首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

2.

Purpose

Vegetables are major economic crops in China. Their cultivation usually involves high fertilizer application rates leading to significant losses of N and P to the wider environment, resulting in water contamination and low nutrient use efficiency. Hence, it is a matter of urgency to understand the mechanisms and factors that affect N and P losses in vegetable production systems in order to develop optimum fertilization regimes.

Materials and methods

Different fertilization regimes were applied in a long-term chili (Capsicum spp. L.) production soil to study the effects on nitrogen (N) and phosphorus (P) runoff losses, microbial biomass, microbial community, and crop yields. Three fertilization regimes were implemented: control (no fertilizer; CK), farmer’s fertilization practice (FFP), and site-specific nutrient management (SSNM). A fixed collection device was used to quantify the total volume of water output after each precipitation event. All water samples were analyzed for total nitrogen, ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3?-N), total phosphorus (TP), and available phosphorus (AP). Soil samples were collected for analysis of the physicochemical properties and for DNA extraction after chili harvest. High-throughput sequencing was used to further investigate the relationship between the microbial community and nutrient losses.

Results and discussion

The SSNM fertilizer regime resulted in a 23.3% yield increase and enhanced agronomic N use efficiency from 11.87 to 15.67% compared with the FFP treatment. Soil available nutrients (i.e., AN and AP) and ATP content increased significantly after SSNM implementation. Under the SSNM regime, N losses decreased by 25.8% compared with FFP but did not lead to significantly different P losses. High-throughput sequencing results showed that each treatment formed a unique microbial community structure. VPA results revealed that the microbial community structure was mainly (50.56%) affected by the interactions between N and P. Mantel results indicated that the soil properties that significantly affected soil microbial community structure followed the order: AP, AK, and salinity.

Conclusions

Our study has demonstrated that SSNM not only generates lower N losses but also provides higher contents of soil available nutrients and plant yield, which were mainly attributed to the multiple top dressings and meeting of the plants’ demand with adequate nutrient supplies. The combined data showed that the microbial community differentiation between the different fertilizer regimes was mainly linked to the interactions between N and P in the soil.
  相似文献   

3.

Purpose

Evergreen broad-leaved forest ecosystems are common in east China, where they are both ecologically and economically important. However, nitrogen (N) addition over many years has had a detrimental effect on these ecosystems. The objective of this research was to evaluate the effect of 4 years of N addition on microbial communities in an evergreen broad-leaved forest in southern Anhui, China.

Materials and methods

Allochthonous N in the form of aqueous NH4NO3 and phosphorus (P) in the form of Ca(H2PO4)2·H2O were applied at three doses with a control (CK, stream water only without fertilizer): low-N (50 kg N ha?1 year?1), high-N (100 kg N ha?1 year?1) and high-N+P (100 kg N ha?1 year?1 + 50 kg P ha?1 year?1). Quantitative PCR analysis of microbial community size and Illumina platform-based sequencing analysis of the V3-V4 16S rRNA gene region were performed to characterize soil bacterial community abundance, structure, and diversity.

Results and discussion

Bacterial diversity was increased in low-N and high-N treatments and decreased in the high-N+P treatment, but α-diversity indices were not significantly affected by N additions. Proteobacteria, Acidobacteria, and Actinobacteria were the predominant phyla in all treatments, and the relative abundance of different genera varied among treatments. Only soil pH (P = 0.051) showed a weak correlation with the bacterial community in CK and low-N treatment.

Conclusions

The composition of the bacterial community and the abundance of different phyla were significantly altered by N addition. The results of the present study indicate that soil bacterial communities in subtropical evergreen broad-leaved forest are, to a certain extent, resilient to changes derived from N additions.
  相似文献   

4.

Purpose

Irrigation and fertilization can change soil environment, which thereby influence soil microbial metabolic activity (MMA). How to alleviate the adverse effects by taking judicious saline water irrigation and fertilization regimes is mainly concerned in this research.

Materials and methods

Here, we conducted a field orthogonal designed test under different saline water irrigation amount, water salinity, and nitrogen fertilizer application. The metabolic profiles of soil microbial communities were analyzed by using the Biolog method.

Results and discussion

The results demonstrated that irrigation amount and fertilizer application could significantly change MMA while irrigation water salinity had no significant effect on it. Medium irrigation amount (30 mm), least (50 kg ha?1) or medium (350 kg ha?1) N fertilizer application, and whatever irrigation water salinity could obtain the optimal MMA. Different utilization rates of carbohydrates, amino acids, carboxylic acids, and polymers by soil microbial communities caused the differences of the effects, and D-galactonic acid γ-lactone, L-arginine, L-asparagine, D-glucosaminic acid, Tween 80, L-threonine, and D-galacturonic acid were the indicator for distinguishing the effects.

Conclusions

The results presented here demonstrated that by regulating irrigation water amount and fertilizer application, the effects of irrigation salinity on MMA could be alleviated, which offered an efficient approach for guiding saline water irrigation.
  相似文献   

5.

Purpose

The alpine meadow has received mounting attention due to its degradation resulting from overgrazing on the Tibetan Plateau. However, belowground biotic characteristics under varied grazing stresses in this ecosystem are poorly understood.

Materials and methods

Here, the responses of soil protozoan abundance, community composition, microbial biomass, and enzyme activity to five grazing patterns including (1) artificial grassland without grazing (AG), (2) winter grazing (WG), (3) grazing for 7 months within a fence (GF), (4) continuous grazing for a whole year (CG), and (5) natural heavy grazing (HG) were investigated for two continuous years. Soil protozoan community composition was investigated using the most possible number (MPN) method, and soil microbial biomass and enzyme activity were analyzed using chloroform fumigation extraction and substrate utilization methods, respectively. Multivariate statistical analysis, the analysis of variance (ANOVA), multiple comparisons, and correlation analysis were together performed.

Results and discussion

The WG treatment had the highest abundance of total protozoa (2342–2524 cell g?1). Compared with AG treatment, HG treatment significantly reduced the abundance of soil total, flagellate and ciliate protozoa, and protease activities in 2012 and 2013. Significantly, lower soil microbial biomass nitrogen (MBN) was also observed in the HG (6.60 and 14.6 mg N kg?1) than those in other four treatments (22.3–82.9 mg N kg?1) both in 2012 and 2013, whereas significantly higher microbial biomass carbon (MBC) was observed in HG than that in AG treatment in 2012. Moreover, significantly positive correlations were detected between the abundance of soil protozoa and soil moisture, pH, organic C, total N, and MBN. Our results indicated that soil protozoa showed a negative response to increasing grazing intensities and therefore, suggesting that aboveground grazing practices also exerted strong impact on belowground protozoa, not only on soil microbial characteristics.

Conclusions

Soil protozoan community composition was apparently different between the HG treatment and other four grazing patterns and was potentially impacted by altered soil properties and MBC and/or MBN. Our results suggested that moderate grazing may sustain better belowground biotic diversity and ecosystem functioning in this alpine meadow on the Tibetan Plateau.
  相似文献   

6.

Purpose

Organic matter amendment is usually used to improve soil physicochemical properties and to sequester carbon for counteracting climate change. There is no doubt that such amendment will change microbial activity and soil nitrogen transformation processes. However, the effects of straw and biochar amendment on anammox and denitrification activity and on community structure in paddy soil are unclear.

Materials and methods

We conducted a 30-day pot experiment using rice straw and rice straw biochar to deepen our understanding about the activity, microbial abundance, and community structure associated with soil nitrogen cycling during rice growth.

Results and discussion

Regarding activity, anammox contributed 3.1–8.1% of N2 production and denitrification contributed 91.9–96.9% of N2 production; straw amendment resulted in the highest denitrification rate (38.9 nmol N g?1 h?1), while biochar amendment resulted in the highest anammox rate (1.60 nmol N g?1 h?1). Both straw and biochar amendments significantly increased the hzsB and nosZ gene abundance (p < 0.05). Straw amendment showed the highest nosZ gene abundance, while biochar amendment showed the highest hzsB gene abundance. Phylogenetic analysis of the anammox bacteria 16S rRNA genes indicated that Candidatus Brocadia and Kuenenia were the dominant genera detected in all treatments.

Conclusions

Straw and biochar amendments have different influences on anaerobic ammonia oxidation and denitrification within paddy soil. Our results suggested that the changes in denitrification and anammox rates in the biochar and straw treatments were mainly linked to functional gene abundance rather than microbial community structure and that denitrification played the more major role in N2 production in paddy soil.
  相似文献   

7.

Purpose

Chlorothalonil (CTN) has received much attention due to its broad-spectrum antifungal function and repeated applications in agriculture production practice. An incubation experiment was conducted to study the accumulating effects of CTN repeated application on soil microbial activities, biomass, and community and to contrast the discrepancy of effects in contrasting soils.

Materials and methods

Different dosage CTN (5 mg kg?1, T1, and 25 mg kg?1, T5) was applied into two contrasting soils at 7-day intervals. Soil samples were taken 7 days after each application to assess soil enzyme activities and gene abundances. At the end of incubation, the soil samples were also taken to analyze microbial communities in the two test soils.

Results and discussion

Soil fluorescein diacetate hydrolysis (FDAH) and urease activities were inhibited by CTN repeated applications. After 28 days of incubation, bacterial 16S rRNA gene abundances in T1 and T5 treatments were significantly lower than those in the CK treatments (46.4 and 36.6 % of the CK treatment in acidic red soil, 53.6 and 37.9 % of the CK treatment in paddy soil). Archaeal 16S rRNA gene abundances of T1 and T5 treatments were observed the similar trends (56.1 and 40.8 % of the CK treatment in acidic red soil, 45.6 and 43.7 % of the CK treatment in paddy soil). Repeated applications at 25 mg kg?1 exerted significantly negative effects on the Shannon-Weaver, Simpson and McIntosh indices.

Conclusions

Microbial activity, biomass, and functional diversity were significantly inhibited by repeated CTN application at the higher dosage (25 mg kg?1), but the inhibitory effects by the application at the recommended dosage (5 mg kg?1) were erratic. More emphasis needs to be placed on the soil type and cumulative toxicity from repeated CTN application when assessing environmental risk.
  相似文献   

8.

Purpose

With its high economic benefits, navel orange (Citrus sinensis) has been widely planted and fertilizer has been increasingly applied in the subtropical China in the last 30 years. Comprehensive assessments are needed to explore the long-term fertilization impacts on soil chemical and biological properties in the navel orange orchards.

Materials and methods

Through a large number of soil and leaf samples from the young, middle-aged, and mature navel orange orchards, this study examined the impacts of stand age (corresponding to the fertilization year using compound chemical fertilizer) on seasonal variations in major soil properties and leaf nutrients in the subtropical China.

Results and discussion

Soil total nitrogen (N) and mineral N were significantly higher in the middle-aged and mature orchards than in the young orchard. Total phosphorus (P), available P, labile P, slow P, occluded P, weathered mineral P, total exactable P, and residual P generally increased with fertilization years (P?<?0.05), and the increasing percentages for soil P fractions were much higher than those for N variables. The total N and P use efficiencies (plant uptake/soil input) were 20–34 and 10–15 %, respectively. Soil microbial biomass, invertase, urease, and acid phosphatase activities showed significant seasonal variations and decreased with fertilization years. Leaf N concentration significantly decreased with fertilization years, but no difference was found for P.

Conclusions

Soil self-fertilization was impeded, and less fertilizer amount should be applied especially in the older navel orange orchards since N and P accumulations do not increase leaf nutrients but worsen soil biological quality.
  相似文献   

9.

Purpose

Phosphorus (P) in soil particulate fraction (PF; >53 μm) is suggested to have a significant importance in soil P cycling. However, the effects of continuous fertilization on P-PF and its association with soil organic carbon (SOC) in paddy soils have not been well studied.

Materials and methods

We sampled paddy soils at 0–20 cm from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilization treatments with equivalent P input (135 kg P2O5?ha?1 year?1) except the control treatment (CK). Changes in total P (Pt), inorganic P (Pi), organic P (Po), and SOC under different fertilization managements were evaluated in the whole soil, in the PF, and in the mineral-associated fraction (MAF; <53 μm).

Results and discussion

Continuous fertilization increased the contents of SOC and P in all soil fractions. Both Po and organic carbon in PF were the most sensitive variables to fertilization, indicating that they constitute a useful tool to detect the effects of management practices. Among the fertilization treatments, organic amendments significantly increased Po-PF contents more than chemical fertilizer applied only (p?<?0.05), although they had equivalent P input. The paddy soil without fertilization showed a more significant decrease in Pi compared with Po. The SOC/Po ratios were significantly lower in fertilization treatments (especially those with manure or straw incorporation) than in CK and decreased from PF to MAF. A significant relationship was found between Po-PF contents and rice P uptake during the growing season.

Conclusions

These results demonstrate that Po-PF may also play a significant role in P cycling of paddy soil, and thus, it would be better to consider Po-PF in soil diagnosis to promote P management of paddy soil, especially for that under long-term organic amendments.
  相似文献   

10.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

11.

Purpose

Biogas slurry (BS) was known to influence soil–plant ecosystems when applied as a fertilizer, especially in combination with a chemical fertilizer (CF). Limited information was available regarding how this combination of BS–CF actually affected the soil–plant ecosystems. The purpose of this study was to evaluate the effects of BS–CF combinations on peanut yield, soil properties, and carbon (C) storage in a red soil (Ultisol) in southern China.

Materials and methods

The soil was fertilized with five treatments, including a control (T1), CF-only (T2) treatment, and three treatments with different BS–CF combinations (T3–T5). The final quantities of N/P2O5/K2O applied in T2–T5 were 120:90:135 kg ha?1. In T3–T5, 15 % (18 kg ha?1), 30 % (36 kg ha?1), and 45 % (54 kg ha?1) of total N (TN), respectively, were applied with BS and the remaining TN was applied with CF. Crop yield, soil nutrients, C storage, and microbial activity were determined through field and laboratory experiments.

Results and discussion

In the field experiment, peanut grain yields of T3–T5 were higher than those of T1 (44.5–55.7 %) and T2 (10.8–19.4 %), with the highest yield from T4 (3588 kg ha?1). The relationship between BS–TN inputs and peanut grain yield conformed to the linear-quadratic equation: y?=??1.14x 2?+?59.1x?+?2988 (R 2?=?0.98). The biomasses of peanut plants, at the flowering, pod production, and harvesting stages, were higher in T4 compared with those in T1 and T2. Moreover, T4 produced higher soil N and P (total and available) concentrations at the pod production and harvesting stages relative to other treatments, with increased soil microbial biomass C and N, and enhanced dehydrogenase and urease activities, at the flowering, pod production, and harvesting stages. Data from the incubation experiment were fitted to a first-order kinetic model, which showed that although the application of BS increased potentially mineralizable C, the additional C seemed to slowly degrade, and so would be retained in the soil for a longer period.

Conclusions

A BS–CF combination increased peanut grain yield and biomass, due to increases in soil N and P availability, microbial biomass C and N concentrations, and urease and dehydrogenase activities. Moreover, the organic C retention time in the red soil was extended. Combined application of BS–CF at a suitable ratio (36 kg BS–TN ha?1), together with proper management practices, could be effective to improve the quality and nutrient balance of amended soils.
  相似文献   

12.

Purpose

Impacts of a commercially available decay-facilitating microbial inoculum on carbon (C) and nitrogen (N) mineralization were evaluated during decomposition of rice straw in a paddy soil.

Materials and methods

Two incubation experiments were conducted for 105 days with a typical low-yield high-clay soil in central China to monitor effects of straw and the inoculum on CO2 evolution, as well as dissolved organic C (DOC), NH4 +, NO3 ?, and pH under conditions of 15 °C 70 %, 25 °C 40 %, 25 °C 70 %, 25 °C 100 %, and 35 °C 70 % of water-holding capacity (WHC) with adequate N, supplied as urea or manure, respectively.

Results and discussion

Treatments of 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC generally achieved significant higher CO2 evolution while treatment of 25 °C 40 % WHC had least. This was more evident with added manure compared to urea (P?<?0.05). The inoculum generally increased the decomposition of C inputs and the largest increases were in the initial 28 day in treatments 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC; only the 25 °C 40 % WHC actually immobilized C. The CO2 release rates were positively correlated with DOC, but with different slopes within treatments. Despite equivalent N application rates, manure treatments had significantly less N (including NO3 ?, NH4 +, and total dissolved N) than those with urea. Incubation of 25 °C 40 % WHC decreased soil pH the least, probably due to relative low moisture causing delayed nitrification.

Conclusions

The results implied that the inoculum, especially fungi, would adjust to edaphic and N fertilization in regulating organic C mineralization, during which water potential would exhibit a great role in regulating substrate and nutrient availability.
  相似文献   

13.

Purpose

Organo-mineral biochar fertiliser has the potential to replace conventional biochar and organic fertiliser to improve soil quality and increase plant photosynthesis. This study explored mechanisms involved in nitrogen (N) cycling in both soil and ginger plants (Zingiber officinale: Zingiberaceae) following different treatments including organic fertiliser, commercial bamboo biochar fertiliser, and organo-mineral biochar fertiliser.

Materials and methods

Soil received four treatments including (1) commercial organic fertiliser (5 t ha?1) as the control, (2) commercial bamboo biochar fertiliser (5 t ha?1), (3) organo-mineral biochar fertiliser at a low rate (3 t ha?1), and (4) organo-mineral biochar fertiliser at a high rate (7.5 t ha?1). C and N fractions of soil and plant, and gas exchange measurements were analysed.

Results and discussion

Initially, organo-mineral biochar fertiliser applied at the low rate increased leaf N. Organo-mineral biochar fertiliser applied at the high rate significantly increased N use efficiency (NUE) of the aboveground biomass compared with other treatments and improved photosynthesis compared with the control. There was N fractionation during plant N uptake and assimilation since the 15N enrichment between the root, leaf, and stem were significantly different from zero; however, treatments did not affect this N fractionation.

Conclusions

Organo-mineral biochar fertiliser has agronomic advantages over inorganic and raw organic (manure-based) N fertiliser because it allows farmer to put high concentrations of nutrients into soil without restricting N availability, N uptake, and plant photosynthesis. We recommend applying the low rate of organo-mineral biochar fertiliser as a substitute for commercial organic fertiliser.
  相似文献   

14.

Purpose

The North China Plain (NCP) is a strategic grain production base in China with a wild distribution of fertile soils. During the past 20 years, high-input intensive agriculture with excess chemical fertilizer application has sustained high grain yields, but may have resulted in contamination of some elements in farmland. In this study, the accumulation and transfer of arsenic (As) and mercury (Hg) in typical Calcaric Fluvisols with long-term different fertilization practices were investigated.

Materials and methods

Field experiments with seven treatments were launched in 1989, and soil and plant samples were collected and analyzed periodically. The treatments include OM (organic manure), OM?+?NPK (50 % organic manure?+?50 % chemical fertilizer), NPK, NP, PK, NK, and CK (the control experiment with no fertilizer).

Results and discussion

With over 20 years (1989–2009) of cultivation, various extents of As and Hg accumulations were really observed in the soil. The higher As and Hg contents were found in P fertilizers than those in N, K, or OM fertilizers. As a result, the long-term P fertilization slightly promoted Hg accumulations with decreased soil Hg concentrations in the order of NPK?≈?NP?≈?PK?≈?OM?+?NPK?>?OM?>?NK?≈?CK, which was similar to the order of crop yields. At the tillage layer (0–20 cm), Hg accumulation in the soil was enhanced by crop production, due to the highly accumulated Hg in plant roots finally remained in the soil. However, no significant differences of soil As concentrations can be found between treatments with and without P fertilizers probably due to water leaching and plant uptake.

Conclusions

Soil As and Hg were mainly contributed by fertilizers, irrigation, and atmospheric deposition in recent years, but they did not exhibit in significant accumulations in the soil. The contents of As and Hg were not above the critical safe levels of soils for crop production (As, <30 mg kg?1; Hg, <500 μg kg?1). Arsenic and Hg tended to move downward in the soil profile and the movement was hindered by clay minerals.
  相似文献   

15.
16.

Purpose

Soil acidification is universal in soybean-growing fields. The aim of our research was to evaluate the effects of soil additives (N fertilizers and biochar) on crop performance and soil quality with specific emphasis on ameliorating soil acidity.

Materials and methods

Four nitrogen treatments were applied as follows: no nitrogen (N0), urea (N1), potassium nitrate (N2), and ammonium sulfate (N3), each providing 30 kg N ha?1. Half plot area of the N1, N2, and N3 treatments was also treated with biochar (19.5 t ha?1) to form N-biochar treatments (N1C, N2C, N3C). Both bulk and rhizosphere soils were sampled separately for the following analyses: pH, exchangeable base cations (EBC), exchangeable acidity (EA), total inorganic N (IN), total N (TN), and microbial phospholipid fatty acids (PLFAs). Soybean biomass and nutrient contents were also determined. Correlation analysis was applied to analyze the relationships between soil chemical properties and soybean plant parameters.

Results and discussion

With N-biochar additions (N1C, N2C, N3C), soil chemical properties changed as follows: pH increased by 0.6–1.2 units, EBC, IN, and TN increased by 175–419, 38.5–54.7, and 136–452 mg kg?1, respectively, and PLFAs increased by 23.6–40.9 nmol g?1 compared to the N0 in the rhizosphere. Microbial PLFAs had positive correlations with soil pH; EBC; exchangeable K, Ca, Na, and Mg; TN; IN; NH4 +; and NO3 ? (r?=?0.66–0.84, p?<?0.01). There were negative correlations between PLFAs and EA or exchangeable Al (r?=??0.64, ?0.66, p?<?0.01), which indicated that the additives increased microbial biomass by providing a suitable environment with less acid stress and more nutrients. The additives increased soil NH4 + and NO3 ? by promoting soil organic N mineralization and reducing NH4 + and NO3 ? leaching. Moreover, the soybean seed biomass and the nutrient contents in seeds increased with N-biochar additions, especially in the N3C treatment.

Conclusions

N-biochar additions were effective in ameliorating soil acidity, which improved the microenvironment for more microbial survival. N-biochars influenced N transformations at the plant–soil interface by increasing organic N mineralization, reducing N leaching, and promoting N uptake by soybeans. The soil additive ammonium and biochar (N3C) were best in promoting soybean growth.
  相似文献   

17.

Purpose

Intensive management, such as fertilization and organic mulching, is applied frequently in Lei bamboo (Phyllostachys praecox) plantations to achieve higher production in subtropical China. However, responses as well as key impact factors of soil microbial properties under such management remain uncertain. We analyzed the relationships between nutrient changes and microbial properties and assessed the main factors determining microbial biomass, activity, and functional diversity in soils under intensive management in a Lei bamboo plantation.

Materials and methods

Soil samples of treatments of no fertilization (control), chemical fertilization (CF), and chemical and organic fertilization combined with organic mulching (CFOM + M) were taken before mulching. The soil organic carbon (SOC), dissolved organic carbon, and total and available nitrogen (N), phosphorus (P), and potassium (K) were measured. Microbial biomass carbon (MBC), basal respiration, and mineralization were also analyzed. Community level of physiological profile (CLPP) of microorganisms was analyzed by BIOLOG method to estimate the functional diversity and carbon (C) source utilization patterns of microbes. Principal component analysis (PCA), principal response curve (PRC), correlation analysis, regression analysis, and redundancy analysis (RDA) were performed to clarify changes in variables and determine the factors influencing microbial properties.

Results and discussion

SOC and total and available N, P, and K increased as follows: CFOM + M > CF > control. However, C/P and N/P ratios showed an opposite trend. MBC and respiration were not affected, but microbial quotient and metabolic quotient declined under intensive management. McIntosh diversity index was much higher in CFOM + M. The PCA showed that microorganisms in CFOM + M had a stronger ability to use most C sources. Weaker utilization of serine indicated an alleviation of nutrient deficiency in CFOM + M. PRC of CLPP showed a significant treatment effect and that utilization of serine sensitively responded to nutrient status over the whole incubation time. RDA showed that total and available N, total K, and C/P were the main factors influencing utilization of C sources by microbial communities.

Conclusions

Fertilization combined with organic mulching increased soil nutrients, microbial biomass, and respiration in a Lei bamboo plantation. Abundant nutrients also increased C source use efficiency of microorganisms under intensive management. Changes of N and K and C/P might have led to a shift in microorganisms toward a different life strategy and determined the change in C source utilization patterns of microbial communities.
  相似文献   

18.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

19.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

20.

Purpose

Anthropogenic-induced greenhouse gas (GHG) emission rates derived from the soil are influenced by long-term nitrogen (N) deposition and N fertilization. However, our understanding of the interplay between increased N load and GHG emissions among soil aggregates is incomplete.

Materials and methods

Here, we conducted an incubation experiment to explore the effects of soil aggregate size and N addition on GHG emissions. The soil aggregate samples (0–10 cm) were collected from two 6-year N addition experiment sites with different vegetation types (mixed Korean pine forest vs. broad-leaved forest) in Northeast China. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) production were quantified from the soil samples in the laboratory using gas chromatography with 24-h intervals during the incubation (at 20 °C for 168 h with 80 % field water capacity).

Results and discussion

The results showed that the GHG emission/uptake rates were significantly higher in the micro-aggregates than in the macro-aggregates due to the higher concentration of soil bio-chemical properties (DOC, MBC, NO3 ?, NH4 +, SOC and TN) in smaller aggregates. For the N addition treatments, the emission/uptake rates of GHG decreased after N addition across aggregate sizes especially in mixed Korean pine forest where CO2 emission was decreased about 30 %. Similar patterns in GHG emission/uptake rates expressed by per soil organic matter basis were observed in response to N addition treatments, indicating that N addition might decrease the decomposability of SOM in mixed Korean pine forest. The global warming potential (GWP) which was mainly contributed by CO2 emission (>98 %) decreased in mixed Korean pine forest after N addition but no changes in broad-leaved forest.

Conclusions

These findings suggest that soil aggregate size is an important factor controlling GHG emissions through mediating the content of substrate resources in temperate forest ecosystems. The inhibitory effect of N addition on the GHG emission/uptake rates depends on the forest type.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号