首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
Low molecular weight glutenin subunits (LMW-GS) encoded by the Glu-3 loci are known to contribute to wheat breadmaking quality. However, the specific effect of individual Glu-3 alleles is not well understood due to their complex protein banding patterns in SDS-PAGE and tight linkage with gliadins at the Gli-1 locus. Using DNA markers and a backcross program, we developed a set of nine near isogenic lines (NILs) including different Glu-A3/Gli-A1 or Glu-B3/Gli-B1 alleles in the genetic background of the Argentine variety ProINTA Imperial. The nine NILs and the control were evaluated in three different field trials in Argentina. Significant genotype-by-environment interactions were detected for most quality parameters indicating that the effects of the Glu-3/Gli-1 alleles are modulated by environmental differences. None of the NILs showed differences in total flour protein content, but relative changes in the abundance of particular classes of proteins cannot be ruled out. On average, the Glu-A3f, Glu-B3b, Glu-B3g and Glu-B3iMan alleles were associated with the highest values in gluten strength-related parameters, while Glu-A3e, Glu-B3a and Glu-B3iChu were consistently associated with weak gluten and low quality values. The value of different Glu-3/Gli-1 allele combinations to improve breadmaking quality is discussed.  相似文献   

2.
Increases in the proportion of amylose in the starch of wheat grains result in higher levels of resistant starch, a fermentable dietary fiber associated with human health benefits. The objective of this study was to assess the effect of combined mutations in five STARCH BRANCHING ENZYME II (SBEII) genes on starch composition, grain yield and bread-making quality in two hexaploid wheat varieties. Significantly higher amylose (∼60%) and resistant starch content (10-fold) was detected in the SBEII mutants than in the wild-type controls. Mutant lines showed a significant decrease in total starch (6%), kernel weight (3%) and total grain yield (6%). Effects of the mutations in bread-making quality included increases in grain hardness, starch damage, water absorption and flour protein content; and reductions in flour extraction, farinograph development and stability times, starch viscosity, and loaf volume. Several traits showed significant interactions between genotypes, varieties, and environments, suggesting that some of the negative impacts of the combined SBEII mutations can be ameliorated by adequate selection of genetic background and growing location. The deployment of wheat varieties with increased resistant starch will likely require economic incentives to compensate growers and millers for the significant reductions detected in grain and flour yields.  相似文献   

3.
To provide food and nutrition security for a growing world population, continued improvements in the yield and nutritional quality of agricultural crops will be required. Wheat is an important source of calories, protein and micronutrients and is thus a priority to breed for improvements in these traits. The GRAIN PROTEIN CONTENT-B1 (GPC-B1) gene is a positive regulator of nutrient translocation which increases protein, iron and zinc concentration in the wheat grain. In the ten years since it was cloned, the impacts of GPC-B1 allelic variation on quality and yield traits have been extensively analyzed in diverse genetic backgrounds in field studies spanning forty environments and seven countries. In this review, we compile data from twenty-five studies to summarize the impact of GPC-B1 allelic variation on fifty different traits. Taken together, the results demonstrate that the functional copy of the GPC-B1 gene is associated with consistent positive effects on grain protein, Fe and Zn content with only marginally negative impacts on yield. We conclude that the GPC-B1 gene has the potential to increase nutritional and end use quality in a wide range of modern cultivars and environments and discuss the possibilities for its application in wheat breeding.  相似文献   

4.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

5.
6.
Thirty-seven varieties of a Mediterranean durum wheat collection grown in Tunisia and Spain were analysed for their allelic composition in prolamins, as well as their protein concentration, sodium dodecyl sulphate sedimentation (SDSS) test and mixograph parameters. Genotype was a greater source of variation in all measurements than locality. Uncommon high and low molecular glutenin subunits (HMW-GS and LMW-GS) were found (V and 2•• subunits at Glu-A1, 13 + 16 at Glu-B1, 5* subunit and ax allele at Glu-A3). The rare combinations 2 + 4+14 + 18 and 8 + 9+13 + 16+18 subunits at the Glu-B3 locus were found. Glu-A3ax had a positive influence on SDSS and mixograph parameters. Of all the prolamins, those that have the B-LMW-GS composition aaa (for Glu-A3, Glu-B3 and Glu-B2 loci, respectively), when associated with the Glu-A1c and Glu-B1d gave the best semolina quality. By contrast, semolina quality is poor when this same composition is associated with the Glu-A1c and Glu-B1e and even poorer when associated with the Glu-A1c and Glu-B1f. In addition, the cultivars with B-LMW-GS allelic composition aab (for Glu-A3, Glu-B3 and Glu-B2 loci, respectively), when associated with the Glu-A1c and Glu-B1d, gave high quality, whereas when associated with the Glu-A1c and Glu-B1e or with Glu-A1o and Glu-B1f, the quality was very poor.  相似文献   

7.
Selected Lactobacillus plantarum DSM 32248 and Lactobacillus rossiae DSM 32249, isolated and identified from wheat germ, were used to ferment a milling by-products mixture. Lactic acid bacteria metabolisms improved the functional properties of wheat bran and germ, which are considered important sources of functional compounds. Wheat breads were manufactured using 15% (w/w) of fermented (and unfermented) milling by-products, and compared to baker’s yeast wheat bread manufactured without the addition of milling by-products. The use of the fermented ingredient improved the biochemical, functional, nutritional, textural, and sensory features of wheat bread, showing better performances compared to the solely use of wheat flour. Protein digestibility, nutritional indexes, and the rate of starch hydrolysis markedly improved using fermented milling by-products as ingredient. Enriched bread was also characterized by high content of dietary fibre and low glycaemic index determined in vivo.This study exploited the potential of fermented milling by products as functional ingredient. According to the Regulations the bread made under this study conditions can be defined as “high fibre content” and “low glycaemic index”. A number of advantages encouraged the manufacture of novel and healthy and functional leavened baked goods.  相似文献   

8.
The variations of the amounts of individual high molecular weight glutenin subunits (HMW-GS), of the ratios HMW-GSy to HMW-GSx and HMW-GS to low molecular weight glutenin subunits (LMW-GS) and of protein content were evaluated for eight durum wheat cultivars in two regions using four fertilizer combinations during two successive years. All measured parameters showed significant variation with genotypes (G), environments (E) and fertilizers (F). The interaction E × G × F was highly significant for glutenin amount variation. Amongst cultivars possessing HMW-GS 20, landraces seem to better value the N-fertilizer use for the accumulation of HMW-GSy than high yielding cultivars. Both HMW-GSy to HMW-GSx and HMW-GS to LMW-GS ratios were found to be positively correlated (p < 0.05) with total protein content.  相似文献   

9.
High quality requirements are set on durum wheat (Triticum durum) from semolina mills and pasta producers. For the production of semolina and pasta with good cooking quality, high grain protein content and vitreosity is required. The dependency of vitreosity on protein content as well as its stability under the influence of humidity was not well investigated up to now. We (1) compared two methods to determine vitreosity, (2) investigated the relationship between vitreosity and protein content, (3) developed a method to analyze vitreosity under humidity, and (4) examined the relationship between protein content and agronomical as well as quality traits in durum wheat. The results showed that the formation of vitreous kernels greatly depends on the protein content. To evaluate the stability of vitreosity under the influence of humidity a new method was elaborated and employed to assess the durum germplasm under study. This revealed that vitreosity of a durum wheat variety depends on the potential to form vitreous kernels but also to maintain this vitreosity under the influence of humidity. Our results further show that protein content is a central trait in durum wheat that strongly influences important traits like grain yield, vitreosity, and b-value.  相似文献   

10.
Two locally grown wheat species named Triticum aestivum L. and Triticum vulgare L. were studied for their phytochemical contents and their biological activities. T. vulgare presented the highest amounts of total phenolic compounds and ascorbic acids while T. aestivum was found to be rich in flavonoids, flavonols, proanthocynidins and ortho-diphenols. Eleven carotenoids were identified in T. vulgare where the most dominant compounds belongs to α-carotene and its derivatives while T. aestivum presented seven carotenoids. This later presented the highest DPPH radical scavenging activity and exhibited a strong reducing power in FRAP, phosphomolybdenum, hydrogen peroxide and reducing power assays. T. vulgare extract was found to be effective in metal chelating power and in scavenging nitric oxide radical. No significant differences in scavenging ABTS and hydroxyl radicals were noted between the two wheat species. T. aestivum inhibited xanthine oxidase and ROS production and showed the best cytotoxic effect while T. vulgare extract exhibited anti-calpain activity.  相似文献   

11.
The purpose of the research was to identify the phenolic and flavonoid compounds of seven different traditional pigmented whole rice cultivars grown in the temperate regions of Kashmir so as to study their relationship with in vitro antioxidant capacities. The completely pigmented rice cultivars were found to have higher phenolic, flavonoid, anthocyanin contents and exhibited higher antioxidant capacities than the light colored and sparely colored rice cultivars. A total of 40 compounds had been identified in the analyzed rice cultivars that were found to be distributed in 6 major categories with 6-phenolics, 6-flavonoids, 11-hydroxycinnamic acid derivatives, 7-hydroxybenzoic acid derivatives, 3-anthocyanins and 7-flavonoid glucosides of different flavonoid compounds. Among the free and bound fractions for each cultivars the light and sparsely colored depicted higher content of phenolics and in vitro antioxidant properties in bound faction, while the completely pigmented cultivars showed higher antioxidant properties in free fractions. The anthocyanins quercetin-3-O-galactoside, cyanidin-3-O-rutinoside and pelargonidin-3-O-diglucoside had been identified by LC-MS existing in the free fractions of the analyzed rice cultivars whereas, the free fraction of acetone + H2O possessed higher percentage of phenolic compounds as compared to methanolic extracts and bound fractions. The black colored cultivars possessed higher DPPH scavenging activity and lipid peroxidation inhibition.  相似文献   

12.
Glutamine synthetase (GS) plays a central role in plant nitrogen (N) metabolism, which improves crops grain protein content. A pot experiment in field condition was carried out to evaluate GS expression and activity, and grain protein content in high (Wanmai16) and low grain protein (Loumai24) wheat cultivars under two N levels (0.05 and 0.15 g N kg−1 soil). High nitrogen (HN) resulted in significant increases in GS1 and GS2 expression at 10 days after anthesis (DAA), and higher GS activity during the entire grain filling stage. HN also significantly increased yield, grain protein content and protein fraction (except for glutenin of Luomai24) in two wheat cultivars, which indicated that it increased grain yield and protein content by improving nitrogen metabolism. Wanmai16 showed higher grain protein content, gliadin and glutenin content, and had higher expression level of GS2 both in flag leaves and grains at early grain filling stage. However, Luomai24 had greater yield and higher expression level of GS1. The difference expression of GS2 and GS1 genes indicates they had various contributions to the accumulation of protein and starch in wheat grains, respectively. The results suggest that GS2 would be serving as a potential breeding target for improving wheat quality.  相似文献   

13.
Recently, the immune stimulation properties of cereal arabinoxylans (AX) have been reported. The aims of this study were to identify the molecular features and potential immune stimulation activities of AX and enzymatic modified arabinoxylan (AXE) from the pentosan fraction of wheat flour.The results of molecular characterization of AX and AXE show that AXE contains a larger portion (85.7%) of low Mw arabinoxylans (≤25 kDa) and has a higher degree of branch substitution (0.81 ± 0.01) compared to AX (49.5% and 0.62 ± 0.02). In in vitro testing, the ability of AX and AXE to stimulate immune cells, as measured by NO2 production by U937 cells and IL-8 secretion by Caco-2 cells were found to be dose–dependent in the range tested (100–5000 μg/mL p ≤ 0.05). AXE showed a greater activity at each concentration (100–5000 μg/mML) than AX (p ≤ 0.05).In conclusion, the greater immune stimulating activity of AXE may be associated with its low Mw (≤25 kDa) and a higher degree of branch substitution (0.81 ± 0.01).  相似文献   

14.
Septoria tritici blotch (STB), caused by Zymoseptoria tritici is a relevant foliar wheat disease worldwide. Several reports show the importance of STB on grain yield, their components and grain protein while little is known about its effect on the rheological properties of the wheat flour. The scarce literature found, only mentions the effect of the complex of foliar diseases on wheat quality, without individualizing the effect of the different pathogens separately. This study analyze the influence of increasing doses of inoculum of Zymoseptoria tritici, on the bread making quality of ten Argentinean wheat cultivars and its possible variation according to their quality group. The increase of inoculum concentration augmented the area under disease progress curve, decreased green flag leaf area duration and green leaf area duration. Cultivars K. Flecha and B.75 Aniversario had the lowest green flag leaf area duration causing higher reduction in grain filling period and higher reductions in P, indicating a lower gliadin/glutenin ratio. STB decreased P/L and E while L, W, D, SV and bread volume increased. Cultivars differed in rheological parameters according to their quality group. Gluten/protein relationship was significant in quality group 1 and non-significant in cultivars belonging to quality group 2 and 3.  相似文献   

15.
The extensigraph is particularly useful in characterizing dough viscoelastic properties; however, testing throughput for standard method is low due to the prerequisite for farinograph water absorption, long dough resting and milling to prepare large amounts of flour. Therefore, a rapid extensigraph method was developed that reduced sample size (165 g wheat) for milling and more than tripled throughput. Wheat is milled in Quadrumat Junior mill with a modified sieving system. The resulting flour (100 g) was mixed with a pin mixer at constant water absorption to allow the evaluation of wheat genotypes at the absorption level they are expected to perform. Dough was subsequently stretched by an extensigraph after 15 min of floor time and 30 min resting. Strong correlations for extensigram Rmax (r > 0.93), extensibility (r > 0.64) and area (r > 0.88) were found for the proposed method compared to the standard method. Mixing parameters (time and energy) obtained during dough preparation provided further information about dough strength and mixing requirement. By significantly reducing sample size requirement and increasing testing throughput, this rapid extensigraph method can be widely adopted in milling and baking industry and meets the need for a fast evaluation of dough strength in breeding trials.  相似文献   

16.
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the devastating diseases of small grain crops, including barley and wheat. Breeding for resistance is one of the best and ecofriendly strategies to manage the FHB. However, the existing methods used for screening genotypes, both under field and greenhouse conditions, often resulted in high experimental error, leading to inconsistent ranking of genotypes over years. In the postgenomic era, precise assessment of resistance is crucial to identify candidate genes. Here, we report a pathogen inoculation procedure and a real-time quantitative polymerase chain reaction (qPCR) based protocol for the quantification and discrimination of quantitative resistance among barley and wheat genotypes to FHB. Using Fusarium specific primer pair Tri6_10, for the trichothecene biosynthetic cluster (Tri6) gene, we successfully quantified the relative fungal biomass in both spikelets and rachis. A qPCR of spikelets and rachis collected on 6 dpi, from inoculated three alternate spikelet regions, discriminated resistance with less experimental error than those based on the proportion of spikelets diseased (PSD) at 9 dpi. This method can be applied for medium to high-throughput barley and wheat breeding programmes to discriminate quantitative resistance among genotypes against FHB.  相似文献   

17.
Fusarium wilt is a disease that restricts carnation (Dianthus caryophyllus L.) yield worldwide. Efficacies in reducing the Fusarium wilt of carnation (FWC), of various types of organic amendments (fresh or pelletized poultry manure, pelletized Brassica carinata and olive residue compost) combined with soil solarization, were compared in two biennial field trials conducted in a greenhouse with a history of carnation monoculture over 8 years. Soil treatments combining organic amendments and soil solarization significantly reduced disease incidence (86–99%) and increased the number of commercial carnation stems by 5–9 times compared to non-treated plots. Twenty-one Fusarium spp. isolates, with different colony morphologies were recovered from soil samples taken in the greenhouse, before the application of treatments in June 2013. Nineteen of them were morphological and molecularly characterized. Additionally, two pathogenicity tests with 17 isolates recovered from greenhouse soils and two isolates recovered from organic amendments were performed. Fusarium species associated with carnation cultivation were identified as Fusarium oxysporum (43%), Fusarium proliferatum (24%), and Fusarium solani (33%). The phylogenetic analysis of the translation elongation factor 1 alpha (EF-1α) region distinguished highly aggressive isolates of F. oxysporum f. sp. dianthi, from low aggressive isolates. The pathogenicity tests showed that FWC has a complex etiology, with several Fusarium spp. identified as causal agents. F. proliferatum and F. solani are associated with carnation wilt for the first time in Spain.  相似文献   

18.
Total alkylresorcinol (AR) content and homologue composition were assessed in whole grain flours of 15 varieties each of bread wheat, durum, spelt, emmer, and einkorn grown in four different environments. Bread wheat (761 ± 92 μg/g DM) and spelt (743 ± 57 μg/g) belonging to the hexaploid species showed higher AR concentrations than the tetraploid durum (654 ± 48 μg/g, p < 0.05), while the concentrations found in the diploid einkorn (737 ± 91 μg/g) and the tetraploid emmer (697 ± 94 μg/g) did not significantly differ from the other species. The AR content showed a remarkable heritability and, thus, seemed to be mainly determined by genetic factors. If ARs were assumed to be deposited within a specific AR-rich layer of the kernel, AR levels of all varieties would easily surpass their minimal inhibitory concentrations against fungal pathogens within this barrier layer. Although the AR carrying a C21:0 side chain was the main homologue in all species, the levels of all AR homologues and their relative composition significantly differed between hexaploid (bread wheat and spelt), tetraploid (durum and emmer) and diploid (einkorn) species. Consequently, a clear-cut differentiation of Triticum species and derived whole grain flours according to their degrees of ploidy was established based on concentrations of saturated C17-, C19-, C21-, C23-, and C25-substituted ARs.  相似文献   

19.
Wheat flour replacement from 0 to 40% by single tef flours from three Ethiopian varieties DZ-01-99 (brown grain tef), DZ-Cr-37 (white grain tef) and DZ-Cr-387 (Quncho, white grain tef) yielded a technologically viable ciabatta type composite bread with acceptable sensory properties and enhanced nutritional value, as compared to 100% refined wheat flour. Incorporation of tef flour from 30% to 40% imparted discreet negative effects in terms of decreased loaf volume and crumb resilience, and increase of crumb hardness in brown tef blended breads. Increment of crumb hardness on aging was in general much lower in tef blended breads compared to wheat bread counterparts, revealing slower firming kinetics, especially for brown tef blended breads. Blended breads with 40% white tef exhibited similar extent and variable rate of retrogradation kinetics along storage, while brown tef-blended breads retrograded slower but in higher extent than control wheat flour breads. Breads that contains 40% tef grain flour were found to contain five folds (DZ-01-99, DZ-Cr-387) to 10 folds (DZ-Cr-37) Fe, three folds Mn, twice Cu, Zn and Mg, and 1.5 times Ca, K, and P contents as compared to the contents found in 100% refined wheat grain flour breads. In addition, suitable dietary trends for lower rapidly digestible starch and starch digestion rate index were met from tef grain flour fortified breads.  相似文献   

20.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号