首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 695 毫秒
1.
以海滨雀稗(Paspalum vaginatum cv.Sea spray)的成熟种子为外植体,运用正交试验设计,在MS基础培养基上添加不同浓度的2,4-D、6-BA、NAA、KT、CuSO4、AHC等外源物质,分析其对愈伤组织诱导、胚性愈伤组织分化的影响,建立海滨雀稗高频再生体系,为基因工程育种奠定基础.试验结果表明,在MS培养基中添加2.0 mg/L 2,4-D和0.5g/L AHC 能提高种子的发芽率至97.50%;最佳胚性愈伤诱导培养基为:MS +2,4-D 3.0mg/L+CuSO4 15.0 mg/L+AHC 1.0g/L,其胚性出愈率为66.88%;最佳分化培养基为:MS+6-BA 8.0mg/L+KT 0.05 mg/L+CuSO4 10.0 mg/L+NAA 0.5 mg/L,其分化率为95.00%.  相似文献   

2.
以野生结缕草(Zoysia japonica)的成熟胚为外植体,通过胚性愈伤组织诱导进行植株再生。试验结果表明,不同的预处理方法对愈伤组织的诱导有较大的影响,经研钵研磨去除种子颖壳,30%NaOH浸泡1min,流水冲洗30 min处理的成熟胚在MS+2,4-D(3 mg/L)+6-BA(0.1 mg/L)为最佳,愈伤组织诱导率达82.67%。将愈伤组织在2,4-D(2 mg/L)和6-BA(0.2~0.5 mg/L)的继代培养基中继代1~2次,可明显改善愈伤组织状态,增加胚性愈伤数。筛选继代后的胚性愈伤组织置于分化培养基MS+KT(1 mg/L)+NAA(0.1 mg/L)中,分化率达86%。分化后的簇状植株移栽成活率达100%。  相似文献   

3.
两个高羊茅品种成熟种子再生体系的建立   总被引:1,自引:0,他引:1  
以2个高羊茅品种(“Plantation”和“沪坪1号”)的成熟种子为外植体,在MS培养基上分别添加不同浓度的2种植物生长调节剂,探索其愈伤组织的诱导、继代和分化的最佳激素配比及其相互间的影响,以建立简便高效的再生体系。结果表明,完整高羊茅种子最佳的愈伤诱导培养基为MS+2,4-D 3 mg/L,诱导率为71%;而把成熟种子进行纵切后得到的半粒种子的较优的愈伤诱导培养基为MS+2,4-D 2.5 mg/L,诱导率占半粒种子外植体的60%,占完整种子(2个半粒种子)外植体的90%以上;在最优诱导培养基上产生的愈伤组织的最佳继代培养基为MS+2,4-D 3 mg/L,其胚性愈伤诱导率为70%,而添加6-BA则抑制2,4-D对胚性愈伤组织的诱导;不同品种的最优的分化培养基不同——“Plantation”的最优分化培养基为MS+2,4-D 1 mg/L+6-BA 1 mg/L,而“沪坪1号”的最佳组合是MS+2,4-D 2 mg/L+6-BA 1 mg/L,分化率分别达到50%和56%。生根培养基采用已报道的组合1/2MS+NAA 0.5 mg/L,生根率达100%。  相似文献   

4.
日本结缕草植株再生体系的研究   总被引:1,自引:3,他引:1  
张俊卫  唐蜻  包满珠 《草业学报》2005,14(2):48-51,F003
以日本结缕草的成熟胚为外植体,对其组织培养体系进行了优化.试验结果表明,1)培养基中添加脯氨酸能提高愈伤组织诱导率,而添加BA能降低愈伤组织的诱导率,低浓度的NAA(0.1~0.2 mg/L)能促进愈伤组织的形成,愈伤组织诱导的最佳培养基为ND 2,4-D 3.0 mg/L NAA 0.2 mg/L L-Pro 500 mg/L,愈伤组织诱导率达57.3%;2)愈伤组织继代的最佳培养基为MSD 2,4-D 1.0 mg/L;3)愈伤组织分化的最佳培养基为MSD NAA 0.3 mg/L KT 0.5 mg/L BA 0.05 mg/L,分化率达36.7%.  相似文献   

5.
结缕草‘Zenith’离体培养植株再生体系优化研究   总被引:2,自引:2,他引:0  
以结缕草Zoysia japonica栽培品种‘Zenith’的成熟种子为外植体,通过调整2,4 D浓度和凝固剂种类及其浓度,进行结缕草离体培养植株再生体系优化的研究。结果表明:愈伤组织诱导的适宜培养基为MS+2,4 D 4.0 mg/L,愈伤组织诱导率为69.97%,其中胚性愈伤组织诱导率达28.78%。胚性愈伤组织包括2种类型:淡黄色、湿润的小颗粒聚集状愈伤组织(27.36%)和黄色、干燥、颗粒状愈伤组织(1.42%)。以结冷胶为凝固剂,有利于提高愈伤组织的诱导率。提高愈伤组织继代培养基中的琼脂浓度,有利于保持胚性愈伤组织的植株再生能力。适宜的愈伤组织分化培养基为MS+KT 4.0 mg/L或MS+6 BA 3.0 mg/L,绿苗分化率达90%以上。适宜的生根培养基为1/2MS ,生根率100%。  相似文献   

6.
以蒙农杂种冰草成熟胚为外植体,通过胚性愈伤组织的诱导进行植株再生,结果表明:在附加甘露醇(0.2mol/L)和2,4-D(2.0mg/L)的MS培养基中,冰草成熟胚可诱导产生愈伤组织,诱导率为87.6%,但质量较差;将其在降低2,4-D浓度和添加6-BA的继代培养基中继代改造,可明显改善愈伤组织质量,增加胚性愈伤;将筛选改良的愈伤组织置于分化培养基MS+ZT(3.0mg/L)+NAA(1.0mg/L)中,分化率为82%;分化小苗在1/2MS培养基上可生根并得到完整植株.本研究还建立了一套有效的以成熟胚为外植体的蒙农杂种冰草组织培养再生体系.  相似文献   

7.
以成熟种子和胚轴为外植体诱导草地早熟禾愈伤组织,比较草地早熟禾四个品种的愈伤诱导情况和不同6-BA浓度、愈伤年龄等因素对愈伤组织分化能力的影响。结果表明:成熟种子的出愈率与胚性愈伤诱导率均高于胚轴;MS 2,4—D(2mg/L) 6-BA(0.1mg/L)培养基为草地早熟禾Mardona品种较为合适的愈伤培养基,其诱导率为58.3%;MS BA(3mg/L) KT(0.2mg/L)为较为适合的分化培养基,再生率高达70%;随着继代次数的增加,草地早熟禾分化能力能够继续保持。选择致密、易碎、生长迅速的愈伤继代能够保持草地早熟禾的胚性,可以为遗传转化提供长期良好的植物材料。  相似文献   

8.
无芒雀麦种子愈伤组织诱导技术的研究   总被引:1,自引:1,他引:0  
以无芒雀麦成熟种子为材料,经能量为30keV、剂量为3.0×1017N+/cm2的氮离子注入处理后进行了愈伤组织诱导和分化的研究.结果表明:离子处理与未处理的种子的愈伤组织诱导率不同,经离子注入后的种子的愈伤组织诱导率及分化能力均高于未经离子注入处理的种子.2,4-D浓度为4mg/L、KT浓度为0.05mg/L时有利于种子诱导产生愈伤组织;MS+2mg/L 2,4-D+1.5mg/L6-BA中的愈伤组织分化率最高,达到52%.  相似文献   

9.
以中华结缕草成熟胚为外植体,通过胚性愈伤组织的发生进行植株再生。结果表明,中华结缕草成熟胚在MS基本培养基附加6~7 mg/L 2,4-D和0.05 mg/L 6-BA的出愈能力很强,但初生愈伤组织呈无定型棉絮状,不能再生成株。采用不同的糖类和固化剂以及一定比例的生长素与细胞分裂素的方法,对初生愈伤组织进行继代培养,诱导出致密颗粒状的、具有高度再生能力的胚性愈伤组织,此类胚性愈伤组织在最佳分化培养基MS 1.0mg/L NAA 1.0 mg/L KT 3.00 mg/L 6-BA上有较高再生频率,生根培养基采用1/2 MS。  相似文献   

10.
以MS为基本培养基,以柱花草无菌苗的幼根、下胚轴、子叶、茎和真叶为材料,采用正交设计方法,研究不同外植体和激素对柱花草愈伤组织诱导和体细胞胚的影响。结果表明:外植体类型及2,4-D、KT、NAA、6-BA浓度对愈伤组织诱导率的影响均达极显著水平(P0.01),其中2,4-D浓度是最主要的影响因素,其次为外植体类型。下胚轴和真叶为柱花草愈伤组织诱导的理想外植体,愈伤诱导培养基的最优配方为MS+1.0mg/L 2,4-D+0.5mg/L KT+0.01mg/L NAA+0.1mg/L 6-BA。NAA、6-BA浓度对柱花草体细胞胚产生率的影响达极显著水平(P0.01),NAA浓度是主要影响因素,体细胞胚产生的最佳培养基配方为MS+1.0mg/L NAA+1.0mg/L 6-BA+2.0g/L CH。  相似文献   

11.
多年生黑麦草组织培养与植株再生研究   总被引:17,自引:5,他引:12  
张万军  王涛 《草地学报》2003,11(3):219-222
对多年生黑麦草种子为外植体的植株再生过程进行系统研究,结果表明,在改良的MS培养基(MSM),以MS无机盐+9.9mg/L维生素B1+9.5mg/L维生素B6+4.5mg/L尼克酸+1mg/LCH+30g/L蔗糖+琼脂8g/L为基本成分,附加5mg/L2,4-D和0.05mg/LKT时,适合种子的愈伤组织诱导;继代培养基附加2mg/L2,4-D和0.1mg/LKT;分化培养基附加1mg/L2,4-D和1mg/LKT;生根培养基为无激素的MS培养基。完成植株再生约需12周,愈伤组织分化率为70%。  相似文献   

12.
结缕草组织培养及农杆菌介导转化的主要因子优化   总被引:14,自引:6,他引:8  
以破除休眠的结缕草种子为试材,对其愈伤组织的诱导、分化及农杆菌介导法转化的主要因子作了研究.结果表明,结缕草种子愈伤组织的诱导以含2,4-D 1 mg/L NAA 3 mg/L、分化以含6-BA 3 mg/L KT 3.5 mg/L、生根以含NAA 0.3 mg/L的MS培养基为佳.GUS瞬间表达研究表明,以继代培养2周的愈伤组织为起始材料,采用负压处理和农杆菌感染10 min,尔后在光条件下共培养转化为佳.  相似文献   

13.
唐古特白刺组织培养及其培养基筛选研究   总被引:4,自引:1,他引:3  
本试验选用唐古特白刺幼嫩茎段和叶片作为材料,研究白刺不同外植体的离体培养技术及其适宜的培养基。结果表明,白刺带芽嫩茎是诱导丛生芽的良好外植体,恒温20℃以下,可有效降低白刺丛生芽初代培养污染严重的程度;叶片是诱导愈伤组织的良好外植体,且低浓度生长素2,4-D培养基较高浓度培养基形成的白刺愈伤组织致密,也不易褐化。白刺的最适增殖、壮芽培养基为MS+6-BA 2 mg/L+NAA 1.00 mg/L,而且是以腋芽形成丛生芽的方式进行增殖的;最适生根培养基是1/2 MS+KT 1 mg/L+IBA 0.5 mg/L;形成愈伤组织较好的培养基是MS+2,4-D 0.5~1.0 mg/L。  相似文献   

14.
为建立稳定、快速、高效的火龙果再生体系,以金都1号火龙果不同成熟度的茎段为外植体,探讨不同激素浓度配比、培养条件等对其愈伤组织及不定芽发生的影响。结果表明: 幼芽茎段和幼嫩茎段较适宜作为火龙果的诱导外植体。诱导率明显高于成熟茎段的诱导率。幼嫩茎段诱导愈伤组织最适合的培养基是MS +TDZ 0.6 mg/L + KT 0.8 mg/L +2,4-D 1.0 mg/L,诱导率是81.7%,不定芽再生率达到36%,幼芽茎段诱导的愈伤组织培养基为MS +6BA2.0mg/L +2,4-D 1.0 mg/L,诱导率高达91.7% 愈伤组织诱导不定芽的培养基为MS+NAA 0.2mg/L+6-BA 2.0 mg/L,生根诱导最适培养基为MS+6-BA1.0mg/L  相似文献   

15.
植物激素对2个紫花苜蓿品种再生体系的影响   总被引:2,自引:2,他引:0  
采用MS为基本培养基,附加不同浓度的2,4-D、KT和NAA,对"盛世"和"甘农4号"2个紫花苜蓿品种进行了组织培养再生体系的研究。结果表明:下胚轴是愈伤组织诱导的最佳外植体材料;2,4-D浓度增加对"甘农4号"紫花苜蓿出愈率影响不明显,但"盛世"紫花苜蓿的出愈率随着2,4-D浓度的增加呈显著升高趋势;2个品种的最佳愈伤组织诱导培养基为MS+2 mg/L 2,4-D+0.3 mg/L KT+30g/L蔗糖+7.5 g/L琼脂;最适分化培养基为MS+KT0.5 mg/L+NAA0.1 mg/L+蔗糖20 g/L;最佳诱导生根的培养基为1/2 MS+NAA0.5 mg/L。  相似文献   

16.
以心叶驼绒藜无菌苗叶片、茎段、幼根为外植体,对通过器官发生的途径发育成再生植株进行了研究。结果表明:(1)、无菌苗的建立:用1/2MS+琼脂+蔗糖,出苗率高(90%以上)、苗壮。(2)、诱导培养基:用MS1+IAA0.2mg/L+KT0.1mg/L培养基,出愈率低,没有获得再生植株;用MS2+IAA0.2mg/L+KT0.2mg/L、MS3+IAA0.1mg/L+KT0.1mg/L培养基,叶片、茎段具有再生植株发育的能力,出愈率较高。(3)、生根培养基:用1/2MS+NAA0.1 mg/L,生根率高、周期短;用1/2MS+IAA0.1 mg/L,生根率低,周期长。  相似文献   

17.
应用正交设计优化紫花苜蓿愈伤组织诱导的激素配比   总被引:5,自引:2,他引:3  
以MS+2,4-D(2.0mg/L)为基本培养基,附加NAA、6-BA和KT3种植物激素,采用正交试验设计法研究不同浓度激素配比对和田苜蓿,秘鲁苜蓿和甘农3号苜蓿下胚轴愈伤组织诱导的影响。结果表明:对于秘鲁苜蓿和甘农3号苜蓿,最适愈伤组织诱导的培养基均为MS+2,4-D(2.0mg/L)+6-BA(0.5mg/L)+NAA(1.0mg/L),各因素影响程度为6-BA〉NAA〉KT。对于和田苜蓿,最适愈伤组织诱导的培养基为MS+2,4-D(2.0mg/L)+6-BA(1.0mg/L)+KT(1.0mg/L)+NAA(1.0mg/L),各因素影响程度为6-BA〉KT〉NAA。  相似文献   

18.
以蒙古冰草根尖为外植体研究不同激素配比对蒙古冰草愈伤组织诱导及分化的影响,结果表明:蒙古冰草根尖最适愈伤诱导培养基为MS+2,4-D 1.0mg/L+6-BA 0.5mg/L+蔗糖20.0g/L+琼脂7.0g/L,诱导率为73.33%;最适分化培养基为MS+KT 3.0mg/L+NAA 1.0mg/L+蔗糖20.0g/L+琼脂7.0g/L,分化率为70.00%;最适生根培养基为1/2 MS+NAA 0.1mg/L+蔗糖20.0g/L+琼脂7.0g/L,生根率为86.68%。首次建立了以蒙古冰草根尖为外植体的再生体系,再生过程仅70~80d,为蒙古冰草高效遗传转化体系的构建提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号