首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain tissue from a case of bovine spongiform encephalopathy (BSE) from Alberta was subjected to a Western immunoblotting technique to ascertain the molecular profile of any disease-specific, abnormal prion protein, that is, prion protein that is protease-resistant (PrP(res)). This technique can discriminate between isolates from BSE, ovine scrapie, and sheep experimentally infected with BSE. Isolates of brain tissue from the BSE case in Alberta, 3 farmed elk with chronic wasting disease (CWD) from different parts of Saskatchewan, and 1 farmed white-tailed deer with CWD from Edmonton, Alberta, were examined alongside isolates of brain tissue from BSE, ovine scrapie, and sheep experimentally infected with BSE from the United Kingdom (UK). The molecular weights of PrP(res) and the cross reactions to 2 specific monoclonal antibodies (mAbs) were determined for each sample. The BSE isolates from Canada and the UK had very similar PrP(res) molecular weights and reacted with only 1 of the 2 mAbs. The PrP(res) isolated from both elk and white-tailed deer with CWD had a higher molecular weight profile than did the corresponding PrP(res) from the scrapie and BSE isolates. The PrP(res) from CWD cases cross reacted with both mAbs, a property shared with PrP(res) in isolates from scrapie but not with PrP(res) isolates from BSE or sheep experimentally infected with BSE. The results from this study seem to confirm that the PrP(res) isolated from the BSE case in Alberta has similar molecular properties to the PrP(res) isolated from a BSE case in the UK, and that it differs in its molecular and immunological characteristics from the CWD and scrapie cases studied.  相似文献   

2.
To compare clinicopathologic findings of transmissible mink encephalopathy (TME) with other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie and chronic wasting disease [CWD]), two groups of calves (n = 4 each) were intracerebrally inoculated with TME agents from two different sources (mink with TME and a steer with TME). Two uninoculated calves served as controls. Within 15.3 months postinoculation, all animals from both inoculated groups developed clinical signs of central nervous system (CNS) abnormality; their CNS tissues had microscopic spongiform encephalopathy (SE); and abnormal prion protein (PrP(res)) as detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify TME PrP(res) but also develop clinical CNS signs and extensive lesions of SE. The latter has not been shown with other TSE agents (scrapie and CWD) similarly inoculated into cattle. The findings also suggest that the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) would detect TME in cattle should it occur naturally. However, it would be a diagnostic challenge to differentiate TME in cattle from BSE by clinical signs, neuropathology, or the presence of PrP(res) by IHC and WB.  相似文献   

3.
Fourteen, 3-month-old calves were intracerebrally inoculated with the agent of chronic wasting disease (CWD) from white-tailed deer (CWDwtd) to compare the clinical signs and neuropathologic findings with those of certain other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie, CWD of mule deer [CWDmd], bovine spongiform encephalopathy [BSE], and transmissible mink encephalopathy). Two uninoculated calves served as controls. Within 26 months postinoculation (MPI), 12 inoculated calves had lost considerable weight and eventually became recumbent. Of the 12 inoculated calves, 11 (92%) developed clinical signs. Although spongiform encephalopathy (SE) was not observed, abnormal prion protein (PrPd) was detected by immunohistochemistry (IHC) and Western blot (WB) in central nervous system tissues. The absence of SE with presence of PrPd has also been observed when other TSE agents (scrapie and CWDmd) were similarly inoculated into cattle. The IHC and WB findings suggest that the diagnostic techniques currently used to confirm BSE would detect CWDwtd in cattle, should it occur naturally. Also, the absence of SE and a distinctive IHC pattern of CWDwtd and CWDmd in cattle suggests that it should be possible to distinguish these conditions from other TSEs that have been experimentally transmitted to cattle.  相似文献   

4.
To compare clinical and pathologic findings of chronic wasting disease (CWD) in a natural host, 3 groups (n = 5) of white-tailed deer (WTD) fawns were intracerebrally inoculated with a CWD prion of WTD, mule deer, or elk origin. Three other uninoculated fawns served as controls. Approximately 10 months postinoculation (MPI), 1 deer from each of the 3 inoculated groups was necropsied and their tissues were examined for lesions of spongiform encephalopathy (SE) and for the presence of abnormal prion protein (PrP(d)) by immunohistochemistry (IHC) and Western blot (WB). The remaining deer were allowed to live until they developed clinical signs of the disease which began approximately 18 MPI. By 26 MPI, all deer were euthanatized on humane grounds. Obvious differences in clinical signs or the incubation periods were not observed between the 3 groups of deer given CWD. In 1 of 3 nonclinical deer euthanatized at 10 MPI, minimal microscopic lesions of SE were seen in the central nervous system (CNS) tissues, and PrP(d) was observed by IHC in tissues of all 3 deer. In the clinical deer, CNS lesions of SE and PrP(d) accumulations were more severe and extensive. It is concluded that the 3 sources of CWD prion did not induce significant differences in time to clinical disease or qualitative differences in signs or lesions in WTD. However, this observation does not imply that these CWD agents would necessarily behave similarly in other recipient species.  相似文献   

5.
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy (TSE) of deer and elk, is one of a group of fatal, neurologic diseases that affect several mammalian species, including human beings. Infection by the causative agent induces accumulations of an abnormal form of prion protein (PrPres) in nervous and lymphoid tissues. This report documents the presence of PrPres within ectopic lymphoid follicles in a kidney of a white-tailed deer that had been experimentally inoculated by the intracerebral route with CWD 10 months previously. The deer was nonclinical, but spongiform lesions characteristic of TSE were detected in tissues of the central nervous system (CNS) and PrPres was seen in CNS and in lymphoid tissues by immunohistochemistry. The demonstration of PrPres in lymphoid tissue in the kidney of this deer corroborates a recently published finding of PrPres in lymphoid follicles of organs other than CNS and lymphoid tissues in laboratory animals with TSE (scrapie).  相似文献   

6.
To determine the transmissibility of transmissible mink encephalopathy (TME) agent to raccoons and to provide information about clinical course, lesions, and suitability of currently used diagnostic procedures for detection of transmissible spongiform encephalopathies (TSEs) in raccoons, 4 raccoon kits were inoculated intracerebrally with a brain suspension from mink experimentally infected with TME. One uninoculated raccoon kit served as a control. All 4 animals in the TME-inoculated group showed clinical signs of neurologic disorder and were euthanized between 21 and 23 weeks postinoculation (PI). Necropsy examinations revealed no gross lesions. Spongiform encephalopathy was observed by light microscopy, and the presence of protease-resistant prion protein (PrPres) was detected by immunohistochemistry and Western blot techniques. Scrapie-associated fibrils were observed by negative-stain electron microscopy in the brains of 3 of the 4 inoculated raccoons. These findings confirm that TME is experimentally transmissible to raccoons and that diagnostic techniques currently used for TSE in livestock detect prion protein in raccoon tissue. According to previously published data, the incubation period of sheep scrapie in raccoons is 2 years, whereas chronic wasting disease (CWD) had not shown transmission after 3 years of observation. Because incubation periods for the 3 US TSEs (scrapie, TME, and CWD) in raccoons appear to be markedly different, it may be possible to use raccoons for differentiating unknown TSE agents. Retrospective genotyping of raccoons using frozen spleens showed that the raccoon PrP gene is identical to the mink gene at codons 179 and 224. Further studies, such as the incubation periods of bovine spongiform encephalopathy and other isolates of scrapie, CWD, and TME in raccoons, are needed before the model can be further characterized for differentiation of TSE agents.  相似文献   

7.
This communication reports final observations on experimental transmission of chronic wasting disease (CWD) from mule deer to cattle by the intracerebral route. Thirteen calves were inoculated intracerebrally with brain suspension from mule deer naturally affected with CWD. Three other calves were kept as uninoculated controls. The experiment was terminated 6 years after inoculation. During that time, abnormal prion protein (PrP(res)) was demonstrated in the central nervous system (CNS) of 5 cattle by both immunohistochemistry and Western blot. However, microscopic lesions suggestive of spongiform encephalopathy (SE) in the brains of these PrP(res)-positive animals were subtle in 3 cases and absent in 2 cases. Analysis of the gene encoding bovine PRNP revealed homozygosity for alleles encoding 6 octapeptide repeats, serine (S) at codon 46, and S at codon 146 in all samples. Findings of this study show that although PrP(res) amplification occurred after direct inoculation into the brain, none of the affected animals had classic histopathologic lesions of SE. Furthermore, only 38% of the inoculated cattle demonstrated amplification of PrP(res). Although intracerebral inoculation is an unnatural route of exposure, this experiment shows that CWD transmission in cattle could have long incubation periods (up to 5 years). This finding suggests that oral exposure of cattle to CWD agent, a more natural potential route of exposure, would require not only a much larger dose of inoculum but also may not result in amplification of PrP(res) within CNS tissues during the normal lifespan of cattle.  相似文献   

8.
A monoclonal antibody dot-blot assay was used to evaluate detergent lysates of tonsil tissue from mule deer to detect PrP(CWD), the marker for the cervid transmissible spongiform encephalopathy chronic wasting disease (CWD). Samples of formalin-fixed brain and tonsil tissues from mule deer were examined for PrP(CWD) using immunohistochemistry (IHC) with Mab F99/97.6.1, the gold standard for diagnosis of preclinical CWD. The contralateral tonsil from each of the 143 deer was prepared for confirmatory IHC and as a 10% (wt/vol) detergent lysate without purification or enrichment steps for monoclonal antibody dot-blot assay. PrP(CWD) was detected by dot-blot assay in 49 of 50 samples considered positive by IHC. Forty-eight of the positive samples were evaluated with a quantitative dot-blot assay calibrated with recombinant PrP. Tonsillar PrP(CWD) concentrations ranged from 34 to 1,188 ng per 0.5 mg starting wet weight of tissue. The abundant PrP(CWD) in mule deer tonsil will facilitate development and validation of high-throughput screening tests for CWD in large populations of free-ranging deer.  相似文献   

9.
In this investigation, the nature and distribution of histologic lesions and immunohistochemical staining (IHC) of a proteinase-resistant prion protein were compared in free-ranging mule deer (Odocoileus hemionus) dying of a naturally occurring spongiform encephalopathy (SE) and captive mule deer dying of chronic wasting disease (CWD). Sixteen free-ranging deer with SE, 12 free-ranging deer without SE, and 10 captive deer with CWD were examined at necropsy. Tissue sections were stained with hematoxylin and eosin, and duplicate sections were stained with a monoclonal antibody (F89/160.1.5). Histological lesions in the free-ranging deer with SE and captive deer with CWD were found throughout the brain and spinal cord but were especially prominent in the myelencephalon, diencephalon, and rhinencephalon. The lesions were characterized by spongiform degeneration of gray matter neuropil, intracytoplasmic vacuolation and degeneration of neurons, and astrocytosis. IHC was found throughout the brain and retina of deer with SE and CWD. Positive IHC was found in lymphoid tissue of deer with SE and CWD. Histologic lesions and IHC were not found in multiple sections of integument, digestive, respiratory, cardiovascular, endocrine, musculoskeletal, and urogenital systems of deer with SE or CWD. Comparison of histologic lesions and IHC in tissues of free-ranging deer with those of captive deer provides strong evidence that these two diseases are indistinguishable morphologically.  相似文献   

10.
Different types of transmissible spongiform encephalopathies (TSEs) affect sheep and goats. In addition to the classical form of scrapie, both species are susceptible to experimental infections with the bovine spongiform encephalopathy (BSE) agent, and in recent years atypical scrapie cases have been reported in sheep from different European countries. Atypical scrapie in sheep is characterized by distinct histopathologic lesions and molecular characteristics of the abnormal scrapie prion protein (PrP(sc)). Characteristics of atypical scrapie have not yet been described in detail in goats. A goat presenting features of atypical scrapie was identified in Switzerland. Although there was no difference between the molecular characteristics of PrP(sc) in this animal and those of atypical scrapie in sheep, differences in the distribution of histopathologic lesions and PrP(sc) deposition were observed. In particular the cerebellar cortex, a major site of PrP(sc) deposition in atypical scrapie in sheep, was found to be virtually unaffected in this goat. In contrast, severe lesions and PrP(sc) deposition were detected in more rostral brain structures, such as thalamus and midbrain. Two TSE screening tests and PrP(sc) immunohistochemistry were either negative or barely positive when applied to cerebellum and obex tissues, the target samples for TSE surveillance in sheep and goats. These findings suggest that such cases may have been missed in the past and could be overlooked in the future if sampling and testing procedures are not adapted. The epidemiological and veterinary public health implications of these atypical cases, however, are not yet known.  相似文献   

11.
Final observations on experimental transmission of chronic wasting disease (CWD) from elk (Cervus elaphus nelsoni) and white-tailed deer (Odocoileus virginianus) to fallow deer (Dama dama) are reported herein. During the 5-year study, 13 fawns were inoculated intracerebrally with CWD-infected brain material from white-tailed deer (n = 7; Group A) or elk (n = 6; Group B), and 3 other fawns were kept as uninoculated controls (Group C). As described previously, 3 CWD-inoculated deer were euthanized at 7.6 mo post-inoculation (MPI). None revealed presence of abnormal prion protein (PrP(d)) in their tissues. At 24 (Group A) and 26 (Group B) MPI, 2 deer were necropsied. Both animals had a small focal accumulation of PrP(d) in their midbrains. Between 29 and 37 MPI, 3 other deer (all from Group A) were euthanized. The 5 remaining deer became sick and were euthanized between 51 and 60 MPI (1 from Group A and 4 from Group B). Microscopic lesions of spongiform encephalopathy (SE) were observed in only these 5 animals; however, PrP(d) was detected in tissues of the central nervous system by immunohistochemistry, Western blot, and by commercial rapid test in all animals that survived beyond 24 MPI. This study demonstrates that intracerebrally inoculated fallow deer not only amplify CWD prions, but also develop lesions of spongiform encephalopathy.  相似文献   

12.
A new monoclonal antibody (MAb), F99/97.6.1, that has been used to demonstrate scrapie-associated prion protein PrP(Sc) in brain and lymphoid tissues of domestic sheep with scrapie was used in an immunohistochemistry assay for diagnosis of chronic wasting disease (CWD) in mule deer (Odocoileus hemionus). The MAb F99/97.6.1 immunohistochemistry assay was evaluated in brain and tonsil tissue from 100 mule deer that had spongiform encephalopathy compatible with CWD and from 1,050 mule deer outside the CWD-endemic area. This MAb demonstrated abnormal protease-resistant prion protein (PrP(res)) in brains of all of the 100 mule deer and in 99 of the 100 tonsil samples. No immunostaining was seen in samples collected from deer outside the endemic area. MAb F99/97.6.1 demonstrated excellent properties for detection of PrP(res) in fresh, frozen, or mildly to moderately autolytic samples of brain and tonsil. This immunohistochemistry assay is a sensitive, specific, readily standardized diagnostic test for CWD in deer.  相似文献   

13.
Sections of medulla oblongata, taken at the level of the obex, palatine tonsil and medial retropharyngeal lymph node from 10,269 captive Rocky Mountain elk (Cervus elaphus nelsoni), were examined by immunohistochemical staining with monoclonal antibody for the prion protein associated with the transmissible spongiform encephalopathy of cervids, chronic wasting disease (PrP(CWD)). The protein was detected in 226 of them. On the basis of the anatomical location of the deposits in the brainstem of 183 elk, four distinct patterns of distribution of PrP(CWD) within the parasympathetic region of the dorsal motor nucleus of the vagus nerve and the adjacent nuclei were observed. Mild gross lesions of chronic wasting disease (serous atrophy of fat) were observed in only three elk, all with spongiform degeneration; the other elk were considered to be in the preclinical stage of the disease. In contrast with the relatively predictable distribution of prion protein (PrP) in the brain and cranial nodes of sheep and mule deer, the distribution of PrP(CWD) in the brain and nodes of the elk was more variable and unrelated to their PrP genotype. One hundred and fifty-five of the 226 positive elk had deposits of PrP(CWD) in the brainstem and lymphoid tissues, 43 had deposits only in the lymphoid tissue and 28 had deposits only in the brainstem.  相似文献   

14.
Scrapie is a fatal, neurodegenerative disease of sheep and goats. It is also the earliest known member in the family of diseases classified as transmissible spongiform encephalopathies (TSE) or prion diseases, which includes Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE), and chronic wasting disease in cervids. The recent revelation of naturally occurring BSE in a goat has brought the issue of TSE in goats to the attention of the public. In contrast to scrapie, BSE presents a proven risk to humans. The risk of goat BSE, however, is difficult to evaluate, as our knowledge of TSE in goats is limited. Natural caprine scrapie has been discovered throughout Europe, with reported cases generally being greatest in countries with the highest goat populations. As with sheep scrapie, susceptibility and incubation period duration of goat scrapie are most likely controlled by the prion protein (PrP) gene (PRNP). Like the PRNP of sheep, the caprine PRNP shows significantly greater variability than that of cattle and humans. Although PRNP variability in goats differs from that observed in sheep, the two species share several identical alleles. Moreover, while the ARR allele associated with enhancing resistance in sheep is not present in the goat PRNP, there is evidence for the existence of other PrP variants related to resistance. This review presents the current knowledge of the epidemiology of caprine scrapie within the major European goat populations, and compiles the current data on genetic variability of PRNP.  相似文献   

15.
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.  相似文献   

16.
In 2005, a prion disease identified in a goat from France was reported to be consistent with disease from the bovine spongiform encephalopathy (BSE) agent. Subsequent retrospective examination of UK goat scrapie cases led to the identification of one potentially similar, but as yet unconfirmed, case from Scotland. These findings strengthened concerns that small ruminant populations exposed to the BSE agent have become infected. The lack of data relating specifically to scrapie in goats has been contributory to past assumptions that, in general, sheep and goats respond similarly to prion infections. In this study, brain material from 22 archived caprine scrapie cases from the UK was reviewed by histopathology and by immunohistochemical examination for accumulations of disease-specific prion protein (PrP(Sc)) to provide additional data on the lesions of caprine scrapie and to identify any BSE-like features. The vacuolar change observed in the goats was characteristic of transmissible spongiform encephalopathies in general. PrP(Sc) immunohistochemical morphologic forms described in scrapie and experimental BSE infections of sheep were demonstrable in the goats, but these were generally more extensive and variable in PrP(Sc) accumulation. None of the cases examined showed a PrP(Sc) immunohistochemical pattern indicative of BSE.  相似文献   

17.
Before the emergence of bovine spongiform encephalopathy (BSE) and recognition of its zoonotic potential, the major example of the transmissible spongiform encephalopathies (TSEs) of animals was scrapie of sheep. But there is no evidence that scrapie transmits naturally to any species other than sheep and goats. The pathogenesis of scrapie has been studied most in experimental laboratory rodent species. In most experimental models of scrapie, after peripheral non-neural routes of infection, replication of the agent can first be detected in lymphoreticular system (LRS) tissue. When the route of introduction of agent into the body is localized, initial involvement will be in LRS tissue draining the infection site. Thereafter, there is a striking amplification of the agent in the LRS and spread by lymphatic/haematogenous routes, giving widespread dissemination in the LRS. This precedes replication in the CNS, but is not the means by which infection reaches the CNS. There is now substantial evidence from experimental models of scrapie that involvement of the CNS is by peripheral nervous system (PNS) pathways. In some models employing oral exposure the earliest localized LRS replication is in the gut-associated lymphoid tissue (GALT) and autonomic PNS routing to the CNS has been implicated. However, the relative importance of different routes of spread of TSEs within the body is determined by a number of host- and agent-dependent factors and, therefore, generalizations from an experimental model to a natural disease across a species barrier may not be appropriate. With the occurrence of BSE and recognition of its food-borne route of transmission via meat and bone meal, has come greater awareness of the probable importance of the oral route of infection in ruminant species affected by TSEs. In consequence, studies have increasingly focused on the natural host species to examine pathogenetic events.  相似文献   

18.
Before the emergence of bovine spongiform encephalopathy (BSE) and recognition of its zoonotic potential, the major example of the transmissible spongiform encephalopathies (TSEs) of animals was scrapie of sheep. But there is no evidence that scrapie transmits naturally to any species other than sheep and goats. The pathogenesis of scrapie has been studied most in experimental laboratory rodent species. In most experimental models of scrapie, after peripheral non-neural routes of infection, replication of the agent can first be detected in lymphoreticular system (LRS) tissue. When the route of introduction of agent into the body is localized, initial involvement will be in LRS tissue draining the infection site. Thereafter, there is a striking amplification of the agent in the LRS and spread by lymphatic/haematogenous routes, giving widespread dissemination in the LRS. This precedes replication in the CNS, but is not the means by which infection reaches the CNS. There is now substantial evidence from experimental models of scrapie that involvement of the CNS is by peripheral nervous system (PNS) pathways. In some models employing oral exposure the earliest localized LRS replication is in the gut-associated lymphoid tissue (GALT) and autonomic PNS routing to the CNS has been implicated. However, the relative importance of different routes of spread of TSEs within the body is determined by a number of host- and agent-dependent factors and, therefore, generalizations from an experimental model to a natural disease across a species barrier may not be appropriate. With the occurrence of BSE and recognition of its food-borne route of transmission via meat and bone meal, has come greater awareness of the probable importance of the oral route of infection in ruminant species affected by TSEs. In consequence, studies have increasingly focused on the natural host species to examine pathogenetic events.  相似文献   

19.
Chronic wasting disease in deer and elk: scientific facts and findings   总被引:3,自引:0,他引:3  
Chronic wasting disease (CWD) is a prion disease of cervids such as deer and elk in North America. Unlike other transmissible spongiform encephalopathy (TSE) such as scrapie, CWD occurs in both captive and wild ranging animals, but not in domestic ruminants such as sheep and cattle. In this paper, the history of the disease, pathogenesis of CWD, susceptibility of animals, its transmission mechanisms, potential origins of the disease, diagnostic methods in the field and laboratory tests, surveillance and survey systems in the USA and Canada, control strategies, economic impact of the disease, food and feed safety, and the risks in human and animals are reviewed and summarized. Although there is no evidence that CWD has been transmitted to humans, it may have the potential to infect humans.  相似文献   

20.
To determine the transmissibility of chronic wasting disease (CWD) to cattle and to provide information about clinical course, lesions, and suitability of currently used diagnostic procedures for detection of CWD in cattle, 13 calves were inoculated intracerebrally with brain suspension from mule deer naturally affected with CWD. Between 24 and 27 months postinoculation, 3 animals became recumbent and were euthanized. Gross necropsies revealed emaciation in 2 animals and a large pulmonary abscess in the third. Brains were examined for protease-resistant prion protein (PrP(res)) by immunohistochemistry and Western blotting and for scrapie-associated fibrils (SAFs) by negative-stain electron microscopy. Microscopic lesions in the brain were subtle in 2 animals and absent in the third case. However, all 3 animals were positive for PrP(res) by immunohistochemistry and Western blot, and SAFs were detected in 2 of the animals. An uninoculated control animal euthanized during the same period did not have PrP(res) in its brain. These are preliminary observations from a currently in-progress experiment. Three years after the CWD challenge, the 10 remaining inoculated cattle are alive and apparently healthy. These preliminary findings demonstrate that diagnostic techniques currently used for bovine spongiform encephalopathy (BSE) surveillance would also detect CWD in cattle should it occur naturally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号