首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We assessed the composition of understory vascular plant communities in relation to the mosaic of canopy patch types, and their associated structure and environment, within unmanaged, mature boreal mixedwood forests in western Canada. Within a 30 km2 area, we sampled patches of four different canopy types: conifer-dominated, broadleaf-dominated, mixed conifer-broadleaf, and canopy gaps (total n = 98). There were significant differences in understory composition among the four patch types (based on multi-response permutation procedure (MRPP)) and these were mainly due to differences in relative abundances of understory species. The understory communities of conifer patches were characterized by low abundances of shade intolerant species while shade-tolerant and evergreen species were indicators (based on an indicator species analysis (ISA)). Understory communities under gap and broadleaf patches were characterized by higher abundances of grasses and shade intolerant species. Gap, broadleaf, and mixed patches had higher abundances of certain shrub species than did conifer patches. The patch types also differed in terms of their environmental conditions. Conifer patches had drier, cooler soils and the lowest understory light. Broadleaf patches had the warmest soils while understory light during the leaf-off period was similar to that of canopy gaps. Gap patches had the lowest litter cover and PO4 availability and the highest light. Seven environmental variables (soil moisture, soil temperature, total light during the leaf-off period, cover of coarse and fine downed woody material, and availability of NH4+ and Ca2+) were significantly related to understory species composition (in a constrained ordination by means of a distance-based redundancy analysis (db-RDA); 16.5% of variation in understory community data explained). Even within a single patch type, there was substantial environmental variation that was related to understory species composition. Our study suggests that the mosaic of canopy patches within mixedwood forests supports coexistence of both early and late successional understory plant species in mixedwood stands. Maintaining the mixture of canopy patch types within mixedwood stands will be important for conserving the natural patterns of understory plant composition in boreal mixedwood forests.  相似文献   

2.
We studied the effects of six levels of dispersed green-tree retention (GTR) harvesting (clearcut (0%), 10%, 20%, 50%, and 75%, and unharvested reference (100%)) on understory plant communities in the 8th growing season post-harvest in the mixedwood boreal forest in northwestern Alberta. For the partial harvest treatments (10%, 20%, 50%, 75%) sample plots were located in the partially harvested (retention) strips as well as in the intervening machine corridors used by the harvesting equipment. The understory plant community was significantly influenced by the gradient of retention level. The cover of understory vegetation, especially graminoids, increased with increasing harvesting intensity for the retention strips and overall considering both plots types. Species richness was unaffected by retention level but did decrease as tree density increased. Lower levels of retention lead to increased abundance of early successional, shade-intolerant species. The results suggest a threshold in understory response to GTR harvesting between the 10% and 20% retention treatments. In terms of understory cover and composition, machine corridors within partially harvested forests resembled clearcuts. The results suggest that retaining more than 10% during GTR harvesting could have significant benefits in terms of maintaining understory plant communities more similar to unharvested reference forest.  相似文献   

3.
The large-scale conversion of old forests to tree plantations has made it increasingly important to understand how understory vegetation responds to such landscape changes. For instance, in some forest types a reduction in understory richness and cover is thought to result from the development of canopy closure in plantations, although there is a paucity of empirical data demonstrating this relationship. We used a 420-year forest chronosequence as a case study to assess the relationship between stand age, tree canopy cover and understory vascular plant richness and composition in the Siskiyou Mountains of Oregon. The chronosequence consisted of six young managed (age 7–44) and nine older unmanaged (age 90–427) stands. All stands were similar in underlying geology, slope, elevation, and aspect. We found a non-linear relationship between stand age and richness, in which richness was highest in the youngest stands, reached a low in mid-aged stands (∼55 years), then increased in the oldest stands. We also found that percent tree canopy cover was correlated with total understory cover, richness, diversity, and species composition. In general, young stands were characterized by high shrub and graminoid cover and old stands were characterized by an abundant herb layer. Our work suggests that a major component of our study landscape is currently entering the forest stage (canopy closure) characterized by low levels of vascular plant species richness and cover. We use our results to discuss the potential effects of future forest management on understory plants.  相似文献   

4.
Understory plants could can act as indicators of temperate forest sustainability, health and conservation status due to their importance in ecosystem function. Harvesting impacts on understory plant diversity depends on their intensity. Variable retention has been proposed to mitigate the harmful effects of timber harvesting, but its effectiveness remains unknown in southern Patagonian Nothofagus pumilio forests. The objectives of this study were to: (i) define a baseline of understory plant diversity in old-growth forests along a site quality gradient and under canopy gaps; (ii) evaluate stands with three different variable retention treatments compared to old-growth forests; and (iii) assess temporal changes during 4 years after harvesting (YAH). A 61 ha N. pumilio forest was selected. Understory plant (Dicotyledonae, Monocotyledonae and Pteridophyta) richness, cover (including woody debris and bare forest floor) and aboveground dry biomass were characterized in summer for 5 years. Before harvesting, baseline samples were conducted along a site quality gradient and outside/inside canopy gaps. Analyzed treatments include a control of old-growth forest (OGF) and three different harvesting treatments with variable retention: (i) dispersed retention (DR) of 30 m2 ha−1 (20-30% retention); (ii) aggregated retention (AR) with one aggregate per hectare and clear-cuts (28% retention); and (iii) combined dispersed and aggregated retention (DAR) with one aggregate per hectare and dispersed retention of 10-15 m2 ha−1 (40-50% retention). Data analyses included parametric and permutational ANOVAs, multivariate classification and ordinations.Before harvesting, 31 plant species were found, where richness, cover and biomass were directly related to site quality. The presence of canopy gaps did not have a significant impact on the measured variables. After harvesting, 20 new species appeared from adjacent associated environments (two from N. antarctica forests and 18 from grasslands and peatlands). At the stand level, understory values were higher in AR > DR > DAR > OGF. Most (81-95%) plant richness at baseline conditions was conserved in all treatments, where inside the aggregates understory remained similar to OGF. Combination of aggregated and dispersed retention (DAR) better limited exotic species introduction and protected sensitive species, improving conservation in harvested stands. Changes in understory variables were observed after the first YAH in all treatments; greater changes were observed in the harvested areas than in aggregates. Changes stabilized at the fourth YAH. As a conclusion, the location of retention aggregates should be selected to preserve species understory diversity of more speciose and diverse habitats or particularly uncommon stands. Implementation of different kinds (patterns and levels) of retention for improvement of biodiversity conservation in harvested forests should be included in timber and forest management planning.  相似文献   

5.
We studied the effects of partial cutting on understory vegetation communities within 19 mixed maple forests in an agriculture-dominated landscape in southwestern Ontario. Woodlots that had been recently harvested were grouped according to provincial silviculture guidelines (standard and heavy cuts) and compared to woodlots that had been uncut for at least 24 years (reference stands). We found significant differences in richness, diversity, and quality of understory vegetation in response to harvest indices. More intensive harvesting resulted in increased richness and diversity, but mostly through the addition of habitat generalists and weedy species. However, partial harvest does not appear to drive vegetation community composition, as ordination methods found no clear community differences between the treatments. Use of the single-tree selection system based on basal area and harvest intensity targets will have an effect on the understory plants, but other factors including past management, disturbance history, and site level microclimate features will also play an important role in shaping vegetation communities. We caution against the removal of large volumes of trees ≥38 cm in diameter, and large reductions in canopy cover, as this can reduce the presence of “conservative” (forest dependent specialist) species, despite a general increase in species richness and diversity. Furthermore, we recommend additional research to investigate the potential for incremental degradation to occur on sites with a long-term history of harvesting, as we found that richness of exotics increased on sites with a history of forest management.  相似文献   

6.
Insects respond to changes in microhabitat caused by canopy disturbance, and thus can be used to examine the ecological impacts of harvesting. Single-tree selection harvesting is the most common silvicultural system used to emulate local small-scale natural disturbance and maintain uneven-aged forest structure in temperate forests. Here, we test for differences in richness, abundance, and composition of hymenopteran and saproxylic insect assemblages at four different taxon levels (selected insect orders; and all hymenopteran families, and braconid subfamilies and morphospecies) between the canopy and understory of unharvested and single-tree selection harvested sites in a northern temperate forest from central Canada. Harvesting had no effect on insect assemblage richness, composition or abundance at the three highest taxon levels (order, family and subfamily). Similarly, richness and abundance at the lowest-taxon level (braconid morphospecies) were similar, although composition differed slightly between unharvested and harvested stands. Insect assemblages were vertically stratified, with generally higher abundance (for Diptera, Hymenoptera, some hymenopteran families and braconid subfamilies) and richness (for braconid morphospecies) in the understory than the canopy. In particular, composition of the braconid morphospecies assemblage showed relatively low similarity between the understory and canopy. Single-tree selection harvesting appears to influ-ence wood-associated insect taxa only subtly through small changes in community composition at the lowest taxon level, and thus is recommended as a conservative approach for managing these northern temperate forests.  相似文献   

7.
In response to concerns about the effects of traditional timber harvesting practices on biodiversity, we examined the effects of alternative silvicultural systems, including partial cutting and modified herbicide use on understory plant communities in an aspen-dominated mixedwood stand. These alternative silvicultural systems match disturbance rates that, based on the intermediate disturbance hypothesis, would support more diverse understory vegetation communities than uncut or clear-cut forests treated with a broadcast spray. Our results indicated that both understory vegetation cover and number of plant species increased at 5 and 10 years after timber harvesting in aspen-dominated boreal mixedwood stands. The highest amount of understory vegetation cover were found in the pre-harvesting herbicide spray treatment areas, likely because understory plants were not directly exposed to the herbicide, whereas the most species occurred in the partial cutting treatment, which represented the most diverse stand structure with both harvested and leave corridors. Understory composition by percent cover of individual species at 10 years post-harvesting was affected by all treatment attributes (i.e., level of harvesting removal, type and time of herbicide application, and mechanical site preparation); however, understory vegetation responded the most to harvesting level. Among treatments, the difference in understory composition was largely attributed to changes in understory species of different shade tolerance.  相似文献   

8.
9.
The foliose cyanolichen Lobaria retigera is a sensitive old-growth forest indicator in British Columbia's inland rainforest. These forests are increasingly being fragmented by harvesting, raising concerns about edge effects and the maintenance of canopy lichen communities in remaining forest patches. We have examined the response of L. retigera to edge effects, using transplant experiments to compare growth responses between abrupt (hard) edges created by clearcut harvesting and more buffered (soft) edges created by variable-retention harvesting. L. retigera thalli placed along hard edges showed high mortality rates, with most thalli (from 64 to 100%) losing biomass at the end of each of the 3-year's measurement periods. Biomass loss along soft edges was much lower, occurring in fewer than 7% of thalli in the best year, up to 42% in the worst year. When growth rates were expressed against light availability at each branch location, thalli along variable-retention transects showed a positive response to increasing light availability. In contrast, thalli along the hard edge transects showed an abrupt decline in growth rates at equivalent levels of high light availability (canopy openness values >30%), where presumably the benefits of greater light availability were offset by heat or dessication stress. These results show a much greater sensitivity to edge effects in L. retigera, compared to earlier measurements at this site with the more common lichen Lobaria pulmonaria, a species that has a dominant green-algal photobiont partner. We suggest that increased use of variable-retention harvesting systems in which a substantial number of residual trees are left along cutblock edges has the potential to reduce the impacts of forest harvesting on canopy lichen biodiversity.  相似文献   

10.
The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural plantation forests.We studied effects of stand age, forest fragmentation, and soil and canopy conditions on species richness and abundance of four species groups in the understory of post-arable oak plantations in southern Sweden: herbaceous forest specialists, habitat generalists and open-land species, and woody species.The group of forest specialists may approach the richness of continuously forested sites after 60-80 years in non-fragmented plantations, but many forest species were sensitive to habitat fragmentation. Open-land species richness decreased during succession, while the richness of woody species and of generalists remained stable, and was not affected by fragmentation. Abundance of generalists gradually decreased in non-fragmented plantations, probably due to competition from colonizing forest specialists. Soil pH in post-arable stands remained consistently higher than in continuously forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species.For successful recovery of a rich understory, we suggest that post-arable plantations should be established on loamy soils of intermediate to high pH proximate to older forest with source populations, and that a continuous overstory canopy cover of 70-80% is maintained by regular light thinnings and promotion of a shrub layer.  相似文献   

11.
Epiphytic macrolichen litterfall was collected over 3 years from primary evergreen broad-leaved forests (PF), Populus bonatii secondary forests (PBSF), middle-aged oak secondary forests (MOSF) and old-aged oak secondary forests (OOSF) of the Ailao Mountains in SW China. To assess changes in the epiphyte communities of the subtropical forests, we compared the differences in biomass, species diversity and community structure of epiphytic lichens from the four forest types. A total of 51 species were recorded in this study. Species richness was highest in the PF, while α-diversity was highest in the MOSF. Lichen biomass differed markedly across the four forest types and was highest in the MOSF. The contribution of each dominant species to total biomass, except Nephromopsis ornata, was significantly different among forest types. Moreover, the percent contribution of foliose chlorolichens to litterfall tended to be higher in later-succession forest types, whereas the contributions of cyanolichens and fruticose chlorolichens were lower in these forest types. Compared to the PF, the lichen community structure in secondary forests differed significantly, implying that at least a few hundred years were needed for the restoration of these lichen communities. In particular, nineteen lichens were suggested as indicators, and eleven of them were present in the MOSF. Canonical correspondence analysis (CCA) indicated that the observed differences were mainly attributed to canopy openness and the size of the largest tree, which represented an environmental gradient from exposed to sheltered habitats. The diversity of host tree species was also important in determining the composition and distribution of macrolichens. Our findings support the idea that the maintenance of the forest landscape mosaic of heterogeneous forest types may be an important management practice to maintain or promote the epiphytic lichen community of the subtropical Ailao Mountains.  相似文献   

12.
Gap formation in forests can have impacts on forest ecosystems beyond the physical boundary of the canopy opening. The extent of gap influence may affect responses of many components of forest ecosystems to gap formation on stand and landscape scales. In this study, spatial extent of gap influence on understory plant communities was investigated in and around 0.1 and 0.4 ha harvested canopy gaps in four young Douglas-fir (Psuedotsuga menziesii) dominated stands in western Oregon. In larger gaps, the influence of gap creation on understory plant communities in surrounding forests was minimal. The area showing evidence of gap influence extended a maximum of 2 m beyond the edge of the canopy opening, suggesting that the area affected by gap creation did not differ greatly from the area of physical canopy removal. In smaller gaps, influence of the gap did not extend to the edge of the canopy opening. In fact, the area in which understory vegetation was influenced by gap creation was smaller than the physical canopy opening. Gap influence appears to be limited to areas where ruderal or competitor species are able to replace stress-tolerator species, likely due to elimination or reduction of these species by physical disturbance or competition. The limited gap influence extent exhibited here indicates that gap creation may not have a significant effect on understory plant communities beyond the physical canopy opening. This suggests a limited effectiveness of gaps, especially smaller gaps, as a tool for management of understory plant diversity, and perhaps biodiversity in general, on a larger scale.  相似文献   

13.
We estimated the potential of plantation forests for the restoration of the original plant community. We compared the understory vegetation in hinoki (Chamaecyparis obtusa [Sieb. et Zucc.] Endlicher) plantations at the understory re-initiation stage and in adjacent natural forests. To estimate the effect of the original natural forests on the understory species composition of plantation forests, we established study sites in five types of natural forests (mature evergreen broadleaf, mature deciduous broadleaf, mature evergreen coniferous, immature deciduous broadleaf warm-temperate, and immature deciduous broadleaf cool-temperate) and nearby plantation forests. The understory vegetation of the plantation forests had a higher species richness, a higher proportion of early-seral species, and a higher proportion of herb or fern species than the natural forests. The differences between natural and plantation forests varied according to the species composition of the natural forests. The composition of the understory vegetation of the plantations at the understory re-initiation stage was similar to that of the immature deciduous forests. The characteristics of immature, disturbed forests remained in the understory vegetation of the hinoki forests. No great loss of species was observed. Our findings suggest that most of the original forest species still survive in the understory of the plantation forests. These forests have the potential to follow the successional pathway to broadleaf or mixed forests via thinning or clear-cutting without planting.  相似文献   

14.
Urban development typically has extensive and intensive effects on native ecosystems, including vegetation communities and their associated biota. Increasingly, urban planning strives to retain elements of native ecosystems to meet multiple social and ecological objectives. The ecological integrity of native forests in an urbanizing landscape is challenged by a myriad of impacts, such as forest management and invasive species. Environmental protection efforts in the Lake Tahoe basin, spanning the California/Nevada border in the Sierra Nevada mountains, over the past half century have resulted in the retention of thousands of parcels of remnant native forest located throughout the urbanizing landscape. The basin landscape provides an opportunity to evaluate the effects of land development on the composition and structure of remnant native forests along a gradient of urbanization. We sampled 118 sites located in remnant forests in the lower montane zone surrounded by 0–70% development. We also sampled forest structure in the landscape surrounding 75 of these sites to evaluate the contribution of remnant forests to the retention of native forest elements in the larger landscape. We characterized plant species composition and cover, vertical structure, and the density of trees, snags, and logs, as well as levels of ground disturbance and human activity. We found that remnant native forests retained much of their compositional and structural character along the development gradient, including large tree density, total canopy cover, and plant species richness. Notable exceptions were reductions in the density and decay stage of snags and logs, and the density of understory trees. We also observed increases in the richness and cover of herb and grass species and increases in the number of exotic plant species. In contrast, structural complexity was reduced in the landscape surrounding forest remnants in all measures except large tree density. We conclude that remnant native forests contribute significantly to maintaining native species in an urbanizing landscape, and that land conservation practices have an important role to play in protecting native forest ecosystems.  相似文献   

15.
This study was designed to answer questions about the patterns of understory diversity in managed forests of southern New England, and the factors that appear associated with those patterns. At the landscape-level, we used plot data to answer questions regarding the spatial distribution of forest understory plant species. Data from a combination of fixed area (understory vegetation) and variable radius (overstory trees) plot methods are combined with site variables for the analysis. Univariate and multivariate statistical methods are used to test for understory diversity relationships with overstory cover types and topography separately, and in combination. Analyses also test for relationships between specific understory species and cover types. In general the understory flora is dominated by four common clonal species that occur across the range of forest cover types: wild sarsaparilla (Aralia nudicaulis L.), Canada mayflower (Maianthemum candense Desf.), star flower (Trientalis borealis Raf.), and partridgeberry (Mitchella repens L.). Results also show that over story composition and structure can be used to assess understory species richness. Species richness follows a general trend among cover types of: hardwood ≥ regenerating forest, hardwood–pine, and pine ≥ mixed ≥ hardwood–hemlock > hemlock. Eastern hemlock (Tsuga canadensis L. Carriere) and mountain laurel (Kalmia latifolia L.) (which decreased in dominance from ridge to valley) both showed negative trends with understory species richness. Topographic position also appears associated with understory floristic patterns (particularly for the hardwood cover type), both in terms of species richness and compositional diversity which both increased from ridge, to midslope, to valley. However, overstory composition (covertype) appears to have a higher order influence on vegetation and mediates the role of topography. The results from this study provide foresters with a better understanding for maintaining floristic diversity and composition of the understory in managed forests.  相似文献   

16.
We examined whether heavy fuelwood collection can cause threshold change in understory forest community and evaluated how selective wood extraction might lead to delayed forest recovery in an urban forest of Nairobi, Kenya. Piecewise regression which represents strongest support for threshold change provided the best fit for the relationships between understory floristic composition (i.e. DCA axis 1) and human disturbance gradients (i.e. canopy cover, and distance from the slum), where threshold changes were detected at c.a. 350 m from the slum and c.a. 30% canopy cover. Only one tree species significantly indicated communities beyond the threshold while an aggressive invasive alien plant (IAP) Lantana camara was strongly represented. Total species diversity along the two human disturbance gradients peaked before the threshold was reached, suggesting that decline in species diversity along the prevailing disturbance gradient might be able to forecast threshold change. Tree species richness in the understory rapidly declined as the threshold was surpassed while other growth forms (i.e. shrubs, herbs and climbers) were relatively unaffected. The effect of selective tree cutting was indirectly impacting the forest understory as species richness pattern of preferred and non-preferred species paralleled that of trees and shrubs, respectively. Thickets of L. camara can negatively affect indigenous flora and its establishment was favored under selective fuelwood extraction removing certain tree species while leaving the IAP untouched. Shading can readily eliminate the IAP, but weak tree regeneration beyond the threshold suggested forest recovery might be delayed for longer than expected because of the interaction between selective fuelwood use and the IAP.  相似文献   

17.
Old growth stands of boreonemoral spruce (Picea abies) forests frequently have a shrub layer dominated by hazel (Corylus avellana) – a species which is generally excluded in intensively managed forests due to clearcutting activities. We sampled understory species composition, richness and biomass, as well as environmental variables beneath these two species and also within forest ‘gaps’ in order to determine the effect of overstory species on understory vegetation. Species richness and biomass of herbaceous plants was significantly greater under Corylus compared with plots under Picea and in forest gaps. Indicator species analysis found that many species were significantly associated with Corylus. We found 45% of the total species found under woody plants occurred exclusively under Corylus. Light availability in spring and summer was higher in gaps than under forest cover but no difference was found between plots under Corylus and Picea. Hence, reductions in light availability cannot explain the differences in species composition. However, Ellenberg indicator values showed that more light demanding species were found under Corylus compared to Picea, but most light demanding species were found in gaps. The litter layer under Picea was three times thicker than under Corylus and this may be an important mechanism determining differences in understory composition and richness between the woody species. The presence of Corylus is an important factor enhancing local diversity and small-scale species variation within coniferous stands. Hence, management should maintain areas of Corylus shrubs to maintain understory species diversity in boreal forests.  相似文献   

18.
Alternative silvicultural approaches to timber management, such as regeneration treatments with different degrees of stand retention, may mitigate negative effects of clear-cutting or shelterwood cuts in forested ecosystems, including changes in old-growth forest bird communities. The aims of this work were: (a) to compare bird species richness and densities among different silvicultural designs with variable retention (dispersed and/or aggregated) and unmanaged primary forests, and (b) to assess temporal changes at community and species levels before and after treatments. A baseline avian survey was conducted prior to harvesting to evaluate canopy gap presence and forest stand site quality influences. Subsequent to harvesting, data on bird species richness and density were collected by point-count sampling during the summer season for 5 consecutive years (4 treatments × 5 years × 6 sampling points × 5 counts). Bird species richness and density (15 species and 9.2 individuals ha−1) did not change significantly with forest site quality of the stands and canopy gap presence in unmanaged forests. However, both variables were significantly modified in managed forests, increasing over time to 18 species and reaching to 39 individuals ha−1. Inside the aggregated retention, bird communities were more similar to unmanaged primary forests than those observed within the dispersed retention or in clear-cuts. Opting for a regeneration method with dispersed and aggregated retention has great potential for managing birds in Nothofagus pumilio forests. This method retained enough vegetation structure in a stand to permit the establishment of early successional birds (at least in dispersed retention), and to maintain the bird species of old-growth forests which could persisted in the retention aggregates.  相似文献   

19.
In this article, we compared the structure, composition, and diversity of trees, shrubs and saplings, seedlings and herbaceous species of community- and government-managed forests in the lowlands of eastern Nepal. Results suggest that among the trees, the community forest was dominated by a single species, Shorea robusta. However, Shorea robusta and Terminalia myriocarpa were codominant in the government forest. Tree density and basal area were higher in the government forest, but shrub/sapling density and basal area were higher in the community forest, suggesting a positive effect of community management on tree regeneration. Overstory species assemblages showed an obvious compositional difference between the forests, but understory species assemblages were less obvious. Plot-level tree and shrub/sapling species richness was higher in the government forest than the community forest. However, seedling-herbaceous species richness was higher in the community forest. The dominance of Shorea robusta trees in the community forest suggests that people involved in managing forests may be more interested in a limited number of economically valuable species while removing less important trees. Such preferential management practices may increase resource heterogeneity within a forest and maintain species diversity in the understory. Thus, community participation in forest management should be encouraged, with guided management techniques and exercises, to achieve maximum forest recovery, provide sustainable ecosystem services, and maintain forest diversity.  相似文献   

20.
Group retention is a forest harvesting technique designed to sustain biodiversity and mitigate concerns regarding clearcut logging. It is characterized by retained forest patches that vary in number, size, spatial arrangement, and habitat attributes. We used birds to compare community composition and species abundance among clearcut, group retention, and uncut control forest treatments, and evaluated species’ responses to percentage retention. The bird community in group retention was more similar to that in control forests than it was to the community in clearcuts. The probability of occurrence for many bird species typical of uncut control forests was related positively to percentage retention. A preliminary analysis of plot-level effects (i.e., amount of forest sampled) suggests that patch size may be more important than total amount of retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号