首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Future rates of atmospheric N deposition have the potential to slow litter decay and increase the accumulation of soil organic matter by repressing the activity of lignolytic soil microorganisms. We investigated the relationship between soil biochemical characteristics and enzymatic responses in a series of sugar maple (Acer saccharum)-dominated forests that have been subjected to 16 yrs of chronic N deposition (ambient + 3 g NO3–N m−2 yr−1), in which litter decay has slowed and soil organic matter has accumulated in sandy spodosols. Cupric-oxide-extractable lignin-derived phenols were quantified to determine the presence, source, and relative oxidation state of lignin-like compounds under ambient and experimental N deposition. Pools of respired C and mineralized N, along with rate constants for these processes, were used to quantify biochemically labile substrate pools during a 16-week laboratory incubation. Extracellular enzymes mediating cellulose and lignin metabolism also were measured under ambient and experimental N deposition, and these values were compared with proxies for the relative oxidation of lignin in forest floor and surface mineral soil. Chronic N deposition had no influence on the pools or rate constants for respired C and mineralized N. Moreover, neither the total amount of extractable lignin (forest floor, P = 0.260; mineral soil, P = 0.479), nor the relative degree of lignin oxidation in the forest floor or mineral soil (forest floor P = 0.680; mineral soil P = 0.934) was influenced by experimental N deposition. Given their biochemical attributes, lignin-derived molecules in forest floor and mineral soil appear to originate from fine roots, rather than leaf litter. Under none of the studied circumstances was the presence or relative oxidation of lignin correlated with the activity of cellulolytic and lignolytic extracellular enzymes. Although chronic atmospheric N deposition has slowed litter decay and increased organic matter in our experiment, it had little effect on biochemical composition of lignin-derived molecules in forest floor and surface mineral soil suggesting organic matter has accumulated by other means. Moreover, the specific dynamics of lignin phenol decay is decoupled from short-term organic matter accumulation under chronic N deposition in this ecosystem.  相似文献   

2.
The forest floor represents the major source of dissolved organic carbon (DOC) and nitrogen (DON) in forest soils. The release mechanisms of DOC and DON from forest floors and their environmental controls as well as the dynamics of concentrations and fluxes are still poorly understood. We investigated the effect of drying and rewetting on the release of DOC and DON from a Norway spruce forest floor. Undisturbed soil columns of 17 cm diameter and 15—20 cm height were taken with 7 replicates from the forest floor of a mature Norway spruce (Picea abies [L.] Karst.) site and established at 10°C in the laboratory. Columns were exposed to different periods of drying (3, 5, 10, 20 days). Each drying period was followed by a rewetting for 5 days at an irrigation rate of 10 mm d—1 with a natural throughfall solution. The percolates from the forest floor were collected daily and analyzed for DOC, total N, NH4, NO3, pH, electrical conductivity and major ions. Drying for 10 and 20 days decreased the water content of the Oi horizon from 280% dry weight to about 30%. The water content of the Oe and the Oa horizon only changed from about 300% to 200%. The fluxes of DOC from the forest floor were moderately effected by drying and rewetting with an increase after 3 and 5 days of drying, but a decrease after 10 and 20 days. On the contrary, the drying for 10 and 20 days resulted in a drastic increase of the DON fluxes and a subsequent decrease of the DOC/DON ratios in the forest floor percolates from about 50 to 3.3. These results suggest that the mechanisms for DOC release in forest floors differ from those for DON and that drying and rewetting cause temporal variations in the DOC/DON ratios in forest floor percolates.  相似文献   

3.
Canopy-held organic matter develops into a distinct soil system separate from the forest floor in wet temperate coniferous forests, creating a natural microcosm. We distinguished between fungal and bacterial components of the decomposer community in one site with Maple (Acer macrophyllum) and one site with Alder (Alnus rubra) by using direct measurements of growth; acetate incorporation into ergosterol, and leucine incorporation for fungi and bacteria, respectively. The higher organic matter content of the canopy soils correlated with higher fungal growth. The relative importance of fungi, indicated by fungal:bacterial growth ratio, was higher in the canopy soil of the Maple site, while there was no difference in the Alder site. The high C:N ratio of the Maple canopy soil likely contributed to this difference. These results demonstrate a divergence between canopy and forest floor that should be explored to gain insights in decomposer ecology using the natural microcosms that the canopy soils provide.  相似文献   

4.
We conducted a laboratory incubation of forest (Scots pine (Pinus sylvestris) or beech (Fagus sylvatica)), grassland (Trifolium repens/Lolium perenne) and arable (organic and conventional) soils at 5 and 25 °C. We aimed to clarify the mechanisms of short-term (2-weeks) nitrogen (N) cycling processes and microbial community composition in relation to dissolved organic carbon (DOC) and N (DON) availability and selected soil properties. N cycling was measured by 15N pool dilution and microbial community composition by denaturing gradient gel electrophoresis (DGGE), phospholipid fatty acid (PLFA) and community level physiological profiles (CLPP). Soil DOC increased in the order of arable<grassland<forest soil while DON and gross N fluxes increased in the order of forest<arable<grassland soil; land use had no affect on respiration rate. Soil DOC was lower, while respiration, DON and gross N fluxes were higher at 25 than 5 °C. Gross N fluxes, respiration and bacterial biomass were all positively correlated with each other. Gross N fluxes were positively correlated with pH and DON, and negatively correlated with organic matter, fungal biomass, DOC and DOC/DON ratio. Respiration rate was positively correlated with bacterial biomass, DON and DOC/DON ratio. Multiple linear modelling indicated that soil pH, organic matter, bacterial biomass, DON and DOC/DON ratio were important in predicting gross N mineralization. Incubation temperature, pH and total-C were important in predicting gross nitrification, while gross N mineralization, gross nitrification and pH were important in predicting gross N immobilization. Permutation multivariate analysis of variance indicated that DGGE, CLPP and PLFA profiles were all significantly (P<0.05) affected by land use and incubation temperature. Multivariate regressions indicated that incubation temperature, pH and organic matter content were important in predicting DGGE, CLPP and PLFA profiles. PLFA and CLPP were also related to DON, DOC, ammonium and nitrate contents. Canonical correlation analysis showed that PLFA and CLPP were related to differences in the rates of gross N mineralization, gross nitrification and soil respiration. Our study indicates that vegetation type and/or management practices which control soil pH and mediate dissolved organic matter availability were important predictors of gross N fluxes and microbial composition in this short-term experiment.  相似文献   

5.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil.  相似文献   

6.
Dissolved organic carbon (DOC) constitutes an important carbon input flux to forested mineral soils. Seepage from mineral subsoils contains only small amounts of DOC because of mineralization, sorption or the formation of particulate organic matter (POM). However, the relation between these processes is largely unknown. Therefore, the objective of this study was to quantify the mineralization of DOC from different depths of forest soils, and to determine degradation rate constants for rapidly and slowly degradable DOC pools. Mineralization of DOC and formation of POM in mineral soil solution from two forested sites in northern Bavaria (Germany) were quantified in a 97 days laboratory incubation experiment. Furthermore, spectroscopic properties such as specific UV absorption and a humification index derived from fluorescence emission spectrometry were measured before and after incubation. DOC in all samples turned out to belong mainly to the stable DOC pool (> 95 %) with half‐lives ranging from years to decades. Spectroscopic properties were not suitable to predict the mineralization of DOC from mineral soils. However, together with data on DOC from the forest floor and long‐term data on DOC concentrations in the field they helped to identify the processes involved in C sequestration in mineral subsoils. Mineralization, formation of POM, and probably sorption seem all to be responsible for maintaining low concentrations of DOC in the upper mineral soil. DOC below the upper mineral soil is highly resistant to mineralization, and thus the further decrease of DOC concentrations in the subsoil as observed under field conditions cannot be attributed to mineralization. Our results suggest that sorption and to some minor extent the formation of POM may be responsible for C sequestration in the subsoil.  相似文献   

7.
The microbial population of a Brown Chernozemic soil was labelled in situ by adding 14C-glucose and 15NH415NO3 to the plow layer. The loss of 14C, nitrogen immobilization-mineralization reactions, bacterial numbers (plate count, direct count) and fungal hyphal lengths were determined periodically throughout the growing period in amended and unamended microplots and in the surrounding field soil. After 5 days, 90 per cent of the labelled N occurred in the organic form with little subsequent mineralization. Of the labelled C added, 63, 56 and 39 per cent, remained in the soil after 3, 14 and 104 days, respectively.The ratio of fungal C to bacterial C increased as soil moisture decreased. Viable (plate count) and total numbers of bacteria in samples from unamended plots and field soil were significantly correlated with each other and with soil moisture. Fungal hyphal lengths from amended soil were also significantly related to moisture but the rate of loss of 14C and mineralization of 15N were not. The synthesized microbial material (tissue and metabolites) exhibited a high degree of stability throughout the study. The half-life of labelled C remaining in the soil after 30 days was calculated to be 6 months compared to only 4 days for the added glucose C. The amount of energy used for maintenance by the soil population under field conditions was calculated from measurements of biomass C, respired labelled C and respired soil C.  相似文献   

8.
Lime is a common amendment to overcome soil acidity in agricultural production systems. However, plant root effects on lime and soil carbon (C) dynamics in acidic soils under varied temperature remain largely unknown. We monitored root effects of soybean on the fate of lime applied to an acidic soil at 20 and 30°C in growth chambers. Soil respired CO2 was continuously trapped in columns without and with plants until the final stage of vegetative growth. Lime‐derived CO2 was separated from total respired CO2 based on δ13C measurements in CO2. Leaching was induced at early and late vegetative growth stages, and the leachates were analysed for dissolved organic (DOC) and inorganic C (DIC) concentrations. Soil respiration significantly increased with lime addition at both temperatures (p < 0.001). The presence of soybean doubled the recovery of lime‐derived CO2‐C at 20°C at the early growth stage; however, by the end of the experiment, the contribution of lime‐derived CO2‐C to soil respiration was negligible in all treatments, indicating that the contribution of lime to soil respiration was shortlived. In contrast, DIC and DOC concentrations in leachates remained elevated with liming and were greater in the presence of soybean. We observed no main temperature effects and no interactive effects of temperature and soybean presence on lime‐derived CO2‐C, DIC and DOC. These results highlight the role of plant‐modulated processes in CO2 release and C leaching from lime in acidic soils, whereas an increase in temperature may be less important. Temperature and plant roots alter the rate of key processes controlling C dynamics in a limed acidic soil. Lime‐derived CO2‐C, DIC and DOC increased more in the presence of plants than with increased temperature. Root effects are more important than temperature for inorganic and organic carbon dynamics in limed acidic soils.  相似文献   

9.
We performed an assay of nutrient limitations to soil microbial biomass in forest floor material and intact cores of mineral soil collected from three North Carolina loblolly pine (Pinus taeda) forests. We added solutions containing C, N or P alone and in all possible combinations, and we measured the effects of these treatments on microbial biomass and on microbial respiration, which served as a proxy for microbial activity, during a 7-day laboratory incubation at 22 °C. The C solution used was intended to simulate the initial products of fine root decay. Additions of C dramatically increased respiration in both mineral soil and forest floor material, and C addition increased microbial biomass C in the mineral soil. Additions of N increased respiration in forest floor material and increased microbial biomass N in the mineral soil. Addition of P caused a small increase in forest floor respiration, but had no effect on microbial biomass.  相似文献   

10.
Most climate change scenarios predict that the variability of weather conditions will increase in coming decades. Hence, the frequency and intensity of freeze-thaw cycles in high-latitude regions are likely to increase, with concomitant effect on soil carbon biogeochemistry and associated microbial processes. To address this issue we sampled riparian soil from a Swedish boreal forest and applied treatments with variations in four factors related to soil freezing (temperature, treatment duration, soil water content and frequency of freeze-thaw cycles), at three levels in a laboratory experiment, using a Central Composite Face-centred (CCF) experimental design. We then measured bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth, basal respiration, soil microbial phospholipid fatty acid (PLFA) composition, and concentration of dissolved organic carbon (DOC). Fungal growth was higher in soil exposed to freeze-thawing perturbations and freezing temperatures of −6 °C and −12 °C, than under more constant conditions (steady 0 °C). The opposite pattern was found for bacteria, resulting in an increasing fungal-to-bacterial growth ratio following more intensive winter conditions. Soil respiration increased with water content, decreased with treatment duration and appeared to mainly be driven by treatment-induced changes in the DOC concentration. There was a clear shift in the PLFA composition at 0 °C, compared with the two lower temperatures, with PLFA markers associated with fungi as well as a number of unsaturated PLFAs being relatively more common at 0 °C. Shifts in the PLFA pattern were consistent with those expected for phenotypic plasticity of the cell membrane to low temperatures. There were small declines in PLFA concentrations after freeze-thawing and with longer durations. However, the number of freeze-thaw events had no effect on the microbiological variables. The findings suggest that the higher frequency of freeze-thaw events predicted to follow the global warming will likely have a limited impact on soil microorganisms.  相似文献   

11.
Bioremediation is an economically attractive option to remediate soil contaminated with DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] and other organochlorine pesticides. However, lack of DDT bioavailability in soil presents one major obstacle to this technology particularly in soils that have been contaminated for long periods. In this work, sodium ion (Na+) was applied to a long-term DDT contaminated soil as Na+ is known to disperse clays, which would potentially release and/or expose physically protected DDT thereby enhancing DDT bioavailability. Sodium ion addition significantly increased dissolved organic carbon (DOC) levels, anaerobic bacterial numbers and the amount of DDT residues measured in soil solution. DDT transformation ranged from 95% (30—80 mg Na+ kg-1 soil) to 72% (no Na+ added) with the optimum level of DDT transformation occurring at 30 mg Na+ kg-1 soil. Higher Na+ levels repressed DDT transformation and this appeared to be related to lower DOC levels and flocculation of soils. The anaerobic incubation conditions employed (high water content) prevented DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] production and DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)ethane] was the major breakdown product formed. Overall it appeared that Na+ has potential as a cheap and safe alternative to surfactants as a method for increasing DDT transformation in contaminated soil.  相似文献   

12.
One of the most influential factors determining the growth and composition of soil bacterial communities is pH. However, soil pH is often correlated with many other factors, including nutrient availability and plant community, and causality among factors is not easily determined. If soil pH is directly influencing the bacterial community, this must lead to a bacterial community growth optimised for the in situ pH. Using one set of Iberian soils (46 soils covering pH 4.2-7.3) and one set of UK grassland soils (16 soils covering pH 3.3-7.5) we measured the pH-optima for the growth of bacterial communities. Bacterial growth was estimated by the leucine incorporation method. The pH-optima for bacterial growth were positively correlated with soil pH, demonstrating its direct influence on the soil bacterial community. We found that the pH from a water extraction better matched the bacterial growth optimum compared with salt extractions of soil. Furthermore, we also showed a more subtle pattern between bacterial pH growth optima and soil pH. While closely matched at neutral pHs, pH-optima became higher than the in situ pH in more acid soils, resulting in a difference of about one pH-unit at the low-pH end. We propose that an explanation for the pattern is an interaction between increasing overall bacterial growth with higher pHs and the unimodal pH-response for growth of bacterial communities.  相似文献   

13.
Most plant species selected as appropriate candidates for phytoextraction have been studied as monocultures. However, alternative cropping patterns which include rhizosphere microbial communities can significantly influence the extraction of metals, as well as soil protection and quality. Therefore, the objective of this work was to study the effect of species-rich vegetation cover, which consisted of three hyperaccumulator plant species, on the efficiency of nickel extraction from a naturally mineralized ultramafic soil. An experiment was set up with three hyperaccumulator species (Leptoplax emarginata, Noccaea tymphaea and Alyssum murale). Plants were cultivated separately (monospecific cover), or in combination (multispecies cover) in mesocosms under controlled conditions, on a nickel-rich ultramafic soil. Plants were grown for 92 days in controlled conditions. Each plant produced more biomass when grown in multispecies cover than alone. Noccaea and Alyssum showed the highest shoot Ni concentrations but Alyssum had by far the lowest shoot biomass. So, in this soil, Noccaea and Leptoplax have greater potential for hyperaccumulation than Alyssum. The amount of nickel accumulated in total biomass of Noccaea alone and of the multispecies cover was higher than that accumulated in either the monospecies Leptoplaxor Alyssum. Furthermore, the highest values of microbial biomass were obtained with the multispecies cover and a consistent production of auxin compounds by bacterial communities was measured, which emphasized the role of rhizosphere bacteria. The bacterial genetic structure also depended on the plant covers. A combination of the three species (multispecies cover), could be a good strategy for phytoremediation.  相似文献   

14.
Nitrification occurs slowly in many acid Scots pine forest soils. We examined if bacterial community structure and interactions between members of the bacterial community in these forest soils prohibit growth of ammonia-oxidising microorganisms and their nitrifying activity. Native and gamma-irradiated Scots pine forest soils known to have low net nitrification rates were augmented with fresh soils or soil slurries from nitrifying Scots pine forest soil, and vice versa. Augmentation of native non-nitrifying soils with nitrifying soils induced net nitrification, although no significant changes in bacterial community structure, as measured by 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE), were observed. In sterilised soils, the inoculum, i.e. native nitrifying soil or non-nitrifying soil, determined the occurrence of net nitrification and bacterial community structure, and not the origin of the sterilised soils. Our results demonstrate that low net nitrification rates in acid Scots pine forest soils cannot be (solely) explained by unfavourable abiotic soil conditions, but that still uncaptured biotic factors contribute to suppression of nitrification.  相似文献   

15.
Labile soil dissolved organic carbon (DOC) and heat-extracted carbon (HEC) are sensitive indicators of changing soil organic carbon (SOC) stocks. Isotope ratio mass spectrometry (IRMS) is an important tool for studying SOC turnover and soil biological function. Several complications are involved in measuring DOC/HEC, for example salt ionic strength; solution pH; and anionic damage to elemental analyzer-IRMS. We evaluated a method for DOC/HEC analysis with 0.1 M potassium phosphate buffer (PPB). This method was strongly correlated with commonly used carbon (C) extractants for C quantification. Carbon-13 comparisons between DOC/HEC extracted with Milli-Q water and PPB were similar. The δ13C (‰) values of particulate OC and DOC were similar, whereas the relationship between humic OC and HEC was soil specific. An incubation experiment demonstrated that DOC/HEC δ13C (‰) successfully explained respired microbial carbon dioxide over 90 days. We conclude that this method represents an alternative for DOC/HEC quantification and δ13C (‰) analyses.  相似文献   

16.
Microbial communities mediate every step of the soil nitrogen cycle, yet the structure and associated nitrogen cycle functions of soil microbial communities remain poorly studied in tropical forests. Moreover, tropical forest soils are often many meters deep, but most studies of microbial nitrogen cycling have focused exclusively on surface soils. The objective of our study was to evaluate changes in bacterial community structure and nitrogen functional genes with depth in soils developed on two contrasting geological parent materials and two forest types that occur at different elevations at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We excavated three soil pits to 140 cm at four different sites representing the four soil × forest combinations (n = 12), and collected samples at ten-centimeter increments from the surface to 140 cm. We used bacterial 16S rRNA gene-DGGE (denaturant gradient gel electrophoresis) to fingerprint microbial community structures, and quantitative PCR to measure the abundance of five functional genes involved in various soil nitrogen transformations: nifH (nitrogen fixation), chiA (organic nitrogen decomposition), amoA (ammonia oxidation), nirS (nitrite reduction) and nosZ (nitrous oxide reduction). Multivariate analyses of DGGE fingerprinting patterns revealed differences in bacterial community structure across the four soil × forest types that were strongly correlated with soil pH (r = 0.69, P < 0.01) and nutrient stoichiometry (r2 ≥ 0.36, P < 0.05). Across all soil and forest types, nitrogen functional genes declined significantly with soil depth (P < 0.001). Denitrification genes (nirS and nosZ) accounted for the largest proportion of measured nitrogen functional genes. Measured nitrogen functional genes were positively correlated with soil carbon, nitrogen and phosphorus concentrations (P < 0.001) and all genes except amoA were significantly more abundant in the Inceptisol soil type compared with the Oxisol soil type (P < 0.03). Greater abundances and a stronger vertical zonation of nitrogen functional genes in Inceptisols suggest more dynamic nitrogen transformation processes in this soil type. As the first study to examine bacterial nitrogen functional gene abundances below the surface 20 cm in tropical forest soils, our work provides insight into how pedogenically-driven vertical gradients control the nitrogen-cycling capacity of soil microbial communities. While previous studies have shown evidence for redox-driven hotspots in tropical nitrogen cycling on a watershed scale, our study corroborates this finding on a molecular scale.  相似文献   

17.
Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate warming and litter addition treatments, while gross mineralized N was immobilized in the biomass of microbes and plants transplanted into the incubates soil cores, but without any significant effect of the treatments. The effects of warming plus litter addition on bacterial growth rates and of warming on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.  相似文献   

18.
Dissolved organic nitrogen and carbon (DOC) are significant in the C and N cycle in terrestrial ecosystems. Little is known about their dynamics in the field and the factors regulating their concentrations and fluxes. We followed the fluxes and concentrations of the two in a Norway spruce (Picea abies (L.) Karst.) forest ecosystem in Germany from 1995 to 1997 by sampling at fortnightly intervals. Bulk precipitation, throughfall, forest floor percolates from different horizons and soil solutions from different depths were analysed for major ions, dissolved organic N and DOC. The largest fluxes and concentrations were observed in percolates of the Oi layer, which contain amino N and amino sugar N as the major components. The average ratio of dissolved organic C to N in forest floor percolates corresponded to the C/N ratio of the solid phase. Concentrations and fluxes were highly dynamic with time and decreased with depth. The largest fluxes in forest floor percolates occurred when the snow melted. The concentrations and fluxes of dissolved organic N were significantly correlated with DOC, but the correlation was weak, indicating different mechanisms of release and consumption. The dynamics of dissolved organic N and DOC in forest floor percolates were not explained by pH and ionic strength of the soil solution nor by the water flux, despite large variations in these. Furthermore, the release of these fractions from the forest floor was not related to the quality and amount of throughfall. Concentrations of dissolved organic N in forest floor percolates increased with soil temperature, while temperature effects on DOC were less pronounced, but their fluxes from the forest floor were not correlated with temperature. In the growing season concentrations of both dissolved organic N and C in forest floor percolates decreased with increasing intensity of throughfall. Thus, the average throughfall intensity was more important than the amount of percolate in regulating their concentrations in forest floor percolates. Our data emphasize the role of dissolved organic N and DOC in the N and C cycle of forest ecosystems.  相似文献   

19.
The relationship between total and metabolically active soil microbial communities can provide insight into how these communities are impacted by environmental change, which may impact the flow of energy and cycling of nutrients in the future. For example, the anthropogenic release of biologically available N has dramatically increased over the last 150 years, which can alter the processes controlling C storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan, USA, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. A microbial mechanism underlies this response, as compositional changes in the soil microbial community have been concomitantly documented with these biogeochemical changes. Here, we co-extracted DNA and RNA from decaying leaf litter to determine if experimental atmospheric N deposition has lowered the diversity and altered the composition of the whole communities of bacteria and fungi (i.e., DNA-based) and well as its active members (i.e., RNA-based). In our experiment, experimental N deposition did not affect the composition, diversity, or richness of the total forest floor fungal community, but did lower the diversity (−8%), as well as altered the composition of the active fungal community. In contrast, neither the total nor active forest floor bacterial community was significantly affected by experimental N deposition. Our results suggest that future rates of atmospheric N deposition can fundamentally alter the organization of the saprotrophic soil fungal community, key mediators of C cycling in terrestrial environments.  相似文献   

20.
Low molecular weight carbon (C) substrates are major drivers of bacterial activity and diversity in the soil environment. However, it is not well understood how specific low molecular weight C compounds, which are frequently found in root exudates and litter leachates, influence bacterial community structure or if there are specific groups of soil bacteria that preferentially respond to these C inputs. To address these knowledge gaps, we added three simple C substrates representative of common root exudate compounds (glucose, glycine, and citric acid) to microcosms containing three distinct soils from a grassland, hardwood forest, and coniferous forest. CO2 production was assessed over a 24 h incubation period and, at the end of the incubation, DNA was extracted from the samples for assessment of bacterial community structure via bar-coded pyrosequencing of the 16S rRNA gene. All three C substrates significantly increased CO2 production in all soils; however, there was no relationship between the magnitude of the increase in CO2 production and the shift in bacterial community composition. All three substrates had significant effects on overall community structure with the changes primarily driven by relative increases in β-Proteobacteria, γ-Proteobacteria, and Actinobacteria. Citric acid additions had a particularly strong influence on bacterial communities, producing a 2-5-fold increase in the relative abundance of the β-Proteobacteria subphylum. These results suggest that although community-level responses to substrate additions vary depending on the substrate and soil in question, there are specific bacterial taxa that preferentially respond to the substrate additions across soil types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号