减小是造成粮食主产区全区及I-III区ET0减小的首要原因,风速减小和日照时数缩短是造成IV区ET0减小的主要原因。  相似文献   

17.
衡水市参考作物蒸散量的时空变化特征及其气候成因   总被引:2,自引:0,他引:2  
参考作物蒸散量是计算作物需水量的关键,是进行实时灌溉预报和农田水分管理的主要参数.本文基于1981-2010年衡水市11个站点的地面气象观测资料,利用FAO推荐的Penman-Monteith公式计算参考作物蒸散量(ET0),通过小波分析、突变检验等方法分析其时空变化特征,并采用相关分析法初步探讨其气候成因.结果表明,(1)近30a衡水市年参考作物蒸散量呈显著下降趋势(P<0.05),除2、3月外,其它月份的参考作物蒸散量均有下降趋势;衡水东北部年参考作物蒸散量较大,西南部及安平较小,年参考作物蒸散量较大的地区其下降速率也较大,较小的地区其下降速率也较小.(2)衡水市年参考作物蒸散量存在准6a的主要振荡周期,周期显著;6、8和12月以及全年参考作物蒸散量均发生了气候突变;全区一致型是衡水市年及月参考作物蒸散量变化的最主要的空间模态,且其空间分布均具有很好的收敛性.(3)气温日较差、最高气温、日照时数和相对湿度是影响参考作物蒸散量变化的关键气候因子,其影响程度因季节而异,ET0与气温日较差、最高气温和日照时数呈显著正相关(P<0.05),与相对湿度呈显著负相关(P<0.05),风速变化对ET0影响较小;其中5-9月ET0受日照时数影响最大,受气温日较差、相对湿度和最高气温的影响依次减小.  相似文献   

18.
1961-2014年中国干湿气候时空变化特征及成因分析   总被引:10,自引:2,他引:8  
利用全国701个气象站点1961-2014年逐日地面观测资料,基于降水量和参考作物蒸散量(ET0)计算的湿润指数研究了近54a中国干湿气候时空变化特征,并利用敏感性和贡献率法分析了气候变化背景下主要气象因子对ET0的影响,对干湿气候变化的成因进行了探讨.结果表明:全国气候在3个时间段(时段1:1961-1980;时段2:1981-2000;时段3:2001-2014)中经历了变湿到变干的过程;不同地区干湿状况变化差异很大,干旱趋势主要发生在中国的半干旱半湿润气候区;1961-2014年降水量变化趋势不显著,ET0呈显著下降的趋势,61.6%的站点出现"蒸发悖论"现象.南方大部分地区和新疆的西北部由于降水量增加和ET0减少,气候变湿;西北和西南大部分地区由于年降水量减少和ET0增加,气候呈显著变干的趋势.ET0对相对湿度的变化最敏感,风速的负贡献率是引起ET0变化的主导因子.研究时段内风速和日照时数的减少对ET0的负效应超过温度上升对ET0的增大作用,导致全国ET0总体呈下降趋势.  相似文献   

19.
潜在蒸散(ET0)对水资源评价和气候变化均具有重要意义。利用若尔盖湿地及其周边19个气象站1960—2015年逐日气象资料,根据辐射修正的Penman-Monteith模型计算了湿地潜在蒸散量,采用累积距平、Mann-Kendall检验、Pettitt检验、Theil-Sen趋势度、Hurst指数等方法分析了蒸散变化规律,并对蒸散影响因子进行了主成分分析。结果表明:(1)若尔盖湿地年ET0均值为625.3mm,并以4.89mm/10a的速率显著上升(p<0.01),四季ET0表现为夏季>春季>秋季>冬季。年、秋、冬ET0分别在1968年(p<0.01),1997年(p<0.01),2003年(p<0.1)突变上升,春、夏两季未出现突变。(2)湿地年均ET0呈南部、东部边缘高、西北—东南一线较低的空间分布特征,且变化速率由东北向西南递减,其中西部班玛以北及南部马尔康、黑水之间地区ET0呈缓慢下降趋势。(3)湿地年ET0的Hurst指数在0.56~0.91间,主要呈四周高、中部低的空间分布规律。未来湿地ET0变化趋势以持续性增加为主,面积比例为96.88%。(4)气温上升是引起湿地ET0增加的最主要原因,其次是日照时数的增加和相对湿度的降低。净辐射、风速和降水量的减少引起的ET0减少被气温等其他因素作用所抵消。  相似文献   

20.
西北地区近49年生长季参考作物蒸散量的敏感性分析   总被引:6,自引:0,他引:6  
基于FAO Penman-Monteith公式计算了西北地区126个站点1961-2009年的生长季参考作物蒸散量(ET0)对气温、风速、相对湿度和太阳总辐射的敏感系数,并对敏感系数的时空变化特征进行分析。结果表明:西北地区生长季ET0对太阳总辐射最敏感,其次是气温和相对湿度,对风速的敏感性最低。气象要素分布的不均匀性导致敏感系数的空间差异显著,气温和风速的敏感系数在西风带气候区较大,相对湿度敏感系数在较湿润地带形成高值区,太阳总辐射敏感系数南部明显大于北部。生长季内,各气象因子的敏感系数均存在一定程度的波动,气温和太阳总辐射的敏感系数呈单峰型分布,风速敏感系数呈单谷型分布,相对湿度敏感系数的绝对值持续上升。49a来,太阳总辐射敏感系数显著上升,相对湿度敏感系数明显下降,其趋势系数均通过0.05水平的显著性检验,而气温和风速的敏感系数以波动为主,无明显变化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号