首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
Plant–fungal specificity between cucurbitaceous crops and Diaporthe sclerotioides, the causal agent of black root rot, was studied using cucumbers (Cucumis sativa), melons (Cucumis melo), pumpkins (Cucurbita maxima), watermelons (Citrullus lanatus) and bottlegourd (Lagenaria siceraria var. gourda). Twelve D. sclerotioides isolates from these cucurbit species were cross‐inoculated. The virulence of the isolates was evaluated as the area under the disease progress curve (AUDPC). All cucurbit species were susceptible to each isolate, but AUDPCs were significantly different among the hosts, with the order of greatest to least being melon, cucumber, watermelon, bottlegourd and finally, pumpkin. The infectiveness of isolates was assessed as the quantity of D. sclerotioides DNA detected in the hypocotyls of seedlings 2 weeks after inoculation using a real‐time PCR protocol. The fungal DNA quantities varied among the species in the same order as the AUDPCs. Whilst there were statistically significant correlations between the virulence and infectiveness of D. sclerotioides isolates in cucumbers, melons and bottlegourds, their coefficients of determination were not high (r2 < 0·6). Orthogonal contrasts indicated no specificity in either the fungal virulence or infectiveness between D. sclerotioides isolates and the cucurbit hosts from which these isolates originated. Thus, although the degree of host susceptibility to D. sclerotioides varies among cucurbit species, the absence of specificity to the host species in either virulence or infectiveness suggests the pathogen may spread via various cucurbit crops, irrespective of their original host species.  相似文献   

2.
Eyespot is an economically important stem base disease of wheat caused by the soilborne fungal pathogens Oculimacula yallundae and Oculimacula acuformis. The most effective method of controlling the disease is host resistance. However, there are only three genetically characterized resistances in wheat varieties and further sources of resistance are required. Previous studies have identified resistances in wild relatives, but use of these resistances has been limited by linkage drag with deleterious traits exacerbated by low rates of recombination. Therefore, the identification of novel resistances in hexaploid wheat germplasm is desirable. The Watkins collection currently consists of 1056 hexaploid wheat landraces that represent global wheat diversity at the time of its collection in the 1920s and 1930s. As such, it may contain beneficial agronomic traits such as eyespot resistance. The Watkins collection was screened for resistance to O. yallundae based on a glasshouse test of all 1056 accessions and a polytunnel test of 44 accessions selected from a previous field trial. Resistant lines identified in these tests were retested against both O. yallundae and O. acuformis. This identified 17 accessions with resistance to one or both of the pathogen species. From these, two accessions (1190094.1 and 1190736.3) provided a high level of resistance to both pathogen species. An F4 population derived from accession 1190736.3 indicated that the resistance to O. acuformis in this accession is conferred by a single gene and therefore would be suitable for introgression into elite wheat varieties to provide an alternative source of eyespot resistance.  相似文献   

3.
Long‐term survival of Acidovorax citrulli in citron melon (Citrullus lanatus var. citroides) seeds was investigated. Citron melon seed lots infected with A. citrulli were generated in the field by inoculating either the pistils (stigma) or pericarps (ovary wall) of the female blossoms. Seventeen A. citrulli isolates from 14 different haplotypes belonging to two different groups (group I and II) were used for inoculation. After confirming that 100% of seed lots were infected, they were stored at 4°C and 50% RH for 7 years. After storage, the viability of A. citrulli cells from individual lots was determined by plating macerated seeds on semiselective medium as well as growing seeds for 14 days and scoring for bacterial fruit blotch symptoms. The type of A. citrulli isolate (group I or group II) used did not significantly influence bacterial survival. However, A. citrulli survival was significantly greater in seed lots generated via pistil inoculation (52·9 and 29·4%) than via pericarp inoculation (23·5 and 17·6%). Repetitive extragenic palindrome (rep)‐PCR on A. citrulli isolated from citron melon seed lots after storage displayed similar fingerprinting patterns to those of the reference strains originally used for blossom inoculation, indicating that cross‐contamination did not occur. The results indicate that A. citrulli may survive/overwinter in citron melon seeds for at least 7 years and bacterial survival in seed was influenced more by method of blossom inoculation than by the type of bacterial isolate.  相似文献   

4.
Downy mildew, incited by the comycetePseudoperonospora cubensis (Berk.et Curt.) Rost., was recorded in Israel during the years 1979–2001 on cucumber (Cucumis sativus) and melon (Cucumis melo) and classified as pathotype 3. In July 2002 severe outbreaks of downy mildew occurred on pumpkin (Cucurbita moschata) and summer squash (Cucurbita pepo subsp.pepo). Host range pathogenicity studies revealed high compatibility of the new population with cucumber, melon, pumpkin and summer squash but low compatibility with watermelon. This new population was therefore designated as pathotype 6. The possible origin of this new pathotype in Israel is discussed. http://www.phytoparasitica.org posting Oct. 9, 2003.  相似文献   

5.
The order Coryneliales includes several fungi such as Corynelia spp. that are pathogenic to trees in the Podocarpaceae. The aim of this study was to assess the spatial pattern and temporal progress of disease caused by Corynelia uberata on Podocarpus falcatus in Ethiopian forests and to evaluate the germination potential of seed retrieved from fruit infected by C. uberata. Corynelia uberata was found on leaves, young stems and/or on fruit of P. falcatus in Ethiopian forests. Spatial analysis in the Adaba‐Dodola forest showed that disease intensity of C. uberata was significantly higher in non‐‘WAJIB’ blocks (disturbed forest) than ‘WAJIB’ blocks (sustainably managed forest) (< 0·0001). In the temporal disease progress study, a significantly higher incidence and severity of disease on fruit was recorded during the wet season relative to dry season (< 0·0001). The green milk stage of fruit exhibited significantly higher mean incidence (< 0·0001) and severity (< 0·0001) of disease compared to other growth stages of fruit. The disease incidence and severity in general, as well as on different fruit growth stages, were highly correlated (< 0·0001, R2 ≥ 0·95). Germination rate of seed decreased significantly with an increase in the level of fruit infection by C. uberata (< 0·0001). Thus, C. uberata can apparently influence germination of seed and may pose a threat to the regeneration of P. falcatus from seeds in Ethiopian forests.  相似文献   

6.
B. RUBIN  Y. DEMETER 《Weed Research》1986,26(5):333-340
The effect of pre-emergence application of dipropetryn on the survival and growth of three watermelon (Citrullus lanatus Thumb.), two cucumber (Cucumis sativus L.), two melon (Cucumis melo L.) and three squash (Cucurbita pepo L.) cultivars was studied in the glasshouse. The tolerance was in the order watermelon > squash > cucumber > melon. After 66 h of germination peeled (with seed coat removed) seeds of ‘Malali’ watermelon, and ‘Michlo-Lavan’ squash accumulated in their cotyledons 119 and three times more 14C dipropetrym, respectively, than unpeeled (intact) seeds. Three watermelon cultivars accumulated similar concentrations of 14C in their cotyledons when germinated in soil for 48 h at 26°C or for 120 h at 16°C. Cucumber and squash, however, accumulated significantly higher levels of14C at the 48 h/26°C regime than at 120 h/16°C. Overall, cucumber and squash accumulated 12 times more 14C in cotyledons than watermelon, Significant negative correlations were found between seed coal thickness, or the weight ratio of seed coat to total seed, vs dipropetryn accumulation in the cotyledons. The results indicate that the seed coat plays an important role in reducing dipropetryn accumulation within cucurbit seeds during germination and may, at least partially, contribute to the observed tolerance in watermelon. Absorption de la dipropetyrene par des graines de cucurbitacées en germination et influence sur la croissance des plantuies L'effet de traitements de pré-levée par la dipropétryne (2-ethylthio-4,6-di(isopropylamino)-1,3,5-triazine) sur la survie et la croissance de trois cultivars de melon d'eau (Citrullus lanatus Thumb.), deux de concombre (Cucumis sativus L.), deux de melon (Cucumis melo L.) et trois de courge (Cucurbita pepo L.), a étéétudié en serre. Par ordre de tolérance, on a trouvé le classement suivant: melon d'eau > courge > concombre > melon. Après 66 h de germination, des graines pelées (par enlèvement des téguments) de melon d'eau ‘Malali’ et de courge ‘Michlo-Lavan’ accumulaient dans leurs cotylédons respectivement 119 el trois fois plus de 14C-dipropetryne que des graines non pelées (intactes). Trois cultivars de melon d'eau accumulaient des concentrations similaires de 14C dans leurs cotylédons lorsqu'ils germaient dans le sol à 26°C pendant 48 h ou à 16°C pendant 120 h. Les concombres et les courges, toutefois, accumulaient significativement plus de 14C sous le régime 26°C/48 h que sous 16°C/120 h. Globalement, les concombres et les courges accumulaient 12 fois plus de 14C dans leurs cotylédons que les melons d'eau. Des corrélations négatives significatives ont été trouvées entre l'épaisseur des téguments ou l'importance relative du poids des téguments, d'une part, et l'accumulation de la dipropetryne dans les cotylédons, d'autre part. Les résultats indiquent que les téguments jouent un rôle important en réduisant l'accumulation de dipropétryne à l'intérieur ties graines de cucurbitacées pendant la germination et peuvent, au moins partiellement, contribuer à la tolérance observée chez le melon d'eau. Die Aufnahme von Dipropetryn während der Keimung von Cucurbitaceen-Samen und ihr Einfluss auf das Keimlingswachstum Gegensland dieser Gewächshausuntersuchung war der Effekt von Vorauflaufbehandlungen mit Dipropetryn (2-Aethylthio-4,6-di(isopropylamino)-1,3,5-triazin) auf Ueberleben und Wachstum der Keimlinge von drei Sorten Wassermelonen (Citrullus lanatus Thumb.), zwei Sorten Gurken (Cucumis sativus L.), zwei Melonen-Sorten (Cucumis melo L.) und drei Sorten von Kürbis (Cucurbita pepo L.). Bezüglich Toleranz war die Reihenfolge der Arten: Wassermelone > Kürbis > Gurke > Melone. Nach 66 h Keimungsdauer hatten geschalte Samen von ‘Malali’- Wassermelonen und ‘Michlo-Lavan’-Kürbis in ihren Kotyledonen 119 resp. 3 mal mehr 14C-Dipropetryn akkumuliert als die ungeschälten, intakten Samen, Drei Sorten von Wassermelonen nahmen ähnliche Mengen 14C auf, wenn sie in Erde während 48 h bei 26 C oder während 120 h bei 16°C zur Keimung gebracht worden waren. Gurken und Kürbis akkumulierten signifikant höhere Mengen von 14C währund 48 h bei 26°C, als während 120 h bei 16°C. Im Allgemeinen nahmen Gurken und Kürbis 12 mal mehr 14C in ihre Kotyledonen auf als Wassermelonen. Es wurden signifikant negative Korrelationen zwischen dem Dicken- resp. Gewichtsverhältnis der Samenschale zum Gesamtsamen und der Anhäufung von Dipropetryn in den Kotyledonen gefunden. Die Resultate weisen darauf hin, dass die Samenschle bei der Reduktion der Dipropetrynakkumulation innerhalb der Samen von Kürbisgewächsen während ihrer Keimung eine wichtige Rolle spielt und, zum mindesten teilweise, zur beobachteten Toleranz der Wassermelone beiträgt.  相似文献   

7.
Anthracnose fruit rot of blueberries caused by Colletotrichum acutatum is a serious problem in humid blueberry‐growing regions of North America. In order to develop a disease prediction model, environmental factors that affect mycelial growth, conidial germination, appressorium formation and fruit infection by C. acutatum were investigated. Variables included temperature, wetness duration, wetness interruption and relative humidity. The optimal temperature for mycelial growth was 26°C, and little or no growth was observed at 5 and 35°C. The development of melanized appressoria was studied on Parafilm‐covered glass slides and infection was evaluated in immature and mature blueberry fruits. In all three assays, the optimal temperature for infection was identified as 25°C, and infections increased up to a wetness duration of 48 h. Three‐dimensional Gaussian equations were used to assess the effect of temperature and wetness duration on the development of melanized appressoria (R2 = 0·89) on Parafilm‐covered glass slides and on infection incidence in immature (R2 = 0·86) and mature (R2 = 0·90) blueberry fruits. Interrupted wetness periods of different durations were investigated and models were fitted to the response of melanized appressoria (R2 = 0·95) and infection incidence in immature (R2 = 0·90) and mature (R2 = 0·78) blueberry fruits. Additionally, the development of melanized appressoria and fruit infection incidence were modelled in relation to relative humidity (R2 = 0·99 and 0·97, respectively). Three comprehensive equations were then developed that incorporate the aforementioned variables. The results lay the groundwork for a disease prediction model for anthracnose fruit rot in blueberries.  相似文献   

8.
Nine accessions of three cucurbit species, ten of eight legume species, three of lettuce (Lactuca sativa) and 34 of 14 Solanaceae species were inoculated with a Dutch isolate of the tomato powdery mildew fungus (Oidium lycopersici) to determine its host range. Macroscopically, no fungal growth was visible on sweet pepper (Capsicum annuum), lettuce, petunia (Petunia spp.) and most legume species (Lupinus albus, L. luteus, L. mutabilis, Phaseolus vulgaris, Vicia faba, Vigna radiata, V. unguiculata). Trace infection was occasionally observed on melon (Cucumis melo), cucumber (Cucumis sativus), courgette (Cucurbita pepo), pea (Pisum sativum) and Solanum dulcamara. Eggplant (Solanum melongena), the cultivated potato (Solanum tuberosum) and three wild potato species (Solanum albicans, S. acaule and S. mochiquense) were more heavily infected in comparison with melon, cucumber, courgette, pea and S. dulcamara, but the fungus could not be maintained on these hosts. All seven tobacco (Nicotiana tabacum) accessions were as susceptible to O. lycopersici as tomato (Lycopersicon esculentum cv Moneymaker), suggesting that tobacco is an alternative host. This host range of the tomato powdery mildew differs from that reported in some other countries, which also varied among each other, suggesting that the causal agent of tomato powdery mildew in the Netherlands differ from that in those countries. Histological observations on 36 accessions showed that the defense to O. lycopersici was associated with a posthaustorial hypersensitive response.  相似文献   

9.
One of the yellowing diseases that affects melon ( Cucumis melo ) crops cultivated under plastic greenhouses in southern Europe is caused by a closterovirus transmitted by the greenhouse whitefly Trialeurodes vaporariorum . A Cucumis melo var. agrestis accession shows a certain level of resistance to that virus. Under free-choice conditions, the reproduction of T. vaporariorum on this accession was significantly lower than on the susceptible control accession C. melo cv. 'Bola de Oro', and this suggests that T. vaporariorum prefers to colonize other accessions before C. melo var. agrestis . Under no-choice conditions, we observed that T. vaporariorum reproduction on C. melo var. agrestis was less than on the susceptible controls. The results showed the participation of both antixenosis and antibiosis resistance mechanisms against T. vaporariorum in C. melo var. agrestis . It is difficult to cultivate melon completely free from T. vaporariorum and yellowing disease. However, success in breeding commercial melon cultivars which incorporate the antixenosis and antibiosis found in C. melo var. agrestis together with biological or chemical insect control, or a combination of these, would reduce the insect population and, therefore, the melon-yellowing disease would occur later and in less severe form.  相似文献   

10.
An internal fruit rot with a malodor was found in netted melons (Cucumis melo L.) in commercial greenhouses in Kochi Prefecture, Japan, in 1998, despite their healthy appearance and lack of water-soaking or brown spots on the surface. A yellow bacterium was consistently isolated from the affected fruits. To confirm the pathogenicity of eight representative isolates of the yellow bacterium, we stub-inoculated ovaries (immature-fruits) 5–7 days after artificial pollination, with a pin smeared with bacteria. After the melon fruits had grown for 60 more days, an internal fruit rot resembling the natural infection appeared, and the inoculated bacterium was reisolated. The melon isolates had properties identical with Pantoea ananatis, such as gram-negative staining, facultative anaerobic growth, indole production, phenylalanine deaminase absence, and acid production from melibiose, sorbitol, glycerol, and inositol. Phylogenetic analysis based on 16S rDNA sequences showed that the melon bacterium positioned closely with known P. ananatis strains. The melon bacterium had indole acetic acid (IAA) biosynthesis genes (iaaM and iaaH) and a cytokinin biosynthesis gene (etz). The bacterium could be distinguished from the other ‘Pantoea’ group strains by rep-PCR genomic fingerprinting. From these results, the causal agent of internal fruit rot was identified as a strain of P.ananatis [Serrano in (Philipp J Sci 36:271–305, 1928); Mergaert et al. in (Int J Syst Bacteriol 43:162–173, 1993)]. The nucleotide sequence data reported are available in the DDBJ database under accessions AB297969, AB373739, AB373740, AB373741, AB373742, AB373743 and AB373744.  相似文献   

11.
Rhizopus rot, caused by Rhizopus stolonifer, is one of the main postharvest diseases in stone fruits, but there is little known about the processes of disease development during transport and postharvest storage. The objective of this study was to characterize temporal progress and spatial distribution of the disease in peach fruit. Rhizopus rot development was evaluated using two different fruit arrangements. Only one fruit of each arrangement was inoculated with a R. stolonifer spore suspension. Disease incidence and severity were assessed daily for all the fruit. Nonlinear models were fitted to the quantity of fruit and to the area of fruit that became infected over time and distance in relation to the source of inoculum. Disease‐free fruit placed next to the artificially inoculated peaches showed disease symptoms due to pathogen dissemination by mycelial stolons. The disease incidence and severity progress rates varied from 0.33 to 0.53 day?1 and from 0.30 to 0.49 day?1, respectively. The spatial spread of the disease followed a dispersive wave pattern with increasing speed over time, but decreasing speed with disease severity. For disease severity = 0.5, the velocity at day 3 varied from 0.14 to 0.32 fruit diameter day?1, while it ranged from 0.38 to 1.46 fruit diameter day?1 at day 12.  相似文献   

12.
A molecular‐based assay was employed to analyse and accurately identify various root‐knot nematodes (Meloidogyne spp.) parasitizing potatoes (Solanum tuberosum) in South Africa. Using the intergenic region (IGS) and the 28S D2–D3 expansion segments within the ribosomal DNA (rDNA), together with the region between the cytochrome oxidase subunit II (COII) and the 16S rRNA gene of the mtDNA, 78 composite potato tubers collected from seven major potato growing provinces were analysed and all Meloidogyne species present were identified. During this study, Mincognita, M. arenaria, M. javanica, M. hapla, M. chitwoodi and M. enterolobii were identified. The three tropical species M. javanica, M. incognita and M. arenaria were identified as the most prevalent species, occurring in almost every region sampled. Meloidogyne hapla and M. enterolobii occurred in Mpumalanga and KwaZulu‐Natal, respectively, while M. chitwoodi was isolated from two growers located within the Free State. Results presented here form part of the first comprehensive surveillance study of root‐knot nematodes to be carried out on potatoes in South Africa using a molecular‐based approach. The three genes were able to distinguish various Meloidogyne populations from one another, providing a reliable and robust method for future use in diagnostics within the potato industry for these phytoparasites.  相似文献   

13.
The bacterium Xanthomonas translucens pv. undulosa (Xtu) causes bacterial leaf streak (BLS) on wheat and other small grains. Several triticale accessions were reported to possess high levels of resistance to wheat Xtu strains. In this study, a worldwide collection of triticale accessions as well as the major North Dakota hard red spring and durum wheat cultivars were evaluated for reaction to two local Xtu strains. All wheat cultivars showed a susceptible reaction but a wide range of reactions was observed among triticale accessions. Out of the 502 accessions tested, 45 and 10 accessions were resistant to the two virulent strains BLS‐LB10 and BLS‐P3, respectively, with five accessions, PI 428736, PI 428854, PI 428913, PI 542545 and PI 587229, being highly resistant to both strains. Statistical analysis showed significant difference among the accessions, strains, and the accession by strain interaction (< 0.001). Bacterial population growth in resistant triticale was significantly slower than that in susceptible triticale. Molecular cytogenetic characterization in four representative triticale accessions confirmed the hexaploid level of the species and the presence of 12 or 14 rye chromosomes. The triticale accessions identified are valuable materials for developing wheat germplasm with high levels of BLS resistance.  相似文献   

14.
Melon yellow spot virus (MYSV), a member of the genus Tospovirus, is a devastating thrips-transmitted virus of cucurbits in Japan. Recently, we reported that cucumber accessions originating from South Asia, in particular Southeast Asia, had moderate resistance to MYSV. Here, we investigated the effect of three temperatures (20°C, 25°C, and 30°C) on symptom expression and viral spread of MYSV in plants of resistant cucumber accessions. No systemic infection developed in resistant cucumber plants after inoculation with melon isolate MYSV-S at low temperature (20°C); viral spread of MYSV-S and cucumber isolate MYSV-FuCu05P in inoculated cotyledons was suppressed. In contrast, higher incubation temperatures (25°C and 30°C) facilitated viral spread in inoculated cotyledons and systemic infection of MYSV-S. These data suggest that the resistance to MYSV of resistant cucumber accessions is temperature dependent.  相似文献   

15.
The oomycete Pseudoperonospora cubensis is a leaf pathogen causing severe damage to members of the Cucurbitaceae, especially cucumber and melon. It propagates clonally by sporangia. Oospores of P. cubensis were previously observed in nature but their formation in the laboratory was never reported nor their germination or infection. Here we report on the sexual reproduction of P. cubensis under controlled conditions in the laboratory. When field isolates were inoculated singly onto detached leaves of cucurbits in growth chambers no oospores were produced. However, when pairs of selected isolates were mixed and inoculated onto detached leaves, oospores were formed in the mesophyll within 6–11 days, suggesting that P. cubensis is heterothallic, having two opposite mating types, A1 and A2. Isolates belonging to pathotype 3 were all A1 whereas isolates belonging to the new pathotype 6 were either A1 or A2. Oospores were spherical, ~40 μm in diameter, hyaline to red-brown in color. Oospores were produced regularly, in large numbers, in Cucumis sativum and Cucumis melo, very seldom and in very small numbers in Cucurbita pepo, Cucurbita maxima and Citrullus lanatus, and not in Cucurbita moschata. Oospores were formed at 12.5–21°C but not at 25°C. Under moisture-saturated atmosphere oospores were also produced in leaves of intact plants. Oospores inoculated onto detached leaves in growth chambers produced F1 downy mildew lesions at 6–21 days after inoculation, many in Cucumis sativum, Cucumis melo and Cucurbita moschata, very few in Cucurbita pepo or Citrullus lanatus, and none in Cucurbita maxima. This report shows that P. cubensis is heterothallic, having A1 and A2 mating types which can cross and enable sexual reproduction in cucurbits. A preliminary report on part of the results has been published earlier.  相似文献   

16.
The feeding behavior of the melon aphidAphis gossypii Glover (Homoptera: Aphididae) was monitored using the electrical penetration graph (EPG) technique on different melon (Cucumis melo L.) genotypes showing resistance to the aphid. The aphid-resistant genotypes used were PI-161375 and PI-414723, sources of theVat andAgr genes, respectively. TGR-1551, a newC. melo accession from Zimbabwe, was also tested. Our goal was to localize the tissues where the resistance factors are expressed and to determine if the resistance mechanisms operating in the three aphid-resistant accessions were the same. Our results indicated that the three selected lines have resistant factors located at the epidermis, mesophyll and vascular tissues. However, the behavior ofA. gossypii on TGR-1551 was different from the two other resistant accessions, as indicated by a longer phloem salivation phase (E1 phase). Many of the E1 phases observed for aphids feeding on TGR-1551 were not followed by phloem ingestion (E2 phase). These results suggest that TGR-1551 has a resistance mechanism that preventsA. gossypii from initiating ingestion from the phloem. Preference tests under free choice conditions also showed that aphids rejected accessions TGR-1551 or PI-414723 faster than PI-161375. Our results support the hypothesis thatAgr andVat are coding for different kinds of resistance strategies. Comparisons of aphid life history parameters also indicated that TGR-1551 is a very promising new source to breed for resistance againstA. gossypii. http://www.phytoparasitica.org posting Jan. 16, 2002.  相似文献   

17.
The ectoparasitic dagger nematodes Xiphinema index and Xiphinema diversicaudatum, often at low numbers in the soil, are vectors of grapevine nepoviruses, which cause huge agronomical problems for the vineyard industry. This study reports a method, based on real‐time PCR, for the specific detection of these species and of the closely related non‐vector species Xiphinema vuittenezi and Xiphinema italiae. Specific primers and TaqMan probes were designed from the ribosomal DNA internal transcribed spacer 1 (ITS1), enabling the specific detection of single individuals of each of the X. index, X. diversicaudatum, X. italiae and X. vuittenezi species whatever the nematode population. The specificity of detection and absence of false positive reaction were confirmed in samples of each species mixed with the three other Xiphinema species or mixed with nematodes representative from other genera (non‐plant‐parasitic Dorylaimida, Longidorus sp., Meloidogyne spp., Globodera spp. and Pratylenchus sp.). The method was shown to be valid for the relative quantification of X. index numbers through its use, from crude nematode extracts of soil samples, in a greenhouse assay of grapevine accessions ranging from highly susceptible to resistant. As an alternative to time‐consuming microscopic identification and counting, this real‐time PCR method will provide a fast, sensitive and reliable diagnostic and relative quantification technique for X. index nematodes extracted from fields or controlled conditions.  相似文献   

18.
The aim of this study was to characterize a Fusarium population obtained from yellow passion fruit (YPF) with collar rot using pathogenicity, morphocultural characteristics and molecular tests. Pathogenicity and disease severity were assessed in six plant species: YPF, zucchini, tomato, bean, soya bean and cucumber. Potato dextrose agar medium (PDA) was used to determine mycelial growth at five temperatures (15–35°C). The colour produced by isolates was also determined on PDA at 25°C. Synthetic nutrient agar medium was used to evaluate: (i) type of mycelium and phialides; (ii) size, shape and number of septa from conidia; and (iii) production of chlamydospores and perithecia. Molecular tests consisted of sequencing the ITS–5·8S rDNA region and elongation factor 1α (EF‐1α) gene. The isolates caused large lesions on YPF, zucchini and tomato, with YPF having the highest mean disease severity and being the only one that showed wilt symptoms and death of the plant. Thus the isolates showed host specificity. Maximum mycelial growth occurred at 25°C and the predominant colour was bluish‐white. The isolates produced long phialides, dense aerial mycelium, oval microconidia with a mean size of 9·5 × 2·6 μm, macroconidia of 32·7 × 3·4 μm with 3·3 septa, and chlamydospores; only one isolate lacked perithecia. Phylogenetic trees of the ITS region and EF‐1α gene showed that isolates from YPF formed a distinct group within the F. solani group and the formae speciales of F. solani. It is proposed to name all isolates from YPF as F. solani f. sp. passiflorae.  相似文献   

19.
The aim of this 4‐year study was to characterize temporal development of brown rot blossom blight and fruit blight (caused by Monilinia spp.) and their sporulating areas in sour cherry orchards; and to determine the relationships amongst incidence and sporulating area of blossom blight, fruit blight and fruit rot. The study was performed in integrated and organic orchard blocks on two cultivars (Újfehértói fürtös and Érdi b?term?). On both cultivars, disease progress on flowers and fruits was 2–10 times slower in the integrated than in the organic management system. The peak incidence values were 9 and 31 days after petal fall for blossom blight and fruit blight, respectively. After these dates, no new blight symptoms on flowers and/or fruits appeared and the disease was levelling off. Final blossom blight incidence ranged from 1 to 5% and from 12 to 34%, and fruit rot incidence from 2 to 6% and from 11 to 26% in the integrated and the organic orchards, respectively. The sum of fruit blight incidence ranged from 9 to 22% for the organic system, but was below 5% for the integrated system, while the final sporulating area was 5–16 mm2 and <3 mm2, respectively. Among the five highest Pearson's correlation coefficients, relationships between blossom blight and early fruit blight stage (= 0·845, = 0·0087 integrated; = 0·901, = 0·0015 organic), and between sporulating area and fruit rot (= 0791, = 0·0199 integrated; = 0·874, = 0·0039 organic) were the most significant relationships from an epidemic standpoint as they indicated a connection between different brown rot symptom types.  相似文献   

20.
In a survey for effective biocontrol agents of Colletotrichum orbiculare, causal agent of cucumber anthracnose, 43 (MBCu series) and 135 (MBPu series) endophytic actinomycete strains were recovered from surface-sterilized organs of cucumber (Cucumis sativus) and pumpkin (Cucurbita moschata) plants, respectively. The strains were cultured with C. orbiculare on IMA-2 agar medium to determine their in vitro antagonistic ability. Eleven strains that strongly inhibited hyphal growth of the pathogen were selected as potent antagonists. Detached cotyledons of cucumber were soaked in a spore suspension of an antagonistic strain 1 day before challenge-inoculation with the pathogen, and six of these antagonists (MBCu-32, 36, 42, 45, and 56, and MBPu-75) significantly reduced the number and size of the lesions on the cotyledons compared to the untreated control. In the same way, these six strains inhibited lesion development on attached leaves of 3-week-old cucumber seedlings. Strain MBCu-56, the most suppressive of the strains, was selected for further tests. Its suppressiveness increased as concentrations increased; pretreatment of leaves with the strain at 107, 108 and 109 cfu/ml suppressed disease by 72, 79 and 93%, respectively. These results strongly indicated that MBCu-56 has strong potential for controlling cucumber anthracnose. Based on the taxonomic characteristics and 16S rDNA sequence, MBCu-56 was identified as Streptomyces sp. With scanning electron microscopy, the substrate mycelia of the strain were seen to colonize the surface of leaves above the cuticle. Some hyphae also penetrated and grew underneath the cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号