首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Agricultural management significantly affects methane (CH4) and nitrous oxide (N2O) emissions from paddy fields. However, little is known about the underlying microbiological mechanism. Field experiment was conducted to investigate the effect of the water regime and straw incorporation on CH4 and N2O emissions and soil properties. Quantitative PCR was applied to measure the abundance of soil methanogens, methane-oxidising bacteria, nitrifiers, and denitrifiers according to DNA and mRNA expression levels of microbial genes, including mcrA, pmoA, amoA, and nirK/nirS/nosZ. Field trials showed that the CH4 and N2O flux rates were negatively correlated with each other, and N2O emissions were far lower than CH4 emissions. Drainage and straw incorporation affected functional gene abundance through altered soil environment. The present (DNA-level) gene abundances of amoA, nosZ, and mcrA were higher with straw incorporation than those without straw incorporation, and they were positively correlated with high concentrations of soil exchangeable NH4+ and dissolved organic carbon. The active (mRNA-level) gene abundance of mcrA was lower in the drainage treatment than in continuous flooding, which was negatively correlated with soil redox potential (Eh). The CH4 flux rate was significantly and positively correlated with active mcrA abundance but negatively correlated with Eh. The N2O flux rate was significantly and positively correlated with present and active nirS abundance and positively correlated with soil Eh. Thus, we demonstrated that active gene abundance, such as of mcrA for CH4 and nirS for N2O, reflects the contradictory relationship between CH4 and N2O emissions regulated by soil Eh in acidic paddy soils.  相似文献   

2.

Purpose

Nitrification and denitrification, two of the key nitrogen (N) transformation processes in the soil, are carried out by a diverse range of microorganisms and catalyzed by a series of enzymes. Different management practices, such as continuous grazing, mowing, and periodic fencing off from grazing, dramatically influenced grassland ecosystems. This study aimed to examine the effects of management practices on the abundance and community structure of nitrifier and denitrifier communities in grassland ecosystems.

Materials and methods

Soil samples were collected from a semiarid grassland ecosystem in Xilingol region, Inner Mongolia, where long-term management practices including free-grazing, different periods of enclosure from grazing, and different frequencies of mowing were conducted. Real-time quantitative polymerase chain reaction (Q-PCR), denaturing gradient gel electrophoresis (DGGE), sequencing, and phylogenetic analysis were applied to estimate the abundance and composition of amoA, nirS, nirK, and nosZ genes.

Results and discussion

The ammonia-oxidizing archaea (AOA) amoA copies were in the range 5.99?×?108 to 8.60?×?108, while those of ammonia-oxidizing bacteria (AOB) varied from 3.02?×?107 to 4.61?×?107. The abundance of AOA was substantially higher in the light grazing treatment (LG) than in the mowing treatments. The quantity and intensity of DGGE bands of AOA varied with pasture management. In stark contrast, AOB population abundance and community structure remained largely unchanged in all the soils irrespective of the management practices. All these results suggested that ammonia oxidizers were dominated by AOA. The higher gene abundance and greater intensity of DGGE bands of nirS and nosZ under the enclosure treatments would suggest greater stimulated denitrification. The ratio of nosZ/(nirS?+?nirK) was higher in mowing treatments than in the free-grazing and enclosure treatments, possibly leading to more complete denitrification. Correlation analysis indicated that soil moisture and inorganic nitrogen content were the two main soil environmental variables that influence the community structure of nitrifiers and denitrifiers.

Conclusions

In this semiarid neutral to alkaline grassland ecosystem under low temperature conditions, AOA mainly affiliated with Nitrososphaera dominated nitrification. These results clearly demonstrate that grassland management practices can have a major impact on nitrifier and denitrifier communities in this semiarid grassland ecosystem, under low temperature conditions.
  相似文献   

3.
Previous studies have shown that phosphorus addition to P-limited soils increases gaseous N loss. A possible explanation for this phenomenon is element stoichiometry (specifically of C:N:P) modifying linked nutrient cycling, leading to enhanced nitrification and denitrification. In this study, we investigated how P stoichiometry influenced the dynamics of soil N-cycle functional genes. Rice seedlings were planted in P-poor soils and incubated with or without P application. Quantitative PCR was then applied to analyze the abundance of ammonia-oxidizing (amoA) and denitrifying (narG nirK, nirS, nosZ) genes in soil. P addition reduced bacterial amoA abundance but increased denitrifying gene abundance. We suggest this outcome is due to P-induced shifts in soil C:P and N:P ratios that limited ammonia oxidization while enhancing P availability for denitrification. Under P application, the rhizosphere effect raised ammonia-oxidizing bacterial abundance (amoA gene) and reduced nirK, nirS, and nosZ in rhizosphere soils. The change likely occurred through greater C input and O2 release from roots, thus altering C availability and redox conditions for microbes. Our results show that P application enhances gaseous N loss potential in paddy fields mainly through stimulating denitrifier growth. We conclude that nutrient availability and elemental stoichiometry are important in regulating microbial gene responses, thereby influencing key ecosystem processes such as denitrification.
Graphical abstract ?
  相似文献   

4.
Since the development of effective N2O mitigation options is a key challenge for future agricultural practice, we studied the interactive effect of tillage systems on fertilizer-derived N2O emissions and the abundance of microbial communities involved in N2O production and reduction. Soil samples from 0–10 cm and 10–20 cm depth of reduced tillage and ploughed plots were incubated with dairy slurry (SL) and manure compost (MC) in comparison with calcium ammonium nitrate (CAN) and an unfertilized control (ZERO) for 42 days. N2O and CO2 fluxes, ammonium, nitrate, dissolved organic C, and functional gene abundances (16S rRNA gene, nirK, nirS, nosZ, bacterial and archaeal amoA) were regularly monitored. Averaged across all soil samples, N2O emissions decreased in the order CAN and SL (CAN?=?748.8?±?206.3, SL?=?489.4?±?107.2 μg kg?1) followed by MC (284.2?±?67.3 μg kg?1) and ZERO (29.1?±?5.9 μg kg?1). Highest cumulative N2O emissions were found in 10–20 cm of the reduced tilled soil in CAN and SL. N2O fluxes were assigned to ammonium as source in CAN and SL and correlated positively to bacterial amoA abundances. Additionally, nosZ abundances correlated negatively to N2O fluxes in the organic fertilizer treatments. Soils showed a gradient in soil organic C, 16S rRNA, nirK, and nosZ with greater amounts in the 0–10 than 10–20 cm layer. Abundances of bacterial and archaeal amoA were higher in reduced tilled soil compared to ploughed soils. The study highlights that tillage system induced biophysicochemical stratification impacts net N2O emissions within the soil profile according to N and C species added during fertilization.  相似文献   

5.

Purpose

Changes of nitrogen (N) cycle caused by N fertilization and precipitation regimes have affected the key ecosystem structure and functions in temperate steppe, which may modify the structure of soil microbial communities involved in N transformation. This paper was designated to examine the response of soil ammonia oxidizers and denitrifiers to the N fertilization and precipitation regimes in a semi-arid steppe where N and water contents are major limiting factors of the grassland productivity.

Materials and methods

This study was based on a long-term N fertilization and precipitation regimes experiment in Inner Mongolia (116° 17′ 20″ E, 42° 2′ 29″ N). The treatments including CK (control), R (reduced precipitation), W (30% increase in precipitation), N (10 g N m?2 y?1), RN (reduced precipitation and 10 g N m?2 y?1), and WN (30% increase in precipitation and 10 g N m?2 y?1). Soil basic chemical properties and microbial activities were analyzed. Molecular methods were applied to determine the abundance, structure and diversity of ammonia oxidizers and denitrifiers. Statistical analysis detected the main and interactive effect of treatments on soil microbial communities and revealed the relationship between soil microbial community structures and environmental factors.

Results and discussion

N fertilization significantly increased ammonia-oxidizing bacteria (AOB) abundance. Ammonia-oxidizing archaea (AOA) community structure was markedly changed in N fertilizer treatment and strongly affected by soil pH, while soil nitrate and water content correlated with AOB community structure. Soil nitrate was the key factor influencing nirK gene community structure, while soil pH and water content explained much of the variations of nosZ gene community. AOB-amoA and nosZ gene community diversities were influenced by precipitation regimes and interaction of N fertilization and precipitation regimes, respectively.

Conclusions

N fertilization and precipitation regimes had significant influences on the changes of soil properties and microbial functional communities. Soil nitrification was mainly driven by AOB in the semi-arid grassland. Changes of substrate content and soil pH were the key factors in shifting functional microbial communities. The non-synergistic effects of N fertilization and precipitation regimes on the microbial functional groups indicated that the negative effect of lower pH induced by N fertilization would be alleviated by precipitation regimes, which should be well considered in grassland restoration.
  相似文献   

6.

Purpose

Nitrification and denitrification processes dominate nitrous oxide (N2O) emission in grassland ecosystems, but their relative contribution as well as the abiotic factors are still not well understood.

Materials and methods

Two grassland soils from Duolun in Inner Mongolia, China, and Canterbury in New Zealand were used to quantitatively compare N2O production and the abundance of bacterial and archaeal amoA, denitrifying nirK and nirS genes in response to N additions (0 and 100 μg NH4 +–N g?1 dry soil) and two soil moisture levels (40 and 80 % water holding capacity) using microcosms.

Results and discussion

Soil moisture rather than N availability significantly increased the nitrification rate in the Duolun soil but not in the Canterbury soil. Moreover, N addition promoted denitrification enzyme activities in the Canterbury soil but not in the Duolun soil. The abundance of bacterial and archaeal amoA genes significantly increased as soil moisture increased in the Duolun soil, whereas in the Canterbury soil, only the abundance of bacterial amoA gene increased. The increase in N2O flux induced by N addition was significantly greater in the Duolun soil than in the Canterbury soil, suggesting that nitrification may have a dominant role in N2O emission for the Duolun soil, while denitrification for the Canterbury soil.

Conclusions

Microbial processes controlling N2O emission differed in grassland soils, thus providing important baseline data in terms of global change.
  相似文献   

7.
This study evaluated the effect of silicate fertilizer on denitrification and associated gene abundance in a paddy soil. A consecutive trial from 2013 to 2015 was conducted including the following treatments: control (CK), mineral fertilizer (NPK), NPK plus sodium metasilicate (NPK + MSF), and NPK plus slag-based silicate fertilizer (NPK + SSF). Real-time quantitative PCR (qPCR) was used to analyze the abundances of nirS, nirK, and nosZ genes. Potential N2O emissions and ammonium and nitrate concentrations were related to the nirS and nirK gene abundance. Compared with the NPK treatments, the addition of a Si fertilizer decreased N2O emission rates and denitrification potential by 32.4–66.6 and 22.0–59.2%, respectively, which were probably related to increased rice productivity, soil Fe availability, and soil N depletion. The abundances of nirS and nirK genes were decreased by 17.7–35.8% and 21.1–43.5% with addition of silicate fertilizers, respectively. Rates of total N2O and N2O from denitrification (DeN2O) emission were positively correlated with the nirS and nirK gene abundance. Nitrate, exchangeable NH4 +, and Fe concentrations were the main factors regulating the nirS and nirK gene abundance. Silicate fertilization during rice growth may serve as an effective approach to decreasing N2O emissions.  相似文献   

8.

Purpose

The nitrification inhibitor 3,4-dimethylpyrazol-phosphate (DMPP) and the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) can mitigate N losses through reducing nitrification and ammonia volatilization, respectively. However, the impact of repeated applications of these inhibitors on nitrogen cycling microorganisms is not well documented. This study aimed to investigate the changes in the abundance and community structure of the functional microorganisms involved in nitrification and denitrification in Australian pasture soils after repeated applications of DMPP and nBTPT.

Materials and methods

Soil was collected in autumn and spring, 2014 from two pasture sites where control, urea, urea ammonium nitrate, and urea-coated inhibitors had been repeatedly applied over 2 year. Soil samples were analyzed to determine the potential nitrification rates (PNRs), the abundances of amoA, narG, nirK and bacterial 16S rRNA genes, and the community structure of ammonia oxidizers.

Results and discussion

Two years of urea application resulted in a significantly lower soil pH at Terang and a significant decrease in total bacterial 16S rRNA gene abundance at Glenormiston and led to significantly higher PNRs and abundances of ammonia oxidizers compared to the control. Amendment with either DMPP or nBTPT significantly decreased PNRs and the abundance of amoA and narG genes. However, there was no fertilizer- or inhibitor-induced change in the community structure of ammonia oxidizers.

Conclusions

These results suggest that there were inhibitory effects of DMPP and nBTPT on the functional groups mediating nitrification and denitrification, while no significant impact on the community structure of ammonia oxidizers was observed. The application of nitrification or urease inhibitor appears to be an effective approach targeting specific microbial groups with minimal effects on soil pH and the total bacterial abundance.
  相似文献   

9.
Soil moisture and nitrogen (N) are two important factors influencing N2O emissions and the growth of microorganisms. Here, we carried out a microcosm experiment to evaluate effects of soil moisture level and N fertilizer type on N2O emissions and abundances and composition of associated microbial communities in the two typical arable soils. The abundances and community composition of functional microbes involved in nitrification and denitrification were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP), respectively. Results showed that N2O production was higher at 90% water-filled pore (WFPS) than at 50% WFPS. The N2O emissions in the two soils amended with ammonium were higher than those amended with nitrate, especially at relatively high moisture level. In both soils, increased soil moisture stimulated the growth of ammonia-oxidizing bacteria (AOB) and nitrite reducer (nirK). Ammonium fertilizer treatment increased the population size of AOB and nirK genes in the alluvial soil, while reduced the abundances of ammonia-oxidizing archaea (AOA) and denitrifiers (nirK and nosZ) in the red soil. Nitrate addition had a negative effect on AOA abundance in the red soil. Total N2O emissions were positively correlated to AOB abundance, but not to other functional genes in the two soils. Changed soil moisture significantly affected AOA rather than AOB community composition in both soils. The way and extent of N fertilizers impacted on nitrifier and denitrifier community composition varied with N form and soil type. These results indicate that N2O emissions and the succession of nitrifying and denitrifying communities are selectively affected by soil moisture and N fertilizer form in the two contrasting types of soil.  相似文献   

10.
Soil samples were collected in June and October from areas with three land-use types, i.e., Robinia pseudoacacia L. (RP), Caragana korshinskii Kom. (CK), and abandoned land (AL), of which the former two were afforested areas, whereas the latter was not. These areas were converted from similar farmlands 40 years prior. Illumina sequencing of 16S rRNA gene and fungal ITS gene was used to analyze soil bacterial and fungal diversity. Additionally, plant communities, soil properties, fine root biomass, and C, N, and P levels in fine root and microbial biomass were estimated. Compared to AL, the C:N:P stoichiometry in fine root and microbial biomass in the afforested lands was synchronously changed, especially the N:P ratio. Soil microbial diversities were affected by afforestation and were more related to N:P ratio than C:P and C:N ratios. Moreover, Alpha-proteobacteria, Gamma-proteobacteria, and Bacteroidetes were significantly more abundant in afforested soils than in the AL soil, and the abundances of Actinobacteria, Chloroflexi, Cyanobacteria, and Nitrospirae ranked as AL > RP or CK. For fungal taxa, Ascomycota abundance responded positively to afforestation, whereas Basidiomycota abundance responded negatively. Changes of soil microbial taxa were significantly correlated with the N:P ratio in fine root and microbial biomass, which explained 54.1 and 55% of the total variation in bacterial and fungal taxa, respectively. Thus, our results provide evidence that compositions of soil microbial communities are linked to the N:P ratio in the plant-soil system.  相似文献   

11.
An experiment was conducted with tobacco (Nicotiana tabacum L.) grown in a Cd- and Pb-contaminated calcareous soil amended with 0.0, 1.0, 2.5, and 5.0% (w/w) tobacco stalk biochar (BC). The BC amendment significantly increased organic matter, total C, N, P, and K contents of soil, and the C/N ratio. Bioavailable metal concentrations (DTPA extraction) decreased by increasing BC application rate. The 5.0% BC amendment significantly decreased the DTPA-extractable Cd and Pb by 10.4 and 13.6%, respectively. Correspondingly, the bioaccumulation and translocation factors of Cd and Pb also decreased by increasing the BC addition rates and this indicated that BC inhibited the uptake and transfer of both Cd and Pb by tobacco plants. Moreover, high-throughput sequencing revealed that BC increased Chao1 richness, Shannon’s diversity and Simpson’s diversity of bacterial communities of soil. The relative abundance and genera composition of Adhaeribacter, Rhodoplanes, Pseudoxanthomonas, and Candidatus Xiphinematobacter increased under BC treatments, while those of Kaistobacter, Lacibacter, and Pirellula decreased. Overall, BC increased soil nutrients (C, N, P, and K contents), enhanced bacterial diversity indexes and richness, and changed the bacterial community composition, which may all have contributed to reduce the mobility and bioavailability of both Cd and Pb in a calcareous soil.  相似文献   

12.
Organic farming systems receive organic amendments to maintain soil fertility and supply nutrients for plant growth. This study investigated the effect of organic fertilizers (no amendment as control, compost, and manure), and their interaction with cover crops (millet, buckwheat, and black turtle bean) on soil enzyme activities, N transformation rates, and functional gene abundances under an organic production system. Organic N fertilizers had a stronger effect than cover crop type on soil function and functional gene abundances. Soil enzyme activities were increased by both compost and manure, but there were few differences between these treatments. Nitrification potential, nitrite oxidation potential, and denitrification potential were significantly higher in manure-treated than in control and compost-treated soils, indicating application of manure had a higher N loss potential than compost application in this organic farming system. Organic N fertilizers significantly increased the abundance of some genes involved in N mineralization, ammonification, and nitrification (sub, ureC, bacterial amoA and nxrB). The activity of ammonia-oxidizing bacteria and archaea were both increased by organic N fertilizers, and their activities were higher in manure-treated than in compost-treated soils. Overall, the abundance of functional genes was significantly correlated with their corresponding enzyme activity. However, functional gene abundance was less important than soil chemical and microbiological properties in explaining the variation in the corresponding enzyme activity.  相似文献   

13.
Alkaline phosphomonoesterase (ALP) mainly originates from soil microbial secretion and plays a crucial role in the turnover of soil phosphorus (P). To examine the response of ALP-encoding microbial communities (analysed for the biomarker of the ALP gene, phoD) of soils and derivative soil fractions to different fertilisation regimes, soil samples were collected from a long-term experimental field (over 35 years). The different organic P (Po) pools of soil fractions and the ALP activity of soil were also determined. Compared with chemical-only fertilised soils, the ALP activity was 232–815% higher in organic-amended soils, and the highest enzyme activity was observed in the organic-only fertilised treatment. The abundance of the phoD gene harbouring in soil fractions, determined by quantitative PCR (qPCR), was affected by different fertilisations. The highest abundance of the phoD gene was generally detected in the 2–63-μm-sized fraction (silt), but most phoD-encoding microbial species were associated to the 0.1–2-μm-sized fraction (clay) in the chemical-only fertilised soil. The contents of labile Po (LPo), moderately labile Po (MLPo) and fulvic acid-associated Po (FAPo) were significantly correlated with the phoD gene abundance, whereas only LPo content was significantly correlated with the ALP activity. The dominant phoD-encoding phylas were Actinobacteria and Proteobacteria, according to a high-throughput sequencing. Bradyrhizobium, a N2-fixer identified as a phoD-encoding genus, showed the highest abundance in fertilised soils. The abundance of Bradyrhizobium, Streptomyces, Modestobacter, Lysobacter, Frankia and Burkholderia increased with the organic-only amendment and was significantly correlated with the ALP activity. According to structure equation models (SEM), pH and LPo content significantly and directly affected the ALP activity; the soil organic C (Corg) content was related to composition and abundances of phoD-harbouring microbial communities; since both microbial properties were correlated to the ALP activity, the Corg content was indirectly related to the ALP activity. In conclusion, soil management practices can be used to optimise the contents of soil available P and the organic P with regulation of soil ALP activity and the community composition of corresponding microbes.  相似文献   

14.

Purpose

Organic matter amendment is usually used to improve soil physicochemical properties and to sequester carbon for counteracting climate change. There is no doubt that such amendment will change microbial activity and soil nitrogen transformation processes. However, the effects of straw and biochar amendment on anammox and denitrification activity and on community structure in paddy soil are unclear.

Materials and methods

We conducted a 30-day pot experiment using rice straw and rice straw biochar to deepen our understanding about the activity, microbial abundance, and community structure associated with soil nitrogen cycling during rice growth.

Results and discussion

Regarding activity, anammox contributed 3.1–8.1% of N2 production and denitrification contributed 91.9–96.9% of N2 production; straw amendment resulted in the highest denitrification rate (38.9 nmol N g?1 h?1), while biochar amendment resulted in the highest anammox rate (1.60 nmol N g?1 h?1). Both straw and biochar amendments significantly increased the hzsB and nosZ gene abundance (p < 0.05). Straw amendment showed the highest nosZ gene abundance, while biochar amendment showed the highest hzsB gene abundance. Phylogenetic analysis of the anammox bacteria 16S rRNA genes indicated that Candidatus Brocadia and Kuenenia were the dominant genera detected in all treatments.

Conclusions

Straw and biochar amendments have different influences on anaerobic ammonia oxidation and denitrification within paddy soil. Our results suggested that the changes in denitrification and anammox rates in the biochar and straw treatments were mainly linked to functional gene abundance rather than microbial community structure and that denitrification played the more major role in N2 production in paddy soil.
  相似文献   

15.
How soil microbial communities respond to precipitation seasonality change remains poorly understood, particularly for warm-humid forest ecosystems experiencing clear dry-wet cycles. We conducted a field precipitation manipulation experiment in a subtropical forest to explore the impacts of reducing dry-season rainfall but increasing wet-season rainfall on soil microbial community composition and enzyme activities. A 67% reduction of throughfall during the dry season decreased soil water content (SWC) by 17–24% (P < 0.05), while the addition of water during the wet season had limited impacts on SWC. The seasonal precipitation redistribution had no significant effect on the microbial biomass and enzyme activities, as well as on the community composition measured with phospholipid fatty acids (PLFAs). However, the amplicon sequencing revealed differentiated impacts on bacterial and fungal communities. The dry-season throughfall reduction increased the relative abundance of rare bacterial phyla (Gemmatimonadetes, Armatimonadetes, and Baoacteriodetes) that together accounted for only 1.5% of the total bacterial abundance by 15.8, 40, and 24% (P < 0.05), respectively. This treatment also altered the relative abundance of the two dominant fungal phyla (Basidiomycota and Ascomycota) that together accounted for 72.4% of the total fungal abundance. It increased the relative abundance of Basidiomycota by 27.4% while reduced that of Ascomycota by 32.6% (P < 0.05). Our results indicate that changes in precipitation seasonality can affect soil microbial community composition at lower taxon levels. The lack of community-level responses may be ascribed to the compositional adjustment among taxonomic groups and the confounding effects of other soil physicochemical variables such as temperature and substrate availability.  相似文献   

16.
Two seasonal pot experiments were conducted to investigate the effect of biofertilizer application after mixture of lime and ammonium bicarbonate (LA) fumigation, on banana Fusarium wilt disease suppression and soil microbial community composition. Biofertilizer application after LA fumigation decreased 80% of disease incidence compared to control of biofertilizer application to non-fumigated soil. Biofertilizer application after fumigation clearly manipulated soil microbial community composition as revealed by non-metric multidimensional scaling and Venn diagram. LA fumigation significantly reduced the abundance of F. oxysporum while biofertilizer application after fumigation could further decrease it. Furthermore, indigenous microbes, e.g., Bacillus, Pseudomonas, and Mortierella, were associated with disease suppression. Biofertilizer application after fumigation significantly (p?<?0.05) increased the soil pH and content of soil total C and available P and K, and this probably reshaped soil microbial community as revealed by redundancy analysis and variance partitioning analysis. The observed disease suppression due to biofertilizer application after soil fumigation can be attributed to the reduced abundance of F. oxysporum by general suppression resulting from manipulated soil properties and recovered soil microbiome.  相似文献   

17.
The aim of this study was to determine the responses of nitrifiers and denitrifiers to understand microbial pathways of nitrous oxide (N2O) emissions in grassland soils that received inputs of sheep excreta. Sheep dung and synthetic sheep urine were applied at three different rates, simulating a single, double, or triple overlapping of urine or dung depositions in the field. Quantitative PCR and high-throughput sequencing were combined with process-based modeling to understand effects of sheep excreta on microbial populations and on pathways for N2O production. Results showed that emissions of N2O from urine were significantly higher than from dung, ranging from 0.12 to 0.78 kg N2O-N ha?1 during the 3 months. The N2O emissions were significantly related to the bacterial amoA (r?=?0.373, P?<?0.001) and nirK (r?=?0.614, P?<?0.001) gene abundances. It was autotrophic nitrification that dominated N2O production in the low urine-N rate soils, whereas it was denitrification (including nitrifier denitrification and heterotrophic denitrification) that dominated N2O production in the high urine-N rate soils. Nitrifier denitrification was responsible for most of the N2O emissions in the dung-treated soils. This study suggests that nitrifier denitrification is indeed an important pathway for N2O emissions in these low fertility and dry grazed grassland ecosystems.  相似文献   

18.
Fertilization is an important factor influencing the chemical structure of soil organic carbon (SOC) and soil microbial communities; however, whether any connection exists between the two under different fertilization regimes remains unclear. Soils from a 27-year field experiment were used to explore potential associations between SOC functional groups and specific bacterial taxa, using quantitative multiple cross-polarization magic-angle spinning 13C nuclear magnetic resonance and 16S rRNA gene sequencing. Treatments included balanced fertilization with organic materials (OM) and with nitrogen (N), phosphorus (P), and potassium (K) mineral fertilizers (NPK); unbalanced fertilization without one of the major elements (NP, PK, or NK); and an unamended control. These treatments were divided into four distinct groups, namely OM, NPK, NP plus PK, and NK plus control, according to their bacterial community composition and SOC chemical structure. Soil total P, available P, and SOC contents were the major determinants of bacterial community composition after long-term fertilization. Compared to NPK, the OM treatment generated a higher aromatic C–O and OCH3 and lower alkyl C and OCH abundance, which were associated with the enhanced abundance of members of the Acidobacteria subgroups 6 and 5, Cytophagaceae, Chitinophagaceae, and Bacillus sp.; NP plus PK treatments resulted in a higher OCH and lower aromatic C–C abundance, which showed a close association with the enrichment of unclassified Chloracidobacteria, Syntrophobacteraceae, and Anaerolineae and depletion of Bacillales; and NK plus control treatments resulted in a higher abundance of aromatic C–C, which was associated with the enhanced abundance of Bacillales. Our results indicate that different fertilization regimes changed the SOC chemical structure and bacterial community composition in different patterns. The results also suggest that fertilization-induced variations in SOC chemical structure were strongly associated with shifts in specific microbial taxa which, in turn, may be affected by changes in soil properties.  相似文献   

19.
The asymbiotic diazotrophic bacteria are important for nitrogen (N) input to soil. Here, we investigated asymbiotic diazotrophic bacteria in an acidic red soil from functional, phylogenetic, and ecological perspectives. We firstly confirmed that phosphorus (P) availability determines the overall asymbiotic N fixation potential in the red soil. Then, we analyzed the soil bacterial community and N fixing (nifH) gene composition. Long-term different fertilizations significantly affected the composition of soil bacterial community. In addition, long-term organic cultivations increased most of the asymbiotic diazotrophic bacteria and the corresponding nifH gene abundances. Few asymbiotic diazotrophic bacteria, belonging to Chloroflexaceae, Methylocystaceae, Enterobacteriaceae, and Pseudomonadaceae, and their corresponding nifH genes were more abundant in N and P co-limited than in not co-limited soils, suggesting that some bacterial taxa from these families might be activated under nutrient limited conditions. Our findings provided new information for the distribution of asymbiotic diazotrophic bacteria in red soil and gave insights into the ecology of diazotrophic bacteria.  相似文献   

20.
DNA isolation from soil samples and amplification of fragment of a key gene of nitrification, archaeal and bacterial amoA, revealed presence of the product in all investigated soil samples. Characteristics of ammonia-oxidizing microbial communities in agrocenoses and undisturbed soil were determined. Bacteria were predominant in agrocenoses (at circum-neurtal pH), whereas the share of representatives of domain Archaea (phylum Thaumarchaeota) increased in prokaryotic ammonia-oxidizing complexes of undisturbed forest ecosystems (at low pH). It was demonstrated that the contribution of taumarhaea in nitrous oxide emission from gray forest soil may reach 20–25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号