首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Human-induced forest edges are common in many forest landscapes throughout the world. Forest management requires an understanding of their ecological consequences. This study addressed the responses of three ecological groups (non-forest species, secondary forest species and primary forest species) in edge soil seed banks and edge understory vegetation, and explored the relationship between the invasion of non-forest species in edge understory vegetation and the accumulation of their seeds in edge soil seed banks. The soil seed banks and understory vegetation were sampled along transects established at the edges of a continuous subtropical evergreen broad-leaved forest tract (Lithocarpus xylocarpus forest) bordering anthropogenic grasslands and three tropical seasonal rain forest fragments (Shorea wantianshuea forest) bordering fallows. Species composition in both soil seed banks and understory vegetation showed great difference among edge sites. In soil seed banks, the dominance (relative abundance and relative richness) of each ecological group did not change significantly along the edge to interior gradient. In understory vegetation, the invasion of non-forest species concentrated on the first several meters along the edge to interior gradient. The dominance of secondary forest species decreased with distance from the edge, while the dominance of primary forest species increased with distance from the edge. In forest edge zones, the invasion of a majority of non-forest species in understory vegetation lags behind the accumulation of their seeds in soil seed banks. Forest edges do not act as a good barrier for the penetration of non-forest species seeds. The lack of non-forest species in understory vegetation must then be due to conditions that are not appropriate for their establishment. Therefore, to prevent germination and survival of non-forest species further into the forest, management should focus on maintaining interior forest conditions.  相似文献   

2.
For the protection and promotion of biodiversity in forest edges and interiors, forest edge management practices are put forward like the creation of gradual forest edges (i.e., edges with a gradual increase of vegetation height from open area to forest, e.g., by means of a fringe, a belt, and a mantle). In this study, we tested the mitigating effect of gradual forest edges on the atmospheric deposition of inorganic nitrogen (N) and the potentially acidifying pollutants SO42−, NO3, and NH4+ (N + S). We conducted field experiments at three exposed forest edges in Flanders and the Netherlands and compared throughfall deposition at steep edges (i.e., edges with an abrupt transition from open area to forest) and at adjacent gradual edges. Along transects perpendicular to the edges, during three months in both winter and summer, throughfall deposition of Cl, SO42−, NO3, and NH4+ was monitored in the forest between 0 and 64 m from the edges and in the gradual edge vegetation. At the smoothest and best fitting gradual edge, the extra N + S throughfall deposition the forest received due to edge effects was lower than at the adjacent steep edge, with on average 80 and 100% in winter and summer, respectively. This was due to a halving of the depth of edge influence and an almost full reduction of the magnitude of edge influence. This decrease in throughfall deposition in the forest was not compensated by the additional throughfall deposition on the gradual edge vegetation itself, resulting in a final decrease in throughfall deposition in the forest edge by 60% in winter and 74% in summer. While this result confirms that gradual edges can mitigate edge effects on atmospheric deposition, the results of the other sites indicate the importance of size and shape of the gradual edge vegetation in mitigating edge effects on deposition: due to insufficient height (‘size’) or inadequate shape of the gradual edge vegetation, only small or insignificant decreases in throughfall deposition were observed. Hence, for mitigating edge effects on N + S and N deposition, our results support the recommendation of creating gradual edges at forests with poorly developed, abrupt edges, but it stresses the importance of a thorough consideration of the shape and size of the gradual edge vegetation in the design and management of gradual forest edges.  相似文献   

3.
An increase in edge area reduces the effective size of habitat fragments and thus the area available for habitat-interior specialists. However, it is unclear how edge effects compare at different ecotones in the same system. We investigated the response of a small mammal community associated with Afromontane forests to edge effects at three different habitat transitions: natural forest to grassland (natural edge, structurally different vegetation types), natural forest to mature plantation (human-altered edge, structurally similar vegetation types) and natural forest to harvested plantation (human-altered edge, structurally different vegetation types). We predicted that edge effects should be less severe at natural ecotones and at similarly structured contiguous vegetation types than human-altered ecotones and differently structured contiguous vegetation types, respectively. We found that forest species seemed to avoid all habitat edges in our study area. Surprisingly, natural edges supported a less diverse small mammal community than human-altered forest edges. However, edge effects were observed deeper into native forests surrounded by mature alien plantations (and more so at harvested plantations) than into native forests surrounded by native grasslands. The net effect of mature plantations was therefore to reduce the functional size of the natural forest by creating a larger edge. We suggest that when plantations are established a buffer zone of natural vegetation be left between natural forests and newly established plantations to mitigate the negative effects of plantation forestry.  相似文献   

4.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

5.
We studied the effects of partial cutting on understory vegetation communities within 19 mixed maple forests in an agriculture-dominated landscape in southwestern Ontario. Woodlots that had been recently harvested were grouped according to provincial silviculture guidelines (standard and heavy cuts) and compared to woodlots that had been uncut for at least 24 years (reference stands). We found significant differences in richness, diversity, and quality of understory vegetation in response to harvest indices. More intensive harvesting resulted in increased richness and diversity, but mostly through the addition of habitat generalists and weedy species. However, partial harvest does not appear to drive vegetation community composition, as ordination methods found no clear community differences between the treatments. Use of the single-tree selection system based on basal area and harvest intensity targets will have an effect on the understory plants, but other factors including past management, disturbance history, and site level microclimate features will also play an important role in shaping vegetation communities. We caution against the removal of large volumes of trees ≥38 cm in diameter, and large reductions in canopy cover, as this can reduce the presence of “conservative” (forest dependent specialist) species, despite a general increase in species richness and diversity. Furthermore, we recommend additional research to investigate the potential for incremental degradation to occur on sites with a long-term history of harvesting, as we found that richness of exotics increased on sites with a history of forest management.  相似文献   

6.
The large-scale conversion of old forests to tree plantations has made it increasingly important to understand how understory vegetation responds to such landscape changes. For instance, in some forest types a reduction in understory richness and cover is thought to result from the development of canopy closure in plantations, although there is a paucity of empirical data demonstrating this relationship. We used a 420-year forest chronosequence as a case study to assess the relationship between stand age, tree canopy cover and understory vascular plant richness and composition in the Siskiyou Mountains of Oregon. The chronosequence consisted of six young managed (age 7–44) and nine older unmanaged (age 90–427) stands. All stands were similar in underlying geology, slope, elevation, and aspect. We found a non-linear relationship between stand age and richness, in which richness was highest in the youngest stands, reached a low in mid-aged stands (∼55 years), then increased in the oldest stands. We also found that percent tree canopy cover was correlated with total understory cover, richness, diversity, and species composition. In general, young stands were characterized by high shrub and graminoid cover and old stands were characterized by an abundant herb layer. Our work suggests that a major component of our study landscape is currently entering the forest stage (canopy closure) characterized by low levels of vascular plant species richness and cover. We use our results to discuss the potential effects of future forest management on understory plants.  相似文献   

7.
Heavy logging leads to regrowth of dense forest, which may adversely affect the flight and foraging activities of bats. We compared insectivorous bat activity and insect abundance at three heights (understorey, subcanopy and canopy), two locations (forest and track) and three time periods (evening, night and dawn), in old and young regrowth sites in south-eastern Australia (456 detector-hours). We measured activity levels of all bats and four echolocation guilds—one open-space and three edge-space aerial-foraging guilds. Mean bat activity in the subcanopy and canopy was up to 11 times that in the understorey of forests, a pattern opposite to that of insect abundance. However, bat activity in the two upper strata was lower in young regrowth than in old regrowth. Vegetation was more cluttered in young regrowth at these upper heights (closer stems and less vertical space in the subcanopy). Mean activity on the track was 2–5 times higher than in the forest, particularly at understorey level (17 times higher for all bats), where vegetation was less cluttered (more distant understorey trees and shrubs, and less cover of ground vegetation). Time of night had little effect on bat activity. The negative response of bat guilds to increased clutter was strongest in the open-space guild and weakest in the edge-space guild with the highest frequency calls. There was an interaction between insect abundance and an index of vegetation openness, with high values of both variables producing high bat activity levels for all bats and the two highest frequency call guilds. Our results highlight the need for management practices in logged forests that increase or preserve the amount of flight and foraging space available to bats.  相似文献   

8.
Gap formation in forests can have impacts on forest ecosystems beyond the physical boundary of the canopy opening. The extent of gap influence may affect responses of many components of forest ecosystems to gap formation on stand and landscape scales. In this study, spatial extent of gap influence on understory plant communities was investigated in and around 0.1 and 0.4 ha harvested canopy gaps in four young Douglas-fir (Psuedotsuga menziesii) dominated stands in western Oregon. In larger gaps, the influence of gap creation on understory plant communities in surrounding forests was minimal. The area showing evidence of gap influence extended a maximum of 2 m beyond the edge of the canopy opening, suggesting that the area affected by gap creation did not differ greatly from the area of physical canopy removal. In smaller gaps, influence of the gap did not extend to the edge of the canopy opening. In fact, the area in which understory vegetation was influenced by gap creation was smaller than the physical canopy opening. Gap influence appears to be limited to areas where ruderal or competitor species are able to replace stress-tolerator species, likely due to elimination or reduction of these species by physical disturbance or competition. The limited gap influence extent exhibited here indicates that gap creation may not have a significant effect on understory plant communities beyond the physical canopy opening. This suggests a limited effectiveness of gaps, especially smaller gaps, as a tool for management of understory plant diversity, and perhaps biodiversity in general, on a larger scale.  相似文献   

9.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species.  相似文献   

10.
We estimated the potential of plantation forests for the restoration of the original plant community. We compared the understory vegetation in hinoki (Chamaecyparis obtusa [Sieb. et Zucc.] Endlicher) plantations at the understory re-initiation stage and in adjacent natural forests. To estimate the effect of the original natural forests on the understory species composition of plantation forests, we established study sites in five types of natural forests (mature evergreen broadleaf, mature deciduous broadleaf, mature evergreen coniferous, immature deciduous broadleaf warm-temperate, and immature deciduous broadleaf cool-temperate) and nearby plantation forests. The understory vegetation of the plantation forests had a higher species richness, a higher proportion of early-seral species, and a higher proportion of herb or fern species than the natural forests. The differences between natural and plantation forests varied according to the species composition of the natural forests. The composition of the understory vegetation of the plantations at the understory re-initiation stage was similar to that of the immature deciduous forests. The characteristics of immature, disturbed forests remained in the understory vegetation of the hinoki forests. No great loss of species was observed. Our findings suggest that most of the original forest species still survive in the understory of the plantation forests. These forests have the potential to follow the successional pathway to broadleaf or mixed forests via thinning or clear-cutting without planting.  相似文献   

11.
Forest edges have numerous implications for structure and function of forest ecosystems. Previous studies on edge quantity have used broad classifications. However, edge influence is driven by the contrast in vegetation structure between adjoining ecosystems, and thus we need detailed site-specific data to assess the role of edges in forests. We studied the variability of sharp edges in 28 boreal landscapes (4 km × 4 km) across an 830 km gradient throughout northern Sweden. Our objectives were: (1) to compare the length of natural and created edges, (2) to classify edges in detail by edge origin, maintenance and forest attributes, and (3) to examine relationships between length of edge and landscape variables. Data were collected using stereo-interpretation of high spatial resolution colour infrared aerial photographs, in combination with line intersect sampling and plots. The length of edge varied from 12 to 102 m ha−1 among landscapes, with an overall mean of 54 m ha−1. Created edges dominated most landscapes (mean 33 m ha−1) and had greater variability than natural edges (mean 21 m ha−1). Maintained edges (e.g. roads, agricultural land) were more abundant than regenerating edges caused by logging. Thirty percent of total edges adjoined narrow linear features. Seventy percent adjoined wider patches and showed high variability (35 classes). Overall, high-contrast edges towards mature forest dominated, i.e. ones that may experience strong edge influence. The amount of edge increased with percent of landscape affected by disturbance, and decreased with latitude and elevation. This study shows that edges are both abundant and highly variable in boreal forests and that forestry is the main driver behind edge creation. Detailed classification of edges based on site-specific forest and patch attributes may help to estimate edge influence at landscape level, and can guide experimental design for examining the impact of edges on structure and function of forest ecosystems.  相似文献   

12.
Understory vegetation controls, in a significant way, the regeneration of overstory trees, carbon sequestration and nutrient retention in tropical forests. Development and organization of understory vegetation depend 3n climate, edaphic and biotic factors which are not well correlated with plant community structures. This study aimed to ~xplore the relationships between understory vegetation and abiotic factors in natural and planted forest ecosystems. A non-metric multidimensional scaling (NMS) ordination technique was applied to represent forest understory vegetation among five forest communities, i.e., a dry miscellaneous forest (DMF), a sal mixed forest (SMF), a teak plantation (TP), a low-land miscellaneous forest (LMF) and a savanna area (SAV) of the Katerniaghat Wildlife Sanctuary, located in northern India. Microclimatic variables, such as photosynthetically active radiation (PAR), air temperature (AT), soil Lemperature (ST), ambient atmospheric CO2 concentration, absolute air humidity (AH), physical and chemical soil ~roperties as well as biological properties were measured. Understory species were assessed via 100 random quadrats (5 m x 5 m) in each of the five forests in which a total of 75 species were recorded encompassing 67 genera from 37 families, consisting of 32 shrubs and 43 plant saplings. DMF was the most dense forest with 34,068 understory individuals per ha of different species, whereas the lowest understory population (13,900 per ha) was observed in the savanna. Ordination and correlation revealed that microclimate factors are most important in their effect compared to ~daphic factors, on the development of understory vegetation in the various forest communities in the north of India.  相似文献   

13.

Context

Understanding the variability of vegetation distribution and its determinants is a central issue for addressing the effects of edges on ecological processes. Recent studies have revealed inconsistencies in the patterns of responses to edge effects that raise important questions about their determinants. We investigated the edge effect response patterns by adapting a recently proposed continuous approach to the case of small forest fragments in southwestern France.

Methods

We surveyed forest understory vegetation (composition, species richness, and percent cover) and abiotic variables (soil temperature, moisture, pH, and canopy openness) along 28 transects across hard forest edges. We tested five statistical models to describe the response pattern of each variable (1) over all transects and (2) per transect. We then compared the response patterns as a function of the attributes of the edge (orientation, topography, and adjacent land cover) and forest patch size.

Results

Over all transects, a general decreasing trend was observed for all variables as the distance from the edge increased. In the individual transects, we evidenced a large variability in the response patterns that was not related to edge attributes or to patch size.

Conclusion

It is difficult to assess the depth of edge influence in highly fragmented forests and to identify the determinants of edge effects. We recommend that care should be taken with studies using pool of transects, and that further studies should be carried out including situations with neutral patterns, in order to gain a broader understanding of edge effects on vegetation.  相似文献   

14.
We investigated the effects of edge structure (i.e. side-canopy openness based on tree, sapling and shrub characteristics, and the composition of tree species) on the understorey vegetation at mesic urban conifer-dominated forest edges in southern Finland. Forest edge structure had an effect on understorey vegetation, and on the spatial extent of the edge effect into the forests. At open edges the edge effect (in terms of the abundances of understorey vegetation) penetrated at least up to 30 m into the forest patches whereas closed edges may prevent these effects. A multilayered canopy with saplings and shrubs at the edge is important to alleviate the effects of the edge. We found that 225–250 m3 ha−1 of trees (diameter at breast height (dbh) > 5 cm) is adequate to restrict the edge effect near the edge. However, the number of broad-leaved trees may be high at edges which, in turn, diminishes the abundance of mosses and favours herb species, thus changing the original natural understorey vegetation composition. Therefore we recommend that conifers be favoured at the edges of mesic conifer-dominated forest patches if the purpose is to restrict the extent of the effects of habitat edges. The appropriate proportion of conifers at these edges should be 80% or more.  相似文献   

15.
Leave patches, uncut areas in a harvested forest, may conserve herbaceous layer species that decline after forest clearcutting. They may also serve to maintain source populations for the recolonization of the harvest area. The main objective of this study is to characterize the short-term response of the herbaceous layer to clearcut harvesting disturbance within and adjacent to leave patches. Four experimental 1 ha patches and two uncut references were established. Within each patch or reference, belts of five 1 m2 quadrats were placed at 50 m and 5 m outside the patch, at 0 m (edge), and at 25 m, 35 m, and 50 m (centre) inside. These belts of quadrats were replicated at all four aspects (North, South, East, and West). Ground vegetation was sampled yearly for 1 year before harvest and 3 years after harvest in the experimental patches and for 2 consecutive years in the references. Some common residual species declined significantly in the clearcuts, but remained stable inside the patches in the short term (3 years after harvest). Overall species composition changed little in the patch interior and edge after harvest. Colonizing species (those that appeared in quadrats after harvest) in the patch exterior were predominantly early-seral species, whereas colonizers in the patch interior tended to be shade-tolerant forest species. Species were grouped a priori based on two habitat preferences (amounts of canopy cover and disturbed substrate). Species characteristic of a habitat with closed canopy and undisturbed substrates that decreased significantly over time in the patch exterior were negatively correlated with the amount of exposed mineral soil and open canopy. Species characteristic of a habitat with open canopy and disturbed substrates that increased significantly at the patch exterior showed a positive correlation with the amount of exposed mineral soil and open canopy. No species’ habitat preference groups declined significantly in the patch interior or edge over time. Based on species’ responses to forest operations, it appears that at least the common forest species are maintained in the short term within leave patches.  相似文献   

16.
We compared the initial effects of four forest regeneration treatments (single-tree selection, group selection, shelterwood, and clearcut), and unharvested controls (mature, second-growth forest) on relative abundance of small mammals and small-mammal habitat throughout the Ouachita Mountains of western Arkansas and eastern Oklahoma. We compared small-mammal capture rates in 20 forest stands (4 replicates of 5 treatments) for 2 years prior to harvest treatments, and 1.5, 3.5, and 5.5 years after treatment. We also examined relationships among small mammals, treatments, and habitat conditions. Before harvest, all stands where characterized by high basal areas (BA), little understory vegetation, and low small-mammal capture rates. Compared with pre-harvest numbers, the number of individuals captured increased nearly five-fold in treated stands 1.5 years after harvest. After harvest, capture rates for all taxa combined were significantly greater in harvested stands (regardless of treatment) than in unharvested controls. Fulvous harvest mice (Reithrodontomys fulvescens) capture rates were greatest in clearcuts. Fulvous harvest mice, cotton rats (Sigmondon hispidus), and pine voles (Microtus pinetorum) were associated with abundant herbaceous vegetation in the understory and low BA. Eastern woodrats (Neotoma floridana), golden mice (Ochrotomys nuttalli), and Peromyscus spp. were associated with moderate to dense woody vegetation in the understory and intermediate BA levels. No taxon of terrestrial small mammal was captured exclusively in unharvested stands; most taxa we captured appear to be either disturbance-adapted or tolerant to disturbances from timber harvest.  相似文献   

17.
该文通过位于湖南西部的森林生态系统研究站的长期定位观测 ,研究了杉木人工林成熟林、间伐林和幼林的小气候特征 ,在分析人工林生态系统环境能量的基础上 ,探讨其小气候的形成机制 ,揭示了人工林生态系统在生态恢复后的小气候变化规律 .多年的小气候观测表明 ,与杉木幼林比较 ,杉木成熟林生态系统可将年平均降低 0 4℃ ,月平均气温最大可降低 2 3℃ ;可降低年平均地表温度1 2℃ ,月地表平均温度最大可降低 2 3℃ ;可增加年蒸发散 10 0mm以上 .人工林生态系统环境能量数据分析表明 ,主要通过林冠层调节环境能量数值和分布来改善系统的小气候条件 ,即通过影响潜热、乱流交换热、位能、动能等能量要素 ,降低系统的温度及其变幅  相似文献   

18.
Understory vegetation is an important component in forest ecosystems. However, the effects of understory on soil properties in subtropical forests are not fully understood. We thus conducted an experimental manipulative study in two young fast-growing plantations—Eucalyptus urophylla and Acacia crassicarpa—in southern China, by removing understory vegetation in both plantations, to estimate the effects of understory vegetation on microclimate, soil properties and N mineralization. Our data showed that, after 6 months, understory removal (UR) in both plantations had greatly increased soil surface luminous intensity (90–500 cd) and temperature (0.5–0.8 °C); soil moisture was reduced in the Eucalyptus plantation but not in the Acacia plantation. Understory removal also reduced soil organic matter (SOM), but had little impact on other soil chemical properties, including total phosphorus, C/N, pH, exchangeable cations (K, Ca, Mg), available P, ande extractable NH4–N and NO3–N. We found a significant decline of soil N mineralization and nitrification rates in the 0–5 cm soils of UR in both plantations. The decline of SOM in UR may contribute to the lower N transformations rates. This study indicates that a better understanding of understory vegetation effects on soil N cycling would be beneficial to forest management decisions and could provide a critical foundation for advancing management practices.  相似文献   

19.
Old-growth cedar–hemlock forests of the interior wet-belt of British Columbia are rich in abundance and diversity of canopy lichens, but are subject to forest harvesting. If these distinctive canopy lichen communities are to be conserved, it is important to learn how they are affected by forestry practices, including partial-cutting techniques designed to retain old-growth attributes. The retention of canopy lichens after 30 and 70% partial-cut harvesting (immediate post-harvest and 2-year post-harvest measurements) was examined using direct canopy access methods (tree climbing) in two old-growth interior cedar–hemlock forest stands of the upper Fraser River valley. Mean lichen loading was generally lower in all treatment areas, including control sites, 2 years after harvesting. However, three of four lichen-sampling groups (cyanolichen, foliose, and Bryoria group lichens) did not show significant treatment effects (total lichen loading) by harvesting type (30, 70 or 100% retention), when data sets were standardized against initial post-harvest lichen loading. Only in Alectoria group lichens were treatment effects observed. Although cyanolichen loading was not significantly different in retained trees in most harvest blocks, many thalli, especially those near south-facing edges, were discolored, suggesting that future cyanolichen loading may be lower within partial-cut harvest blocks. Litterfall in general was greater during 2001/2002 than 2002/2003, even in the control units, suggesting weather-related differences between years. For Alectoria, there appeared to be a treatment-related pulse of litterfall that was more pronounced in the 70% removal than the 30% removal treatment unit. Deposition patterns of litterfall components in relation to edges of openings indicated a heightened level of Alectoria litterfall along edges. Treatment-related differences were absent or weak in other groups, and cyanolichen litterfall did not differ between years in any study area/treatment unit combination. These findings suggest that lichen retention in the residual stand of both partial-cut treatments was adequate to meet management goals, but also point to the necessity of future monitoring, as other edge effects (e.g. microclimate changes) influence future lichen growth and mortality.  相似文献   

20.
Selective logging is one of the main economical activities in tropical and subtropical forests. While most of the effects of this activity on bird communities have been studied by comparing exploited vs. non-exploited areas; the use of human-created treefall gaps by birds is relatively unknown. We studied habitat structure, resource abundance (fruits, flowers and arthropods) and bird activity in logging gaps of different age (1-year-old and 10- to 20-year-old) in a mountain forest (Yungas) of northwest Argentina in both dry and wet seasons. In less than a year after creation, short herbs colonize logging gaps increasing the abundance of arthropods in the ground and the activity of understory insectivores. During dry seasons recently created gaps become an important source of resources for understory frugivores-insectivores. Later on in succession logging gaps are invaded by exotic graminoid vegetation and tall herbs (dispersed through extraction tracks) which can impede the colonization and development of pioneer trees and natural regeneration. Probably as a consequence of a high abundance of fruits and flowers in the understory and a very low abundance of these resources in the canopy, old gaps were mainly used by understory frugivores-insectivores while arboreal frugivores were rare. Because arboreal frugivores disperse most tree seeds in tropical and subtropical forests, the low activity of this guild in logging gaps contribute to the low observed regeneration. Sustainable timber harvest in tropical and subtropical forests should include gap and logging track management to minimize the invasion by exotic graminoid vegetation and facilitate natural succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号