首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Post‐harvest diseases of apple and pear cause significant losses. Neofabraea spp. and Cadophora spp. infect fruits during the growing season and remain quiescent until disease symptoms occur after several months in storage. Epidemiological knowledge of these diseases is limited. TaqMan PCR assays were developed for quantification of N. alba, N. perennans, C. malorum and C. luteo‐olivacea in environmental samples. Various host tissues, dead weeds and grasses, soil and applied composts were collected in 10 apple and 10 pear orchards in May 2012. Neofabraea alba was detected in 73% of samples from apple orchards and 48% from pear orchards. Neofabraea perennans was present in a few samples. Cadophora luteo‐olivacea was detected in 99% of samples from apple orchards and 93% from pear orchards, whilst C. malorum was not detected in any sample. In apple orchards, highest concentrations of N. alba were found in apple leaf litter, cankers and mummies, and of C. luteo‐olivacea in apple leaf litter, mummies and dead weeds. In pear orchards, N. alba and C. luteo‐olivacea were found in highest concentrations in pear leaf litter and in dead weeds. Substrate colonization varied considerably between orchards. The temporal dynamics of pathogens was followed in four apple orchards and four pear orchards. In apple orchards the colonization by pathogens decreased from April until August and increased from September until December. This pattern was less pronounced in pear. Knowledge on population dynamics is essential for the development of preventative measures to reduce risks of fruit infections during the growing season.  相似文献   

2.
Neofabraea vagabunda is the prevalent cause of bull's eye rot, one of the main postharvest diseases of apple, in many producing areas, but its biology has not been studied in detail. The molecular identification, by DNA sequencing of the β‐tubulin region, of 41 isolates collected from apples showing bull's eye rot in the Emilia‐Romagna region confirmed N. vagabunda as the main species in Italy. A biological and morphological characterization of N. vagabunda isolates was performed in vitro. Assays at temperatures ranging from 0 to 30 °C carried out on 10 isolates demonstrated: (i) a marked influence of temperature on colony morphology, conidial production, conidial size and mycelial growth, showing the cold‐tolerant character of N. vagabunda; and (ii) that culture at 15 °C on tomato agar (TA) for 14 days is a rapid and reliable method to favour pathogen conidial production. Trials performed on 38 isolates using these incubation conditions recorded the presence of two N. vagabunda morphotypes, differing for colony morphology, conidial size, conidiomata formation and temperature requirement. The alkalizing ability of the pathogen during growth on TA was also demonstrated for the first time. The pathogenicity of 25 N. vagabunda isolates was proved in vivo on artificially infected Cripps Pink apples. A pH increase was also recorded in apple tissue infected by N. vagabunda isolates (on average 0.2 and 0.3 units of pH after 60 and 120 days of incubation, respectively), suggesting that the N. vagabunda transition from quiescence to necrotrophic colonization in apples could involve the secretion of alkalizing compounds.  相似文献   

3.
Four Neofabraea species are responsible for bull’s eye rot, which is an important postharvest disease of apples and pears. The species diversity of its causal agents in Europe has not been thoroughly explored using molecular genetic methods. Eighty-one Neofabraea isolates were obtained mostly from apples with bull’s eye rot symptoms in the Czech Republic over a two year period. The isolates were identified using PCR fingerprinting and DNA sequencing of the ITS rDNA region, the mitochondrial SSU rDNA and the β-tubulin and EF1α genes. The most common species was N. alba (89 %), followed by N. perennans (5 %) and N. kienholzii (5 %). This is the third published record of N. kienholzii in Europe. The species identity of the isolate CPPF507, which was placed close to N. kienholzii, remains unclear. EF1α was shown to be a suitable marker for the identification of species of the genus Neofabraea and was comparable to the previously used β-tubulin gene. Furthermore, the aggressiveness of individual species was compared and species distribution across Europe was summarized. N. perennans and isolate CPPF507 proved to be the most aggressive, whereas the least aggressive was N. kienholzii. Two N. alba isolates isolated from symptomless apple fruits and leaves were pathogenic to apples in the infection tests.  相似文献   

4.
Bull’s eye rot is a typical quiescent postharvest apple disease in major fruit-growing areas. The susceptibility of different apple cultivars to Neofabraea spp. (N. vagabunda and N. malicorticis) was assessed, with Granny Smith showing the most resistance and Cripps Pink the most susceptibility. To assess the factors involved in conidial germination, Neofabraea spp. were grown on crude protein extracts (CPEs) collected from apple fruits at different storage periods. Fungal germ tube growth rate and pathogenic enzyme (cellulase and xylanase) activity were assessed. Results showed that CPEs collected after 2 and 4 months of storage progressively stimulated conidial germination and germ tube elongation, while a lesser effect was observed from CPEs after 1 month of storage. Xylanase proved to be the main degrading enzyme secreted by all the isolates, while cellulase was produced only by N. vagabunda isolates. Overall, the isolate ID02 was the most virulent, based on more rapid germ tube elongation and greater activity of the lytic enzymes.  相似文献   

5.
Neofabraea vagabunda, causing bull’s eye rot, produces notable loss during cold storage of apples growing in cool humid regions. The infection initiates in the orchard, but the pathogen lives quiescently in fruit for some months before causing the symptoms of the disease. In vivo and in vitro assays were carried out to gain knowledge on the influence of fruit volatile organic compounds (VOCs) in N. vagabunda development and define volatile markers for pathogen detection, using SPME/GC-MS, PTR-ToF-MS analysis and light microscopic observations. This study reports that: (i) the main VOCs of Cripps Pink apple (highly susceptible to bull’s eye rot) are degraded during the conidial germination of N. vagabunda, stimulating pathogen hyphal growth towards the host; (ii) first disease symptoms appear when fruit releases VOCs related to senescence, which also stimulate pathogen hyphal growth; (iii) VOCs typical of ripe-senescent fruit are also emitted by infected fruit during N. vagabunda quiescence, and methanol and ethanol are the earliest markers of bull’s eye rot; and (iv) the in vitro volatile metabolism of Botrytis cinerea, Penicillium expansum and Colletotrichum fioriniae has similarities with that of N. vagabunda, but the volatile profile of each pathogen is distinguishable. Overall, this study provides novel knowledge on fruit–fungus interaction and insights for the development of tools for early disease detection in packing houses.  相似文献   

6.
Summary In October 1956 apothecia, belonging toPezicula malicorticis (Jackson)Nannfeldt (=Neofabraea malicorticis (Cordley) Jackson), the perfect stage of the parasite known in plant pathology literature asGloeosporium perennans, have been found on naturally infected appletrees in Druten and near Deest (Land van Maas en Waal) and on appletrees at Wageningen, which had been inoculated with mycelium ofG. perennans in October 1955. The apothecia occurred as well on the surface of the bark as in old conidial fructifications; they were sessile, clearly convex, bright-yellow under moist conditions and brownish when old or dry. The diameter of the apothecia was 0,4–1,6 mm. As many as 100 apothecia were found on a square cm. It is put forward that the formation of the apothecia has been favoured by the very wet weather of the preceding summer.

Ingénieur agronome aux Stations fédérales d'essais agricoles, Lausanne (Suisse).  相似文献   

7.
Historical records report Fusarium moniliforme sensu lato as the pathogen responsible for Fusarium diseases of sorghum; however, recent phylogenetic analysis has separated this complex into more than 25 species. During this study, surveys were undertaken in three major sorghum‐producing regions in eastern Australia to assess the diversity and frequency of Fusarium species associated with stalk rot‐ and head blight‐infected plants. A total of 523 isolates were collected from northern New South Wales, southern Queensland and central Queensland. Nine Fusarium species were isolated from diseased plants. Pathogenicity tests confirmed F. andiyazi and F. thapsinum were the dominant stalk rot pathogens, whilst F. thapsinum and species within the F. incarnatumF. equiseti species complex were most frequently associated with head blight.  相似文献   

8.
Endophytic fungi, which stimulate a variety of defence reactions in host plants without causing visible disease symptoms, have been isolated from almost every plant. However, beneficial interactions between fungal endophytes and pathogens from the same habitat remain largely unknown. An inoculation of Atractylodes lancea plantlets with Gilmaniella sp. AL12 (AL12) prior to infection with Fusarium oxysporum prevented the necrotization of root tissues and plant growth retardation commonly associated with fusarium root rot. Quantification of Foxysporum infections using real‐time PCR revealed a correlation between root rot symptoms and the relative amount of fungal DNA. Pretreatment with AL12 reduced the accumulation of reactive oxygen species stimulated by F. oxysporum. An in vitro analysis of their interactions under axenic culture conditions showed AL12 could inhibit F. oxysporum growth. Additionally, F. oxysporum infections were shown to decrease salicylic acid (SA) production compared with control plantlets. SA biosynthesis inhibitors, 2‐aminoindan‐2‐phosphonic acid and paclobutrazol, abolished the inhibition of F. oxysporum growth in A. lancea even after inoculation with AL12. The results indicated that the fungal endophyte protected A. lancea not only by direct antibiosis, but also by reversing the F. oxysporum‐mediated suppression of SA production.  相似文献   

9.
天津检验检疫局从智利进口的腐病苹果中分离了一株真菌,通过菌落、分生孢子形态特征比较,ITS序列比对分析,并通过科赫氏法则验证,确定该菌株为牛眼果腐病菌(Neofabraea alba),该病菌是导致苹果牛眼果腐病的4种病原真菌之一,该有害生物为我国首次截获。  相似文献   

10.
An important issue related to the epidemiology of fire blight, a devastating disease of apples and pears, is how its causal agent, the bacterium Erwinia amylovora, survives and disseminates in the environment. Almost no information is available on the possibility of this pathogen overwintering as a necrotroph. In this study, bacterial survival in dead apple and tobacco (a non‐host) leaf tissues was addressed. In necrotized leaves collected 5, 6, 7 and 8 months following shoot inoculation of apple trees, viable E. amylovora cells were present in over 50% of samples from the midrib and in over 10% of samples from lateral veins, but were never found in parenchyma. Using a PCR‐based method, pathogen DNA was detected in more than 50% of samples that were found to be free of viable cells by conventional plating out. However, PCR analysis was insufficient to distinguish between the DNA of viable and dead bacteria. Sugars appropriate for bacterial growth were found in dead apple leaves. In spot‐inoculated attached apple and tobacco leaves, a remarkable increase in the bacterial population was observed in lesions that developed as a hypersensitive response (HR). As in other necrotrophic interactions, bacterial proliferation was associated with massive hydrogen peroxide production and progression toward plant cell death. The results indicate that E. amylovora has an ability to survive as a semi‐necrotroph or necrotroph, which allows for overwintering in dead apple leaves.  相似文献   

11.
Brown rot caused by fungi belonging to the genus Monilinia is one of the major limiting factors of sour and sweet cherry production. Up to now, three species, M. fructigena, M. laxa and M. fructicola, have been identified as causal agents of brown rot on cherries worldwide. From 2010 to 2013, during the monitoring of cherry orchards in different areas of Poland, a fourth species, M. polystroma, was isolated from brown rot symptoms on sour and sweet cherry fruits. To the best of the authors’ knowledge, this is the first time M. polystroma has been reported as the causal agent of brown rot on cherries. The genetic diversity of M. polystroma isolates from cherries and other hosts was analysed using PCR MP, ISSR and RAPD techniques and showed its clear distinctness from other Monilinia spp. tested. The cluster analysis of fingerprinting data revealed a high similarity of M. polystroma isolates from Poland and their close relationship with the reference strain from Japan, indicating that this species is a recently introduced pathogen. The highest genetic distance between the examined isolates and the highest number of different genotypes was observed in an ISSR assay. Detailed genetic diversity characteristics revealed that M. polystroma isolates from cherries did not create a distinct group but were intermingled with M. polystroma isolates from other hosts. The results of the pathogenicity test conducted on different fruit species indicated a lack of host specificity for M. polystroma isolates.  相似文献   

12.
A large part of the area in Europe in which Fraxinus excelsior is native is currently affected by ash dieback, a threatening disease caused by the ascomycetous fungus Hymenoscyphus fraxineus. Fungi other than H. fraxineus also occur in large numbers on stems of the dying ash trees. To clarify their possible role in the dieback process, six fungal species common on dying stems and twigs of ash in Poland, i.e. Cytospora pruinosa, Diaporthe eres, Diplodia mutila, Fusarium avenaceum, F. lateritium and F. solani, were tested for pathogenicity using a test based on artificial wound inoculations of 6‐year‐old F. excelsior plants under field conditions, with H. fraxineus included for comparison. There were significant differences in index of pathogenicity among the fungi tested. Hymenoscyphus fraxineus (mean index 5.78) was the most pathogenic. Diplodia mutila (4.23) and C. pruinosa (4.02) were significantly less pathogenic than H. fraxineus, but significantly more than the other fungi. Diaporthe eres (2.43), F. avenaceum (1.92), F. solani (1.86) and F. lateritium (1.08) were the least pathogenic (< 0.0001). The extent of disease symptoms caused by F. solani and F. lateritium was statistically similar to the control (= 0.05). All tested fungi were successfully reisolated from inoculated stems. The contribution of the results to understanding the possible role of these fungi in the ash dieback process in F. excelsior, particularly in trees weakened after primary infection by H. fraxineus, is discussed.  相似文献   

13.
Pineapple heart rot disease, caused by Phytophthora nicotianae (syn. P. parasitica), is responsible for significant annual reductions in crop yield due to plant mortality. In Ecuador, new infections arise during the rainy season and increase production costs due to the need for biocontrol and fungicide applications. Studies of P. nicotianae population structure suggest that certain genetic groups are associated with host genera; however, it is not clear how many host‐specific lineages of the pathogen exist or how they are related. The objectives of this study were to determine the level of genetic variation in the P. nicotianae population causing heart rot disease of pineapple in Ecuador and compare the genotypes found on pineapple to those previously reported from citrus, tobacco and ornamentals. Thirty P. nicotianae isolates collected from infected pineapple leaves from four farms were genotyped using nine simple sequence repeat loci. In addition, the DNA sequences of mitochondrial loci cox2 + spacer and trnG‐rns were analysed. Together, these loci supported a single clonal lineage with two multilocus genotypes differing in a single allele and low mitochondrial diversity. This lineage was distinct but closely related to isolates collected from vegetables and ornamentals in Italy. The results support the hypothesis of host specialization of P. nicotianae in intensive cropping systems and contribute to the understanding of population structure of this important pathogen.  相似文献   

14.
A homothallic Phytophthora species was found to be consistently associated with a rot of mature fruits of two local cultivars of olive (Olea europaea) in Calabria, southern Italy. The phylogenetic analysis of sequences of the ITS1‐5.8S‐ITS2 region and cox1 gene enabled its identification as a new species of clade 2, with a basal position compared to previously described subclades. The new species is described formally with the epithet Phytophthora oleae, referring to the natural matrix from which it was isolated. A unique combination of molecular and morphological characters clearly separates P. oleae from other already described Phytophthora species. This new species produced semipapillate, occasionally bipapillate, persistent sporangia on simple sympodially branching sporangiophores as well as globose and smooth‐walled oogonia, paragynous antheridia and spherical, plerotic oospores. The pathogenicity of P. oleae was confirmed in inoculation trials on fruits of three olive cultivars, including the two local cultivars from which the pathogen had been isolated.  相似文献   

15.
The aim of this 4‐year study was to characterize temporal development of brown rot blossom blight and fruit blight (caused by Monilinia spp.) and their sporulating areas in sour cherry orchards; and to determine the relationships amongst incidence and sporulating area of blossom blight, fruit blight and fruit rot. The study was performed in integrated and organic orchard blocks on two cultivars (Újfehértói fürtös and Érdi b?term?). On both cultivars, disease progress on flowers and fruits was 2–10 times slower in the integrated than in the organic management system. The peak incidence values were 9 and 31 days after petal fall for blossom blight and fruit blight, respectively. After these dates, no new blight symptoms on flowers and/or fruits appeared and the disease was levelling off. Final blossom blight incidence ranged from 1 to 5% and from 12 to 34%, and fruit rot incidence from 2 to 6% and from 11 to 26% in the integrated and the organic orchards, respectively. The sum of fruit blight incidence ranged from 9 to 22% for the organic system, but was below 5% for the integrated system, while the final sporulating area was 5–16 mm2 and <3 mm2, respectively. Among the five highest Pearson's correlation coefficients, relationships between blossom blight and early fruit blight stage (= 0·845, = 0·0087 integrated; = 0·901, = 0·0015 organic), and between sporulating area and fruit rot (= 0791, = 0·0199 integrated; = 0·874, = 0·0039 organic) were the most significant relationships from an epidemic standpoint as they indicated a connection between different brown rot symptom types.  相似文献   

16.
Olive leprosy, caused by the fungus Phlyctema vagabunda, is a classic fruit rot disease widespread in the Mediterranean basin. From 2009 to 2013, new disease symptoms consisting of small circular necrotic leaf lesions, coin branch canker and shoot dieback were observed in Spanish and Portuguese olive orchards showing intense defoliation. Phlyctema‐like anamorphs were consistently isolated from leaves and shoots with symptoms. Representative isolates from affected leaves, shoots and fruits were characterized based on morphology of colonies and conidia, optimum growth temperature and comparison of DNA sequence data from four regions: ITS, tub2, MIT and rpb2. In addition, pathogenicity tests were performed on apple and olive fruits, and on branches and leaves of olive trees. Maximum mycelial growth rate ranged between 0.54 and 0.73 mm per day. Conidia produced on inoculated apple fruits showed slight differences in morphology among the representative fungal isolates evaluated. Phylogenetic analysis clustered all of the Phlyctema‐like isolates in the same clade, identifying them as Phlyctema vagabunda. On fruits, influence of wounding, ripening and cultivar resistance was studied, with cv. Blanqueta being the most susceptible cultivar. On branches, a mycelial‐plug inoculation method reproduced olive leprosy symptoms and caused shoot dieback. On leaves, Koch's postulates were fulfilled and the pathogen caused characteristic necrotic spots and plant defoliation. This is the first time that the pathogenicity of P. vagabunda in olive leaves has been demonstrated.  相似文献   

17.
Iris yellow spot virus (IYSV, genus Tospovirus) is a viral disease of bulb and seed onion crops and is transmitted by Thrips tabaci. Foliage damage of up to 75% has been reported in Kenya and Uganda. In this study, the rate of IYSV replication in the larva, pupa and adult stages of T. tabaci and other non‐vector thrips species and colour forms such as Frankliniella occidentalis, F. schultzei (dark) and F. schultzei (pale) was evaluated by monitoring relative levels of nucleocapsid (N) and non‐structural (NSs) proteins using N‐ and NSs‐specific antibodies. The effect of IYSV replication on mortality of thrips was also determined. N protein levels increased in all three stages of IYSV‐fed T. tabaci, indicating replication of IYSV. In IYSV‐fed non‐vector thrips, the increase of N protein levels in the larval stage was lower than IYSV‐fed T. tabaci but higher than their healthy counterparts. The N protein levels did not increase at pupal and adult stages. NSs protein was not detected in first instar of either vector or non‐vector thrips species. After a 4 h post‐acquisition period, a significant increase in NSs proteins was only observed in IYSV‐fed T. tabaci, clearly differentiating vectors and non‐vectors of IYSV. IYSV replication did not influence the survival of the vector thrips species, T. tabaci populations or the non‐vector thrips species. This study indicates the effectiveness of monitoring non‐structural proteins such as NSs, compared to nucleocapsid proteins, for differentiating vectors and non‐vectors of IYSV.  相似文献   

18.
The evergreen holm oaks (Quercus ilex subsp. ilex and Q. ilex subsp. ballota) are the most representative tree species in the Iberian peninsula and the main tree species in oak‐rangeland ecosystems (dehesas). Oak decline in western, central and southern parts of Spain has been associated with root rot caused by Phytophthora cinnamomi for decades. However, Phytophthora species such as P.  quercina and P. psychrophila have recently been found associated with Quercus decline in eastern Spain where calcareous soils are predominant. Soil and root samples from two Quercus forests presenting decline symptoms in two different geographical areas in eastern Spain (Carrascar de la Font Roja and Vallivana) were analysed by amplicon pyrosequencing. Metabarcoding analysis showed Phytophthora species diversity, and revealed that an uncultured Phytophthora taxon, named provisionally Phytophthora taxon ballota, was the predominant species in both areas. In addition, a real‐time PCR assay, based on the pyrosequencing results, was developed for the detection of this uncultured Phytophthora taxon, and also for the detection of P. quercina. TaqMan assays were tested on soil and root samples, and on Phytophthora pure cultures. The new assays showed high specificity and were consistent with metabarcoding results. A new real‐time PCR protocol is proposed to evaluate the implication of different Phytophthora spp. in oak decline in eastern Spain.  相似文献   

19.
Genotypic and virulence diversity of Neofusicoccum luteum and N. australe isolates recovered from grapevines displaying symptoms of dieback and decline in New Zealand were investigated. The universally primed PCR (UP‐PCR) method was used to investigate the genetic diversity of 40 isolates of N. luteum and 33 isolates of N. australe. Five UP‐PCR primers produced a total of 51 loci from N. luteum and 57 from N. australe with a greater number of polymorphic loci produced in N. australe (86%) compared with N. luteum (69%). Analysis of UP‐PCR data showed both species found in New Zealand vineyards were genetically diverse at both the inter‐ and intra‐vineyard levels with only a single pair of clonal isolates in N. luteum. Cluster analysis of UP‐PCR data produced four genetic groups in N. luteum and 10 in N. australe (< 0.05). For both species, there was no relationship between the genetic groups and the origin of isolates. The mean genetic diversity (H) of N. luteum was less than for N. australe, being 0.1791 and 0.2417, respectively. Pathogenicity assays of both species using isolates from either the same or different genetic groups inoculated onto either green shoots or grapevine trunks, showed virulence diversity within the population; however, no correlation was identified between genetic groups and virulence.  相似文献   

20.
The Gram‐negative bacterium Erwinia amylovora, causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that translocates effector proteins into plant cells that collectively function to suppress host defences and enable pathogenesis. Until now, there has only been limited knowledge about the interaction of effector proteins and host resistance presented in several wild Malus species. This study tested disease responses in several Malus wild species with a set of effector deletion mutant strains and several highly virulent E. amylovora strains, which are assumed to influence the host resistance response of fire blight‐resistant Malus species. The findings confirm earlier studies that deletion of the T3SS abolished virulence of the pathogen. Furthermore, a new gene‐for‐gene relationship was established between the effector protein Eop1 and the fire blight resistant ornamental apple cultivar Evereste and the wild species Malus floribunda 821. The results presented here provide new insights into the host–pathogen interactions between Malus sp. and E. amylovora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号