首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
This study examines the diet of Sorubim lima (Schneider) during its early life stages and compares it with available food resources. Prey species preference was estimated by computing the Strauss index. The diet was diverse, and rotifers and cladocerans were the most important items. Pre-flexion larvae ate rotifers and cladocerans. Around flexion, cladocerans were dominant and the ingestion of fish also began. As larvae grew, the percentage of rotifers diminished. In post-flexion larvae, cladocerans were also dominant, and the ingestion of insects and fish was more frequent. The Strauss index showed negative selection for rotifers, positive values for cladocerans and neutral for copepods. The role of the lotic habitats as nursery areas for fish larvae was discussed.  相似文献   

2.
3.
Considering the well‐known problems arising from the use of rotifers and Artemia as live prey in larval rearing in terms of fatty acid deficiencies, the aim of this study was to evaluate a partial or complete replacement of traditional live prey with preserved copepods during the larviculture of gilthead sea bream (Sparus aurata). Sea bream larvae were randomly divided into 4 experimental groups in triplicates: group A larvae (control) fed rotifers followed by Artemia nauplii; group B fed a combined diet (50%) of rotifers–Artemia and preserved copepods; group C fed rotifers followed by preserved copepods; and group D fed preserved copepods solely. Survival and biometric data were analysed together with major molecular biomarkers involved in growth, lipid metabolism and appetite. Moreover, fatty acid content of prey and larvae was also analysed. At the end of 40 days treatment, a stress test, on the remaining larvae, was performed to evaluate the effects of different diets on stress response. Data obtained evidenced a positive effect of cofeeding preserved copepods during sea bream larviculture. Higher survival and growth were achieved in group B (fed combined diet) larvae respect to control. In addition, preserved copepods cofeeding was able to positively modulate genes involved in fish growth, lipid metabolism, stress response and appetite regulation.  相似文献   

4.
In hatcheries, the adequate supply of live feed has a vital role in feeding fish larvae, fry and fingerlings. Furthermore, the enhancement of the nutritional quality of live feeds is well‐developed techniques in aquaculture. Essential fatty acids (EFA) such as docosahexaenoic acid (DHA; C22:6 n?3), eicosapentaenoic acid (EPA; 20:5(n?3) and arachidonic acid (ARA; 20:4(n?6) and amino acids are an essential source of proteins for larval rearing of fish. However, the common practised live feeds used for the primary feeding such as rotifers and Artemia are naturally deficient in essential nutrient components. Hence, the improvement of the nutritional quality of live feeds with different oil emulsions and commercial diets, and manipulation of the feed are necessary for fish production. The production protocols of copepods, Moina and fairy shrimps as live feed are still underdeveloped in hatcheries. The different lipid sources using for the enrichment of Artemia and rotifers are not effective on other live feeds, especially copepods and cladocerans (Moina, Daphnia) and fairy shrimps. This review focuses on the importance of live feeds by the techniques of feed enhancement or enrichment of zooplankton by direct incorporation of nutrients for feeding of early stages of fish.  相似文献   

5.
Seahorses are ambush predators that swallow the prey through their tubular snout. In order to better understand mouth growth and its effect on prey preference by juveniles of the seahorse Hippocampus guttulatus, experimental assays were carried out by feeding juveniles (0–30 – d after male's pouch release [dar]) on a mixture of rotifers, Brachionus plicatilis; Artemia nauplii; and copepods; Acartia tonsa. Mouth development in juveniles was accomplished by growth of upper and lower jaws, which were linearly correlated with juvenile length, whereas mouth width (MW) and height (MH) grew exponentially with juvenile size. Additionally, MW and MH were exponentially correlated, so that the transversal section of the mouth increased linearly with juvenile age and length. Gut content and Ivlev' selectivity index demonstrated a permanent rejection of rotifers for the whole experimental period and a clear preference of juveniles for copepods from 0 to 15 dar and for Artemia nauplii afterwards. Results also suggest that juveniles are able to ingest larger prey than those provided as the limiting factor in prey ingestion was not MW, as for many marine fish larvae, but mouth area. A tentative feeding schedule to successfully feed H. guttulatus juveniles from 0 to 30 dar is proposed.  相似文献   

6.
Live prey used in aquaculture to feed marine larval fish – rotifer and Artemia nauplii – lack the necessary levels of n‐3 polyunsaturated fatty acids (n‐3 PUFA) which are considered essential for the development of fish larvae. Due to the high voracity, visual feeding in conditions of relatively high luminosity, and cannibalism observed in meagre larvae, a study of its nutritional requirements is needed. In this study, the effect of different enrichment products with different docosahexaenoic acid (DHA) concentrations used to enrich rotifers and Artemia metanauplii have been tested on growth, survival, and lipid composition of the larvae of meagre. The larvae fed live prey enriched with Algamac 3050 (AG) showed a significantly higher growth than the rest of the groups at the end of the larval rearing, while the larvae fed preys enriched with Multigain (MG) had a higher survival rate. DHA levels in larvae fed prey enriched with MG were significantly higher than in those fed AG‐enriched prey. High levels of DHA in Artemia metanauplii must be used to achieve optimal growth and survival of meagre larvae.  相似文献   

7.
Harpacticoid copepods are being considered as alternative candidates for live feed in aquaculture, but their benthic affinity may pose problems for pelagic fish larvae. We compared the swimming behaviour and feeding incidence of herring larvae (Clupea harengus) in the presence of harpacticoid copepods (Tachidius discipes) and rotifers (Brachionus plicatilis). Additionally, we provided T. discipes via a floating sieve to improve the prey availability. The comparison was performed at 5 and 10 days post hatch (dph) via 2D‐video observations. Quantitative analyses of larval trajectories allowed the estimation of feeding behaviour through a series of indicators: swimming speed, straightness of trajectories, turning angles and swimming activities (break, sink, slow, normal, fast). The outcomes highlighted that the prey type had no significant effect on swimming speed or straightness of the swimming path. However, at 10 dph directly copepod‐fed larvae spent less time in slow but more time in the normal swimming‐state than rotifer‐fed larvae and larvae fed with Tachidius via sieve. This suggests higher energy expenditure of directly copepod‐fed larvae. Moreover, the feeding incidence was higher in larvae fed with Tachidius via sieve than directly Tachidius‐fed larvae. Thus, providing harpacticoid copepods via a floating sieve can improve the rearing of marine fish larvae.  相似文献   

8.
Leopard coral grouper, Plectropomus leopardus are a heavily exploited, high-value fish commonly found in the Asian live reef food fish trade. In past decades, many attempts at the mass culture of various grouper species have been undertaken; however, their small mouth gape at first feed has resulted in very low survival when using traditional live feeds such as rotifers. The use of wild caught or extensively cultured copepods has yielded potentially promising increases in survival and growth, but overall survival to the juvenile stage remains low, making mass culture currently impractical. The current study sought to build on past developments in grouper culture and recent advancements in copepod culture technology by observing how growth and survival were influenced by the addition of intensively cultured copepods to the early diet of P. leopardus larvae. Six tanks of larvae, three replicates per treatment, were fed either eggs and nauplii of the calanoid copepod Parvocalanus crassirostris, at a starting density of 5 mL−1, and the rotifer Brachionus rotundiformis, at a starting density of 10 mL−1, or were fed only B. rotundiformis, at a density of 15 mL−1, starting on the evening of 2 days post-hatch (dph) and continuing until 9 dph. After this initial period, all larvae were fed the same diet of rotifers, Artemia, and dry feed until the cessation of the trial at 21 dph. Larvae fed P. crassirostris in addition to rotifers had a significantly higher survival, 9.9 versus 0.5%, than those fed only rotifers. Growth was also significantly enhanced in larvae offered copepods. Larvae only fed rotifers were, on average, 1.5 mm shorter at 21 dph than those that had been fed copepods. More rapid development and the earlier onset of flexion were also noted in the larvae that were offered copepods. The use of intensively cultured copepods, in this study, increased survival tenfold over previous studies, with P. leopardus larvae fed wild-caught copepods. The application of intensively cultured copepods to the early diet of P. leopardus, along with future research to evaluate late-stage mortality issues, may facilitate commercial production of this species.  相似文献   

9.
Feeding and food selection of burbot (Lota lota L.) larvae reared in illuminated cages were studied. The experiment was carried out in mesotrophic Lake Maróz, in north-eastern Poland, for 6 weeks in two successive years. The initial stocking density was 1,250 larvae (20 DPH) per cage. Food selection according to the zooplankton groups (Rotifera, Cladocera and Copepoda) and length classes was expressed by the Strauss linear selectivity index (L). Zooplankton species composition in the lake was similar in the two seasons of the study and organisms shorter than 0.5 mm prevailed in the plankton. The mean number of prey found in burbot alimentary tracts increased from about 40 up to over 200 during the course of the study. A very large inter-individual variation in the amount of food organisms consumed by fish was noted. Analysis of the values of the Strauss food selectivity index shows that at the beginning of the first year of the experiment, burbot larvae preferred copepods, most numerous in the environment at that time; later, fish tended to select cladocerans. In the second year of the study, fish more often ate copepods, irrespective of their quantities in the environment. During the whole study, reared burbot larvae did not eat rotifers, even when they were numerous in cages. Similarly to the rotifers, the smallest planktonic organisms, measuring up to 0.5 mm in length, were typically neglected by fish, while the 0.6–1.0 mm group was most frequently selected. There were also considerable individual differences between particular burbot specimens in their food preferences.  相似文献   

10.
One of the major challenges in marine fish culture is how to provide live food of adequate size and nutritional quality for first‐feeding larvae. Commonly used live food organisms, rotifers and brine shrimp, may not always be the best option. To determine the suitability of different zooplankton in the larviculture of Elacatinus figaro, three diets were tested: RE – rotifers Brachionus sp. (10 ind mL?1)+ciliate Euplotes sp. (10 ind mL?1), enriched with fatty acids; RC – enriched rotifers (10 ind mL?1)+wild copepod nauplii (10 ind mL?1); and R – enriched rotifers (20 ind mL?1). Survival rates were estimated 10 days after hatch (DAH) for the three test groups, and growth rates were evaluated for RE and R at 10 and 20 DAH. Although survival rate was numerically higher for the RC diet (41.1±14.2%), no significant difference was detected between groups fed RE (20.5±18.1%), RC or R (32.1±16.5%). At 10 DAH, the growth rate was significantly higher in RC (5.7±0.6 mm) than in R (4.6±0.5 mm), a trend that was also observed at 20 DAH for RC (8.6±0.5 mm) and R (5.8±0.7 mm) (P<0.05). E. figaro larvae fed on ciliates did not show satisfactory results, whereas feeding copepod nauplii enhanced growth.  相似文献   

11.
The growth and morphological development including fins, spine distribution and pigmentation of larval and juvenile of hatchery‐reared yellow puffer, Chonerhinos naritus were described to provide essential information on the early life history of this species. The total length (TL) of newly hatched larvae was 3.42 ± 0.23 (mean ± SD) mm, reaching 5.66 ± 0.38 mm on 5 days after hatched (DAH), 7.80 ± 0.28 mm on 11 DAH, 9.88 ± 0.40 mm on 27 DAH and 10.92 ± 0.58 mm on 30 DAH. The yolk was completely absorbed in preflexion larvae at 4 DAH. The mouth opening started at 3 DAH of yolk sac larvae, while the teeth appeared starting from preflexion larvae at 7 DAH. Overall aggregate fin ray numbers including caudal fin attained full complement in postflexion larvae at 27 DAH. Several melanophores with appearance of small stellate were first appeared dorsally on the head of flexion larvae at 13 DAH, expanded at the dorsal region of the head, above the eye in juveniles at 30 DAH. The spines first appeared in preflexion larvae of C. naritus at 7 DAH, covering the ventral skin region below pectoral fin base and expanded to the ventral part of the body and nearly covered the whole abdomen region before the anus and below the eyes in juveniles. C. naritus remain as larvae for approximately 29 days, during which they metamorphose to the juvenile stage prior to sexual maturation. Observations in larvae development of C. naritus revealed similar characteristics with other Tetraodontidae species.  相似文献   

12.
The aim of this study was to compare the nutritional composition and effects of short periods with cultivated copepod nauplii versus rotifers in first‐feeding. Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae were given four different dietary regimes in the earliest start‐feeding period. One group was fed the copepod Acartia tonsa nauplii (Cop), a second fed enriched rotifers (RotMG), a third fed unenriched rotifers (RotChl) and a fourth copepods for the seven first days of feeding and enriched rotifers the rest of the period (Cop7). Cod larvae were fed Artemia sp. between 20 and 40 dph (days posthatching), and ballan wrasse between 36 and 40 dph, with weaning to a formulated diet thereafter. In addition to assessing growth and survival, response to handling stress was measured. This study showed that even short periods of feeding with cultivated copepod nauplii (7 days) had positive long‐term effects on the growth and viability of the fish larvae. At the end of both studies (60 days posthatching), fish larvae fed copepods showed higher survival, better growth and viability than larvae fed rotifers. This underlines the importance of early larval nutrition.  相似文献   

13.
This study aimed to investigate the feeding behaviour (particularly gut fullness and evacuation, preying on rotifers and feeding preference in the water column) of the calanoid copepod, Pseudodiaptomus hessei, as a potential live feed species for aquaculture. Fed and starved, male and female P. hessei were fed rotifers (Brachionus plicatilis) in the presence and absence of microalgae for 24 hr. Starved copepods consumed more rotifers (11.31 ± 1.01, individual rotifers) than fed (8.06 ± 1.01, individual rotifers) while the number of rotifers consumed in the presence of microalgae was similar when fed or starved. Gut fullness and evacuation was determined by feeding copepods two different cell size microalgae species (Tetraselmis suecica and Isochrysis galbana). Gut fullness and evacuation percentage were observed under the dissecting microscope (as 0, 25, 50, 75 and 100%). Copepods fed on T. suecica (large cell) filled their guts more rapidly, while those fed on I. galbana (small cell) evacuated their guts faster. Feeding preference was determined using a multifactorial experiment where copepods were fed two microalgae species, T. suecica and I. galbana, each presented as benthic and planktonic food sources. P. hessei preferred to feed on planktonic microalgae first regardless of microalgae choice species for ±80 min, before shifting to benthic food source. This information can be used as baseline information for aquaculturists to rear the species as live feed for marine fish larvae.  相似文献   

14.
The application of trichlorfon, diflubenzuron, or fenthion to fertilized culture ponds stocked with 5-day-old, reciprocal-cross, hybrid striped bass fry resulted in an initial reduction in the concentration of rotifers and longer-term alteration of zooplankton successional stages, including changes in concentrations of rotifers, cladocerans, and copepods. Culture ponds without applied chemicals had the highest concentrations of small rotifers when fry were stocked, followed by high concentrations of cladocerans, copepod nauplii, and adult copepods. Fry survival in untreated ponds was higher than in chemically-treated ponds. Initial high concentrations of copepods in some ponds corresponded with low fry survival. Untreated ponds that were filled at the time of broodfish spawning, and stocked with fry 5 days later, had the highest fry survival rates, corresponding with peak rotifer concentrations, followed by a typical zooplankton succession.  相似文献   

15.
In carnivorous fish species, zooplankton is one of the main food items in the early life stages and some fish species continue feeding on such food items further along the life stages even in the farming environment. In this study, the intake of natural food items was assessed in juvenile pirarucu Arapaima gigas reared in earthen ponds. Juvenile pirarucu (12.2 ± 4.32 g and 12.1 ± 1.13 cm) were stocked in fertilized earthen ponds (240 m²). For the analysis of the fish stomach content and plankton in the pond water, the fish and pond water were sampled weekly for 75 days and biweekly until the fish reached a mean weight of 750 g. Although artificial feed was used, pirarucu also ingested the natural food available in the pond water. Among the zooplankton, pirarucu demonstrated feeding preference for cladocerans despite the abundance of rotifers and copepods. Cladocerans were present in more than 80% of the stomach contents of fish up to 300 g and in 65%, 45% and 17% of fish of 301–500 g, 501–700 g and 701–900 g respectively. Copepods were present only in fish up to 500 g at low abundance. High ingestion of insects and plant material was observed in the stomach content of fish of all size classes. The results demonstrate that juvenile pirarucu ingest natural food available in the farming pond and suggests that the adoption of pond fertilization practices may have positive effects on fish growth performance.  相似文献   

16.
Copepods are well known to be the optimal live feed for most species of marine fish larvae. Still copepods are rarely used in marine hatcheries worldwide. Lack of efficient production techniques are among the reasons for this. Consequently, Artemia and rotifers are utilized in commercial settings. One problem in intensive production of copepods is contamination with rotifers. Rotifers have higher growth rates than copepods and consequently will compete out the copepods when accidentally introduced to the copepod production systems. Once contamination has occurred, the only cure has been to shut down production and subsequently use a therapeutic agent to eliminate all zooplankton in the system before restart with a stock culture free of rotifers. We tested flubendazole as a mean of controlling rotifers (Brachionus plicatilis) in intensive laboratory cultures of the harpacticoid copepod (Tisbe holothuria). Flubendazole was lethal to rotifers in concentrations as low as 0.05 mg L?1. There was no significant effect on the concentration of copepods, even at the highest concentration tested, i.e. 5.0 mg L?1 flubendazole. We conclude that flubendazole is an effective drug for control of B. plicatilis in T. holothuriae batch cultures.  相似文献   

17.
To determine the optimum time at which to wean Scylla serrata larvae from rotifers onto Artemia two experiments were conducted, approximately 1 month apart, using larvae from two different female crabs. In the first experiment, the larvae in three treatment groups, with nine replicates each, were fed rotifers for the first 8 days after hatching. Artemia were introduced on days after hatch (DAH) 0 – during the first zoeal instar (treatment R + A); on DAH 4 – during the second zoeal instar (treatment R4A); on DAH 8 – during the third zoeal instar (treatment R8A). In a control (ROT) larvae were fed with rotifers exclusively for 18 days until the completion of metamorphosis to megalopa. In the second experiment, the same four feeding schedules as in experiment 1 were used with an additional group of larvae (treatment AC) that were fed only on Artemia throughout the rearing period. Similar results were recorded in the two experiments. Larvae in treatments R + A and R4A performed significantly better than those in treatments R8A, ROT and AC. This was particularly evident when examining the proportion of zoeae which successfully completed metamorphosis to megalopa. Poor performance of larvae in treatments AC and ROT implied that rotifers are needed as a first food, but that rotifers alone do not fill the nutritional requirements of S. serrata larvae. Poor performance of larvae in treatment R8A suggested that the diet should be supplemented with Artemia before the end of the zoea 3 stage.  相似文献   

18.
The growth potential of cod larvae is not fully achieved when rotifers (Brachionus spp.) are used as live feed. In this experiment, we studied the effect of natural zooplankton (mainly copepods) on the growth of cod (Gadus morhua L.) larvae reared in intensive systems. Using a growth model developed for cod larvae, the growth rates observed could be evaluated and compared with growth rates reported previously. The cod larvae showed optimal growth rates until age 19 days post hatch (DPH) when they reached 9.77 ± 0.25 mm standard length (SL). Early weaning (20–25 DPH) resulted in significantly longer larvae at age 30 DPH compared with late weaning (25–32 DPH); however, in this period, the zooplankton concentrations were low. The experimental larvae showed considerably higher growth rates compared with rotifer (Brachionus spp.)‐reared cod larvae in previous experiments. The nutritional composition of cod larvae was analysed and compared with published results on rotifer‐reared larvae. The levels of iodine, manganese, selenium and n‐3 PUFA were considerably higher in larvae fed copepods compared with larvae fed rotifers. The differences in nutritional status may well explain the differences in growth observed between copepod and rotifer‐reared larvae.  相似文献   

19.
To study the effect of dietary supplementation of iodine in Solea senegalensis, larvae were randomly distributed in six tanks. Larvae in three tanks were given rotifers and Artemia enriched with iodine in addition to Rich Advance or Super Selco from 2 days after hatch (DAH) until 31 DAH. Larvae in a second set of three tanks were fed control rotifers and Artemia, enriched only with Rich Advance or Super Selco. Samples were collected at 2, 5, 10, 15 and 31 DAH to determine dry weight, total length, myotome height and thyroid status. Larvae fed the iodine‐enriched diet had significantly higher weight at 31 DAH and higher levels of whole body iodine concentration, compared to control larvae. At 31 DAH, larvae from the control treatment showed typical goitrous thyroid follicles. Thyroid cells of larvae from this treatment appeared columnar or afollicular, with the colloid partly or completely depleted, representative of hyperplasia (goitre). The lower growth rate in fish larvae from the control treatment was possibly a consequence of the hyperplasia, and the iodine enrichment prevented Senegalese sole larvae from developing goitre. This study demonstrates the importance of iodine enrichment of live feed for fish reared in a recirculation system.  相似文献   

20.
The silver pomfret Pampus argenteus (Euphrasen) is a new candidate for aquaculture and there is not much information available on its larval rearing. Investigations carried out using microalgae alone in the culture system for the initial feeding of the silver pomfret larvae showed that Chlorella, Isochrysis and Nannochloropsis without rotifers are not conducive to the survival of newly hatched larvae. At 6 days after hatching (DAH), a maximum survival of 3% (1.8 ± 1.69%) was observed with Isochrysis followed by Nannochloropsis (0.35 ± 0.21%) and Chlorella (0.25 ± 0.21%). All control larvae died at 6 DAH without microalgae. Further investigations using the above microalgae with rotifers and a mixture of these same microalgae with rotifers showed that significantly higher (P < 0.05) survival could be achieved in the mixture of microalgae with rotifers in the culture system. At 12 DAH, the larval survival was 9.73 ± 1.39% in mixed species of algae compared with that of Isochrysis (6.93 ± 1.86%), Nannochloropsis (6.83 ± 0.61%), Chlorella (5.93 ± 2.76%) and seawater without microalgae or the control (0.73 ± 0.31%). The first incidence of feeding on rotifers at 4 DAH was significantly higher (P < 0.05) in all treatments with microalgae than that of the control. The incidence of feeding in mixed species of algae at 4 DAH (60.0 ± 0.00%) and in Isochrysis (55.0 ± 35.36%) was significantly higher (P < 0.05) than that of Chlorella (40.0 ± 0.00%) and the control (25.0 ± 7.07%). Prey consumption of individual larvae increased significantly (P < 0.01) at 8 DAH compared with that at 4 DAH. During this period, predation on rotifers by larvae was significantly higher (P < 0.05) in mixed species of algae (12.85 ± 5.73 rotifers larva?1) than that of the control (6.75 ± 1.20 rotifers larva?1). The fatty acid composition of rotifers used during this investigation shows that significantly higher (P < 0.05) ω3 HUFA was present in rotifers treated with mixed algae plus commercial enrichment media ‘Super Selco’ and ‘DHA Protein Selco’. Rearing of silver pomfret larvae up to the juvenile stage using mixed species of microalgae in the hatchery has been discussed. During 38 days of the larval rearing period, it was possible to achieve 3.6–4.2% larval survival with a mean of 3.9 ± 0.42%, which was considerably higher than in previous attempts (survival up to 1.5%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号