首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The development of root-knot nematode resistant vegetable varieties has provided an alternative control method to chemical and crop rotation. The term resistance is discussed. Work on 18 vegetables is reviewed.

Thirty tomato strains resistant to one or more Meloidogyne sp. are listed, there was a marked absence of reports on varieties resistant to M. hapla. Several workers have observed resistance in some cultivated and wild Solanum spp. The resistance could be increased by further sib and backcrossing experiments. Eggplant varieties tested for resistance to Meloidogyne spp. showed varying degrees of resistance in about 14 varieties. Further backcrossing studies between Solanum melongena and S. sysimbrifolium could provide useful results. Tests on resistance to nematodes in pepper have revealed many resistant varieties. All the pepper varieties tested were susceptible to M. hapla. The nature of resistance in sweet potato has been studied. Some varieties of Cucumis spp. have been found to be resistant to Meloidogyne spp. Since no resistance was found in C. melo, these wild species could be used in the development of a commercial muskmelon variety. Tests with 83 watermelon varieties indicated that all varieties were resistant to M. hapla. It was difficult to find resistance to Meloidogyne spp. in Cucurbita, but tests on wild species have yet to be carried out. Work on lima bean, snap bean, pea, soyabean, cowpea and broadbean has produced a limited number of resistant vegetable varieties, which are described. Since resistance patterns in plants may change under different environmental or biological conditions, it is essential to test varieties under these conditions for a long period before they are released for commercial cultivation. The advantages of using resistant vegetable varieties, as compared with other methods of pest control, are outlined.  相似文献   

2.
The response of four Mi-resistance gene tomato rootstocks to seven populations of Meloidogyne was determined in pot tests conducted in a glasshouse. Rootstocks PG76 (Solanum lycopersicum × Solanum sp.) and Brigeor (S. lycopersicum × S. habrochaites) and resistant cv. Monika (S. lycopersicum) were assessed against one population of M. arenaria, three of M. incognita, and three of M. javanica. Rootstocks Beaufort and Maxifort were assessed against one population of M. arenaria, two of M. incognita and two of M. javanica. Rootstock PG76 was highly resistant (reproduction index <10%) to all the populations, whereas rootstock Brigeor and cv. Monika were highly to moderate resistant. Rootstocks Beaufort and Maxifort showed reduced resistance or inability to suppress nematode reproduction, and their responses varied according to the population tested. Beaufort and Maxifort were susceptible to the two populations of M. javanica as Maxifort was to one of M. incognita. The reproduction index of the nematode was higher (P < 0.05) on Maxifort than Beaufort for all root-knot nematode populations.  相似文献   

3.
Pot experiments were carried out to characterize the response of two Cucumis metuliferus accessions (BGV11135 and BGV10762) against Mi1.2 gene (a)virulent Meloidogyne arenaria, M. incognita and M. javanica isolates and to determine the compatibility and the effect on physicochemical properties of fruit melons. In addition, histopathological studies were conducted. One week after transplanting, plants were inoculated with one J2 cm?3 of sterilized sand (200 cm3 pots) and maintained in a growth chamber at 25 °C for 40 days. The susceptible cucumber cv. Dasher II or melon cv. Paloma were included for comparison. The number of egg masses and number of eggs per plant were assessed, and the reproduction index (RI) was calculated as the percentage of eggs produced on the C. metuliferus accessions compared to those produced on the susceptible cultivars. The compatibility and fruit quality were assessed by grafting three scions, two of Charentais type and one of type piel de sapo, under commercial greenhouse conditions. The resistance level of both C. metuliferus accessions ranged from highly resistant (RI < 1%) to resistant (1% ≤ RI ≤ 10%) irrespective of Meloidogyne isolates. Melon plants grafted onto C. metuliferus accession BGV11135 grew as self‐grafted plants without negatively impacting fruit quality traits. Giant cells induced by Meloidogyne spp. on C. metuliferus were in general poorly developed compared to those on cucumber. Furthermore, necrotic areas surrounding the nematode were observed. Cucumis metuliferus accession BGV11135 could be a promising melon rootstock to manage Meloidogyne spp., irrespective of their Mi1.2 (a)virulence, without melon fruit quality reduction.  相似文献   

4.
Plant extracts have been used against nematodes mainly in the third-world countries. The possibility of using leaves of olive trees for reducing populations of nematodes (Meloidogyne spp.) in the soil was investigated in the present work. The root-knot incidence in tomato roots was reduced as well as the presence of nematodes in the soil. The methanol extract of the leaves inhibited hatching of the eggs almost completely.  相似文献   

5.
Resistant tomato cultivars are an important tool to control Meloidogyne spp., which cause the highest yield losses attributed to plant‐parasitic nematodes. However, the repeated cultivation of Mi resistant cultivars can select virulent populations. In the present study, the susceptible tomato cv. Durinta and the resistant cv. Monika were cultivated from March to July in a plastic greenhouse for 3 years to determine the maximum multiplication rate, maximum nematode density, equilibrium density, relative susceptibility and population growth rate of M. incognita; these were used as proxy indicators of virulence and yield losses. The values of population dynamics and growth rate on the resistant tomato increased year by year and were higher when it was repeatedly cultivated in the same plot compared to when it was alternated with the susceptible cultivar and the level of resistance decreased from very to moderately resistant. The relationship between the nematode density at transplanting (Pi) and the relative yield of tomato fitted to the Seinhorst damage model for susceptible, but not resistant, cultivars. The tolerance limit and the relative minimum yield were 2–4 J2 per 250 cm3 of soil and 0.44–0.48, respectively. The tomato yield did not differ between cultivars at low Pi, but it did at higher Pi values, at which the resistant yielded 50% more than the susceptible. This study demonstrates the utility of population dynamics parameters for the early detection of selection for virulence in Meloidogyne spp., and that three consecutive years were not sufficient to select for a completely virulent population.  相似文献   

6.
This research examined the variation in the response of eight commercial wheat cultivars to Microdochium nivale isolates using both in vivo FHB tests (AUDPC and RHW measurements) and in vitro detached leaf assays (LGR). Irrespective of fungal variety, the two Italian cvs Fortore and Norba exhibited the greatest amount of visual disease symptoms (mean AUDPC=2.2 and 2.3, respectively), being significantly more susceptible than the other six cultivars (AUDPC 1.24) (P < 0.05). Irrespective of fungal variety, the Italian cv. Norba and the Irish cv. Falstaff were more susceptible than the other cultivars (except Fatima 2) in terms of RHW (P < 0.05), while the cvs Fortore, GK Othalom and Consort were more resistant than the other five cultivars (P < 0.05). In the detached leaf assay, the Hungarian cv. GK Othalom and the Italian cv. Norba were more susceptible (mean LGR=0.79 and 0.81 mm day–1, respectively) to M. nivalethan the other six cultivars (mean LGR=0.51–0.72) (P < 0.05). Analysis of the relationship between head and leaf reaction to M. nivaleinfection revealed no significant correlation.  相似文献   

7.
Damage caused by nematodes is one of the limiting factors in crop production. Traditional nematode management is based on the use of crop rotations, resistant cultivars, nematicides, or combinations of these methods. For a crop like peanut (Arachis hypogaea), cultivars resistant to root-knot nematodes are not available. There are soybean (Glycine max) cultivars resistant to some of the species of root-knot nematodes (Meloidogyne spp.); however, most fields have nematode infestations composed of mixtures of species. Research at Auburn has shown that tropical crops can be used effectively in rotation to manage nematode problems. Rotations with American jointvetch (Aeschynomene americana), castor (Ricinus communis), hairy indigo (Indigofera hirsuta), partridge pea (Cassia fasciculata), sesame (Sesamum indicum), and velvetbean (Mucuna deeringiana) have resulted in good nematode control and increased yields of peanut and soybean. Some crops (castor, sesame) are considered ‘active’ in that they produce compounds that are nematicidal, whereas others (e.g. corn, sorghum) are simply non-host, that is, ‘passive’.  相似文献   

8.
Root-knot nematodes (Meloidogyne spp.; RKN) are one of the most important pathogens of vegetables in Turkey. Assessing the existing virulent RKN populations is of importance for pathogen mapping in the west Mediterranean region of Turkey. Therefore, 95 populations of RKN were collected from different protected vegetable-growing locations in the region. Pure cultures were obtained and identified by means of species-specific primers. Virulence of the populations against the Mi-1 gene conferring resistance to Meloidogyne incognita, M. javanica and M. arenaria was determined according to their egg masses and gall rating on resistant and susceptible tomato varieties. Results showed that seven populations of M. incognita and six populations of M. javanica were able to overcome the resistance controlled by the Mi-1 gene. The frequency of virulent populations of M. incognita and M. javanica collected from different protected-grown vegetables was 11.7% and 21.4%, respectively. To our knowledge, this is the first report of populations of RKN virulent to the Mi-1 gene in Turkey.  相似文献   

9.
Commercial vineyards in southern Spain were surveyed and sampled during October to December 2004 to determine the extent to which common weeds present were suitable hosts of root-knot nematodes infesting soils of those vineyards. Seven weed species commonly growing in grapevine soils in southern Spain were found infected by either Meloidogyne incognita or M. javanica: Amaranthus retroflexus (redroot pigweed), Anchusa azurea (ox-tongue), Chenopodium album (goosefoot), Erodium moschatum (musk stork’s bill), Malva rotundifolia (low mallow), Sinapis alba (white mustard), and Solanum nigrum (black nightshade). The host suitability of the weeds to root-knot nematodes was evaluated on the basis of root galling severity and nematode population densities in soil and roots. Also, the host–parasite relationship in these naturally Meloidogyne-infected weeds was examined. All the weed species in the study were considered suitable hosts for M. incognita and M. javanica because: (a) high Meloidogyne spp. populations occurred in roots and surrounding soil of the weed species; (b) the severity of root galling was high, and (c) well-established permanent feeding sites were observed in the histopathological studies of infected root tissues. In addition, this study presents the first reports of S. alba and A. azurea as hosts for M. incognita, and of E. moschatum as a new host for M. javanica, thus increasing the list of reported weed hosts for Meloidogyne spp. These results indicate that noticeable population densities of M. incognita and M. javanica can be maintained or increased in these weeds, at population levels higher than those previously reported for the same nematodes infecting grapevine roots. The weeds infesting vineyards thus represent an important source of inoculum of Meloidogyne spp., and furthermore may act as reservoirs of these nematodes which can be disseminated within or among vineyards by agricultural operations.  相似文献   

10.
Root-knot nematodes (Meloidogyne spp.) are a major problem facing crop production globally including potatoes. During the 2011/2012 potato growing season, root-knot nematode infected potato tubers were obtained from different potato growing regions in South Africa for identification of Meloidogyne spp. Using the intergenic region of the ribosomal DNA (IGS-rDNA) together with the region between the cytochrome oxidase small subunit II (COII) and the 16S rRNA gene in the mitochondrial DNA (mtDNA), five of the 78 composite samples received produced amplicon sizes of 705 bp for COII and 780 bp for IGS typical of M. enterolobii. These five samples were from the KwaZulu-Natal potato producing region. Nucleotide sequencing and phylogenetic analysis of the COII and IGS fragment showed that the five Meloidogyne populations were 100 % similar and they clustered closely with those of M. enterolobii in the GenBank database. The high damage potential of resistance-breaking populations of Meloidogyne species is a threat to profitable potato production and will require effective pest management programmes to be put in place.  相似文献   

11.
Abstract

Brassicaceae plants have the potential as part of an integrated approach to replace fumigant nematicides, providing the biofumigation response following their incorporation is not offset by reproduction of plant-parasitic nematodes on their roots. Forty-three Brassicaceae cultivars were screened in a pot trial for their ability to reduce reproduction of three root-knot nematode isolates from north Queensland, Australia: M. arenaria (NQ1), M. javanica (NQ2) and M. arenaria race 2 (NQ5/7). No cultivar was found to consistently reduce nematode reproduction relative to forage sorghum, the current industry standard, although a commercial fodder radish (Raphanus sativus) and a white mustard (Sinapis alba) line were consistently as resistant to the formation of galls as forage sorghum. A second pot trial screened five commercially available Brassicaceae cultivars, selected for their biofumigation potential, for resistance to two nematode species, M. javanica (NQ2) and M. arenaria (NQ5/7). The fodder radish cv. Weedcheck, was found to be as resistant as forage sorghum to nematode reproduction. A multivariate cluster analysis using the resistance measurements, gall index, nematode number per g of root and multiplication for two nematode species (NQ2 and NQ5/7) confirmed the similarity in resistance between the radish cultivar and forage sorghum. A field trial confirmed the resistance of the fodder radish cv. Weedcheck, with a similar reduction in the number of Meloidogyne spp. juveniles recovered from the roots 8 weeks after planting. The use of fodder radish cultivars as biofumigation crops to manage root-knot nematodes in tropical vegetable production systems deserves further investigation.  相似文献   

12.
Root-knot nematodes (Meloidogyne spp.) threaten the livelihood of millions of farmers producing coffee worldwide. The use of resistant plants either as cultivars or rootstocks appears to be the single most effective method of control. A screening method was developed to evaluate large populations of plants for resistance to root-knot nematodes. Two coffee cultivars, one susceptible and the other resistant to Meloidogyne paranaensis, were grown under controlled conditions in two substrates: a commercial sieved potting compost and an inert substrate containing sand with a water-absorbent synthetic polymer. Plant growth and development and nematode multiplication were compared for two inoculation dates (2 and 8 weeks after planting) and two evaluation dates (eight and 13 weeks after inoculation). Root growth, but not nematode multiplication, was influenced by the choice of substrate. Evaluation of the differences in root weight and nematode numbers between the different cultivars, substrates and dates of inoculation suggested that an optimal condition could be defined. The best discrimination between susceptible and resistant plants was found in the experiment where inoculation occurred at 2 weeks after planting and evaluation occurred at 8 weeks after inoculation. Because the total duration of this experiment was only 3 months, high-throughput evaluation was possible, opening up new possibilities for screening large germplasm collections and studying the genetic control of root-knot nematode resistance in coffee.  相似文献   

13.
A molecular‐based assay was employed to analyse and accurately identify various root‐knot nematodes (Meloidogyne spp.) parasitizing potatoes (Solanum tuberosum) in South Africa. Using the intergenic region (IGS) and the 28S D2–D3 expansion segments within the ribosomal DNA (rDNA), together with the region between the cytochrome oxidase subunit II (COII) and the 16S rRNA gene of the mtDNA, 78 composite potato tubers collected from seven major potato growing provinces were analysed and all Meloidogyne species present were identified. During this study, Mincognita, M. arenaria, M. javanica, M. hapla, M. chitwoodi and M. enterolobii were identified. The three tropical species M. javanica, M. incognita and M. arenaria were identified as the most prevalent species, occurring in almost every region sampled. Meloidogyne hapla and M. enterolobii occurred in Mpumalanga and KwaZulu‐Natal, respectively, while M. chitwoodi was isolated from two growers located within the Free State. Results presented here form part of the first comprehensive surveillance study of root‐knot nematodes to be carried out on potatoes in South Africa using a molecular‐based approach. The three genes were able to distinguish various Meloidogyne populations from one another, providing a reliable and robust method for future use in diagnostics within the potato industry for these phytoparasites.  相似文献   

14.
Several experiments were carried out to assess the performance of commercial Solanum torvum cultivars against the root knot nematodes Meloidogyne incognita and M. javanica in Spain. The response of S. torvum rootstock cultivars Brutus, Espina, Salutamu and Torpedo against M. incognita and Mi-1.2 (a)virulent M. javanica isolates was determined in pot experiments, and of ‘Brutus’ to an N-virulent isolate of M. incognita, compared with that of the eggplant S. melongena ‘Cristal’. The relationship between the initial and final population densities of M. javanica on ungrafted and grafted ‘Cristal’ onto the S. torvum ‘Brutus’ was assessed, together with the effect on dry shoot biomass. Finally, the population growth rate and the resistance level of the four S. torvum cultivars against M. incognita was assessed under plastic greenhouse conditions in two cropping seasons. All S. torvum rootstocks responded as resistant to the M. incognita isolates and from highly resistant to susceptible against M. javanica isolates. The maximum multiplication rates of M. javanica on the ungrafted or grafted eggplant were 270 and 49, respectively, and the equilibrium densities were 1318 and 2056 eggs and J2 per 100 cm3 soil, respectively. The tolerance of the ungrafted eggplant was 10.9 J2 per 100 cm3 soil, and the minimum relative dry shoot biomass was 0.76. The population growth rate of M. incognita on eggplant cv. Cristal differed from that of the S. torvum cultivars in both cropping seasons. These results suggest that S. torvum is a valuable rootstock for managing the two Meloidogyne species irrespective of the (a)virulence status.  相似文献   

15.
Meloidogyne species pose a significant threat to crop production in Africa due to the losses they cause in a wide range of agricultural crops. The direct and indirect damage caused by various Meloidogyne species results in delayed maturity, toppling, reduced yields and quality of crop produce, high costs of production and therefore loss of income. In addition, emergence of resistance‐breaking Meloidogyne species has partly rendered various pest management programmes already in place ineffective, therefore putting food security of the continent at risk. It is likely that more losses may be experienced in the future due to the on‐going withdrawal of nematicides. To adequately address the threat of Meloidogyne species in Africa, an accurate assessment and understanding of the species present, genetic diversity, population structure, parasitism mechanisms and how each of these factors contribute to the overall threat posed by Meloidogyne species is important. Thus, the ability to accurately characterize and identify Meloidogyne species is crucial if the threat of Meloidogyne species to crop production in Africa is to be effectively tackled. This review discusses the use of traditional versus molecular‐based identification methods of Meloidogyne species and how accurate identification using a polyphasic approach can negate the eminent threat of root knot nematodes in crop production. The potential threat to Africa posed by highly damaging and resistance‐breaking populations of ‘emerging’ Meloidogyne species is also examined.  相似文献   

16.
The reaction of six Musa genotypes to root-parasitic nematodes was evaluated under field conditions, together with the horizontal, and vertical distributions of the neomatodes within the soil profile. The numbers of Radopholus similis, Helicotylenchus spp., Meloidogyne spp. and of all nematodes in the excavated soil quadrant varied with Musa genotype. All genotypes were very susceptible to at least one nematode. Yangambi km5, Pisang Jari Buaya and FHIA-23 supported the lowest number of R. similis and Pisang Jari Buaya, the lowest number of Helicotylenchus spp. These three cultivars supported high numbers of Meloidogyne spp. Furthermore, FHIA-23 supported high numbers of Helicotylenchus spp. The horizontal and vertical distributions of R. similis in the root system of Valery, Gros Michel and FHIA-18 were very similar. By constrast, the distributions of Helicotylenchus spp., Meloidogyne spp. and the number of all nematodes varied slightly among the genotypes. Because Musa genotypes susceptible to a particular nematode showed a similar horizontal and vertical nematode distribution with populations concentrated in the vicinity of the plant base (0–30 cm horizontal distance and 30 cm depth), sampling at this site would be sufficient for the identification of the Musa plant reaction.  相似文献   

17.
Interactions between Barley yellow dwarf virus (BYDV) and Fusarium species causing Fusarium head blight (FHB) in winter wheat cvs Agent (susceptible to FHB) and Petrus (moderately resistant to FHB) were studied over three years (2001–2003) in outdoor pot experiments. FHB developed more rapidly in cv. Agent than in cv. Petrus. The spread of FHB was greater in BYDV-infected plants than in BYDV-free plants. Thousand grain weight (TGW) was reduced more in Fusarium-infected heads of cv. Agent than in cv. Petrus. A highly significant negative correlation was found between disease index and TGW in cv. Agent (r = −0.916), while in cv. Petrus the correlation was less significant (r = −0.765). Virus infection reduced TGW in cv. Petrus more than in cv. Agent. In plants with both infections, TGW reductions in cv. Petrus corresponded to those of BYDV infection, and in cv. Agent TGW was more diminished than in BYDV infection. Effects of different treatments determined over three years on ergosterol contents in grain were generally similar to effects on disease indices. Grain weight per ear and ear weight of the different treatments of both cultivars largely corresponded with the TGW results. Deoxynivalenol (DON) content in grain of cv. Agent infected with Fusarium spp. was 11–25 times higher compared to the corresponding treatments in cv. Petrus. The DON content in grain of plants of the two cultivars infected with both pathogens was higher than that of plants infected only with Fusarium over the three years.  相似文献   

18.
The eggplant Solanum melongena cv. Cristal, either ungrafted or grafted onto the Solanum torvum rootstock cv. Brutus, was cultivated for two consecutive years in the same plots in a plastic greenhouse to assess the level of resistance to Meloidogyne incognita and crop yield. At the end of the second crop, the putative selection for virulence of the nematode subpopulations coming from infected ungrafted and grafted eggplant was assessed in the eggplant and in S. torvum in a pot experiment. Nematode population densities at transplantation in 2017 ranged from 2 to 378 per 100 cm3 of soil and did not differ between ungrafted and grafted eggplant. At the end of each crop, a higher galling index and number of nematodes in soil and in roots was registered in ungrafted compared to grafted eggplant. The grafted eggplant was categorized as resistant in 2017 and as highly resistant in 2018. Eggplant yield did not differ irrespective of grafting in 2017 after being cultivated for 135 days, but it differed after 251 days of cultivation in 2018. In the pot experiment, S. torvum was categorized as resistant to both M. incognita subpopulations. However, the M. incognita subpopulation obtained from roots of S. torvum produced 49.4% fewer egg masses and 56% fewer eggs per plant in the eggplant than the nematode subpopulation obtained from roots of the eggplant cv. Cristal. The results of this study revealed that the infective and reproductive fitness of the nematode decreased without having been selected for virulence.  相似文献   

19.
The reproduction of a Meloidogyne hispanica isolate from Portugal was evaluated in 63 plant species/cultivars, in pot assays at 25?±?2.0°C, on the basis of root gall index (GI) and reproduction factor (Rf?=?final/initial egg density) at 60 days after inoculation. Cultivars of aubergine, bean, beetroot, broccoli, carnation, corn, cucumber, French garlic, lettuce, melon, onion, parsley, pea, potato, spinach, and tobacco and two of cabbage were susceptible (3?≤?GI?≤?5; 1.15?≤?Rf?≤?262.86). Cabbage cv. Bacalan, cauliflower cv. Temporão and pepper cv. Zafiro R2 were hypersusceptible or poor hosts (Rf??2) and pepper cvs. Aurelio and Solero were resistant (0.0?≤?GI?≤?0.4; 0.00?≤?Rf?≤?0.03). The response of the pepper cultivars and the Mi-1 resistant tomato cv. Rossol was also conducted in pots using two inoculum levels and four temperatures, three growth chamber (25?±?2.7°C, 29.3?±?1.8°C and 33.6?±?1.2°C) and one outdoors (24.4?±?8.2°C). At 24.4?±?8.2°C and 25?±?2.7°C, the reproduction on the resistant tomato was significantly lower compared to the susceptible cv. Easypeel. At all temperatures, resistance was evident for the pepper cultivars, despite the fact they were not found to contain any of the Me1, Me3, Me7 and N genes. The eggs obtained on cv. Aurelio at 33.6?±?1.2°C were used to get a selected resistance breaking isolate of M. hispanica that was able to reproduce on the three pepper cultivars. Our results suggest that the initial M. hispanica isolate is a mixture of virulent and avirulent individuals. The pepper cultivars tested, have potential to reduce M. hispanica populations in agro-ecosystems under certain conditions, but they should be used as a part of an integrated management strategy in order to prevent the development of virulent populations.  相似文献   

20.
The major nematode pests of cultivated plants in Greece include root-knot nematodes Meloidogyne spp. (in almost all plants except citrus), cyst-forming nematodes Globodera rostochiensis, G. pallida (in potato), Heterodera avenae (in cereals), Ditylenchus dipsaci (in vegetables and ornamental plants) and Tylenchulus semipenetrans (in citrus). Based on observations made on samples examined at Benaki Phytopathological Institute, it was confirmed that serious infestation of new kiwi orchards with Meloidogyne spp. originated from seedlings infested at the nursery. Also the wide distribution of the nematode Tylenchulus semipenetrans in citrus orchards was mainly attributed to infested seedlings. The above observations led us, in 1985, to the decision to study the nematological fauna of nurseries in Greece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号