首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We assessed the influence of the addition of four municipal or agricultural by-products (cotton gin waste, ground newsprint, woodchips, or yard trimmings), combined with two sources of nitrogen (N), [ammonium nitrate (NH4NO3) or poultry litter] as carbon (C) sources on active bacterial, active fungal and total microbial biomass, cellulose decomposition, potential net mineralization of soil C and N and soil nutrient status in agricultural soils. Cotton gin waste as a C source promoted the highest potential net N mineralization and N turnover. Municipal or agricultural by-products as C sources had no affect on active bacterial, active fungal or total microbial biomass, C turnover, or the ratio of net C:N mineralized. Organic by-products and N additions to soil did not consistently affect C turnover rates, active bacterial, active fungal or total microbial biomass. After 3, 6 or 9 weeks of laboratory incubation, soil amended with organic by-products plus poultry litter resulted in higher cellulose degradation rates than soil amended with organic by-products plus NH4NO3. Cellulose degradation was highest when soil was amended with newsprint plus poultry litter. When soil was amended with organic by-products plus NH4NO3, cellulose degradation did not differ from soil amended with only poultry litter or unamended soil. Soil amended with organic by-products had higher concentrations of soil C than soil amended with only poultry litter or unamended soil. Soil amended with organic by-products plus N as poultry litter generally, but not always, had higher extractable P, K, Ca, and Mg concentrations than soil amended with poultry litter or unamende soil. Agricultural soil amended with organic by-products and N had higher extractable N, P, K, Ca and Mg than unamended soil. Since cotton gin waste plus poultry litter resulted in higher cellulose degradation and net N mineralization, its use may result in faster increase in soil nutrient status than the other organic by-products and N sources that were tested. Received: 15 May 1996  相似文献   

2.
Within different land‐use systems such as agriculture, forestry, and fallow, the different morphology and physiology of the plants, together with their specific management, lead to a system‐typical set of ecological conditions in the soil. The response of total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities involved in C and N cycling to different soil management was investigated in a sandy soil at a field study at Riesa, Northeastern Germany. The management systems included agricultural management (AM), succession fallow (SF), and forest management (FM). Samples of the mineral soil (0—5, 5—10, and 10—30 cm) were taken in spring 1999 and analyzed for their contents on organic C, total N, NH4+‐N and NO3‐N, KCl‐extractable organic C and N fractions (Corg(KCl) and Norg(KCl)), microbial biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With the exception of Norg(KCl), all investigated C and N pools showed a clear relationship to the land‐use system that was most pronounced in the 0—5 cm profile increment. SF resulted in greater contents of readily available C (Corg(KCl)), NH4+‐N, microbial biomass C and N, and enzyme activities in the uppermost 5 cm of the soil compared to all other systems studied. These differences were significant at P ≤ 0.05 to P ≤ 0.001. Comparably high Cmic:Corg ratios of 2.4 to 3.9 % in the SF plot imply a faster C and N turnover than in AM and FM plots. Forest management led to 1.5‐ to 2‐fold larger organic C contents compared to SF and AM plots, respectively. High organic C contents were coupled with low microbial biomass C (78 μg g—1) and N contents (10.7 μg g—1), extremely low Cmic : Corg ratios (0.2—0.6 %) and low β‐glucosidase (81 μg PN g—1 h—1) and L‐asparaginase (7.3 μg NH4‐N g—1 2 h—1) activities. These results indicate a severe inhibition of mineralization processes in soils under locust stands. Under agricultural management, chemical and biological parameters expressed medium values with exception for NO3‐N contents which were significantly higher than in SF and FM plots (P ≤ 0.005) and increased with increasing soil depth. Nevertheless, the depth gradient found for all studied parameters was most pronounced in soils under SF. Microbial biomass C and N were correlated to β‐glucosidase and L‐asparaginase activity (r ≥ 0.63; P ≤ 0.001). Furthermore, microbial biomass and enzyme activities were related to the amounts of readily mineralizable organic C (i.e. Corg(KCl)) with r ≥ 0.41 (P ≤ 0.01), suggesting that (1) KCl‐extractable organic C compounds from field‐fresh prepared soils represent an important C source for soil microbial populations, and (2) that microbial biomass is an important source for enzymes in soil. The Norg(KCl) pool is not necessarily related to the size of microbial biomass C and N and enzyme activities in soil.<?show $6#>  相似文献   

3.
Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia. In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were taken in December 2009 to investigate the short-term effects of cover crops on soil pH, moisture, NH4+–N, NO3–N, soluble organic C and nitrogen (N), total organic C and N, and C mineralization in comparison with a nil-crop control (CK). The soil is a Chromic Luvisol according to the FAO classification with 48.4 ± 2.2% sand, 19.5 ± 2.1% silt, and 32.1 ± 2.1% clay. An exponential model fitting was employed to assess soil potentially labile organic C (C 0) and easily decomposable organic C for all treatments based on 46-day incubations. The results showed that crop residue biomass significantly decreased over the course of 2-month decomposition. The cover crop treatments had significantly higher soil pH, soluble organic C and N, cumulative CO2–C, C 0, and easily decomposable organic C, but significantly lower NO3–N than the CK. However, no significant differences were found in soil moisture, NH4+–N, and total organic C and N contents among the treatments. Our results indicated that the short-term cover crops increased soil labile organic C pools, which might have implications for local agricultural ecosystem managements in this region.  相似文献   

4.
Agricultural soils receive large amounts of anthropogenic nitrogen (N), which directly and indirectly affect soil organic matter (SOM) stocks and CO2 fluxes. However, our current understanding of mechanisms on how N fertilization affects SOM pools of various ages and turnover remains poor. The δ13C values of SOM after wheat (C3)-maize (C4) vegetation change were used to calculate the contribution of C4-derived rhizodeposited C (rhizo-C) and C3-derived SOM pools, i.e., rhizo-C and SOM. Soil (Ap from Haplic Luvisol) sampled from maize rhizosphere was incubated over 56 days with increasing N fertilization (four levels up to 300 kg N ha?1), and CO2 efflux and its δ13C were measured. Nitrogen fertilization decreased CO2 efflux by 27–42% as compared to unfertilized soil. This CO2 decrease was mainly caused by the retardation of SOM (C3) mineralization. Microbial availability of rhizo-C (released by maize roots within 4 weeks) was about 10 times higher than that of SOM (older than 4 weeks). Microbial biomass and dissolved organic C remained at the same level with increasing N. However, N fertilization increased the relative contribution of rhizo-C to microbial biomass by two to five times and to CO2 for about two times. This increased contribution of rhizo-C reflects strongly accelerated microbial biomass turnover by N addition. The decomposition rate of rhizo-C was 3.7 times faster than that of SOM, and it increased additionally by 6.5 times under 300 kg N ha?1 N fertilization. This is the first report estimating the turnover and incorporation of very recent rhizo-C (4 weeks old) into soil C pools and shows that the turnover of rhizo-C was much faster than that of SOM. We conclude that the contribution of rhizo-C to CO2 and to microbial biomass is highly dependent on N fertilization. Despite acceleration of rhizo-C turnover, the increased N fertilization facilitates C sequestration by decreasing SOM decomposition.  相似文献   

5.
Impact of soil properties on weed distribution within agricultural fields Occurrence and distribution of weeds on agricultural fields are often heterogenous. The influence of various soil properties on the spatial structure and density of weed populations was investigated on two agricultural fields with special regard to three weed species (Polygonum amphibium, Cirsium arvense, Veronica hederifolia). Based on field specific sampling grids, weed counting and soil sampling were done. For all grid points, soil analysis was carried out (texture, organic C, total N, pH, soil nutrients P, K, Mg). Soil texture, soil organic C, and soil nutrients are the factors with the highest influence on the occurrence of the species studied.  相似文献   

6.
In the present study, soil C and N mineralization and nutrient availability were compared: (1) in savanna woodland soils under natural acacia vegetation; (2) at termite sites; (3) in degraded woodland where acacias were selective logged for charcoal production; (4) in agricultural fields which were cultivated for 3 and 15 years, and (5) in traditional homestead fields which regularly received animal manure for about 10 years. Soil C and N mineralization dynamics were measured by incubation under controlled conditions for 120 days. Labile and stable soil C and N pools were determined by fitting double-exponential models to the measured cumulative mineralization. Selective removal of acacias from the woodland and short-term cultivation for 3 years did not affect available nutrient contents but significantly decreased total C and N contents and mineralization (P<0.05). Mainly the labile soil N pool decreased during the first 3 years of continuous cropping, whereas after 15 years the stable N pool, total S, available Ca and Zn contents were also depleted. Even after 15 years, however, the decrease of nutrient availability (apart from N) was less severe than that of soil organic matter stability. Additionally, not only the labile but also the more stable soil C and N pools decreased and controlled total mineralization as determined by the incubation experiments. Homestead fields with manure additions were shown to have elevated soil nutrient and organic matter contents. However, the manure should be mixed into the soil to improve organic matter stabilization. Soil regeneration in degraded savannas and recently cultivated fields might rapidly be achieved, whereas the 15-years-cultivated fields may require longer fallows to restore soil fertility.  相似文献   

7.
Total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities in a sandy soil under pine (Pinus sylvestris L.) and black locust (Robinia pseudoacacia L.) stands were investigated in a field study near Riesa, NE Germany. Samples of the organic layers (Oi and Oe‐Oa) and the mineral soil (0–5, 5–10, 10–20, and 10–30 cm) were taken in fall 1999 and analyzed for their contents of organic C and total N, hot‐water‐extractable organic C and N (HWC and HWN), KCl‐extractable organic C and N (Corg(KCl) and Norg(KCl)), NH ‐N and NO ‐N, microbial‐biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With exception of the HWC, all investigated C and N pools showed a clear response to tilling, which was most pronounced in the Oi horizon. Compared to soils under pine, those under black locust had higher contents of medium‐ and short‐term available C (HWC, Corg(KCl)) and N (HWN, Norg(KCl)), mineral N (NH ‐N, NO ‐N), microbial‐biomass C and N, and enzyme activities in the uppermost horizons of the soil. The strong depth gradient found for all studied parameters was most pronounced in soils under black locust. Microbial‐biomass C and N and enzyme activities were closely related to the amounts of readily mineralizable organic C (HWC and Corg(KCl)). However, the presented results implicate a faster C and N turnover in the top‐soil layers under black locust caused by higher N‐input rates by symbiotic N2 fixation.  相似文献   

8.
Thermal analysis techniques have been used to differentiate soil organic carbon (SOC) pools with differing thermal stability. A correlation between thermal and biological stability has been indicated in some studies, while others reported inconsistent relationships. Despite these controversial findings and no standardized method, several recently published studies used thermal analysis techniques to determine the biological stability and quality of SOC in mineral soils. This study examined whether thermal oxidation at temperature levels between 200°C and 400°C, combined with evolving gas analysis and isotope ratio mass spectrometry, is capable of identifying SOC pools with differing biological stability in mineral soils. Soil samples from three sites being under Miscanthus (C4‐plant) cultivation for more than 17 years following former agricultural cropland (only C3‐plant) cultivation were used. Due to natural shifts in 13C content, young and labile Miscanthus‐derived SOC could be distinguished from stable and old C3‐plant‐derived SOC. The proportion of Miscanthus‐derived SOC increased significantly with increasing temperatures up to 350°C in bulk soil samples, indicating increasing oxidation of labile and young SOC with increasing temperatures. Use of density fractions to validate the thermally oxidized SOC from bulk soil samples revealed that the thermal oxidation patterns did not reflect the biological stability of SOC. The suggested biologically labile particulate organic carbon (light fraction from density fractionation) was clearly enriched in Miscanthus‐derived young SOC. The thermal oxidation patterns, however, revealed preferential oxidation of these biologically labile fractions not at low temperatures, but rather at higher temperatures. The reverse was found for the biologically stable mineral‐associated density fraction (heavy fraction). Based on different soil types, it was concluded that the thermal stability of SOC between 200°C and 400°C is not a suitable indicator of the biological stability of SOC and, thus, thermal oxidation is not capable of fractionating SOC pools with differing biological stability.  相似文献   

9.
As concentrations of atmospheric CO2 increase, it is important to know whether this may result in feedbacks that could modify the rate of increase of CO2 in the atmosphere. Soil organic matter (SOM) represents one of the largest pools of C and mineralization rates are known to be temperature dependent. In this study, we investigated whether different OM fractions present in a forest soil (F/A1 horizon) would respond in a similar manner to elevated temperatures. We examined the trends in isotopic content (12C, 13C, and 14C) of soil respired CO2 at various temperatures (10, 20, and 35 0C) over a two year period in the laboratory. We also examined the total C, total N, and C : N ratio in the remaining soil and isolated humic fractions, and the distribution of the individual amino acids in the soil after 5 years of laboratory incubation at the various temperatures. We found that the rate at which C mineralization increases with temperature was occasionally greater than predicted by most models, more C from recalcitrant OM pools being mineralized at the higher temperature. This confirmed that the relationship between soil organic matter decomposition and temperature was complex and that the different pools of organic matter did respond in differing ways to elevated temperatures.  相似文献   

10.
Soil C dynamics below the plow layer have been little studied, despite a suspected large C‐stabilization potential of subsurface horizons. The objective of this study was to test two simple models (model A: single compartment for C3‐ and for C4‐derived C; model B: division of C3‐ and C4‐derived C into active and passive compartments) in their ability to simulate the C dynamics in subsoil horizons of a Haplic Phaeozem after conversion from C3 (rye) to C4 cropping (maize). The models were calibrated on an unfertilized maize soil and then validated on a maize soil with NPK fertilization. Both models simulated well C3‐C and C4‐C dynamics in the investigated soil depths (20–40 cm and 40–60 cm). In all cases, the model efficiency EF was > 0, which indicated that the simulated values described the trend in the measured data better than the mean of the observations. However, we observed some inconsistency in the obtained parameter set (e.g., a higher proportion of passive C for C4‐derived than for C3‐derived C or a very low decomposition rate constant for passive C4‐C in 40–60 cm), which we assume to result from data restrictions on the investigated soils. More detailed data on SOC pools and turnover rates in subsoils which are generally not yet available for most experimental plots is vitally needed—especially for applying more sophisticated C‐dynamics models.  相似文献   

11.
Two processes contribute to changes of the δ13C signature in soil pools: 13C fractionation per se and preferential microbial utilization of various substrates with different δ13C signature. These two processes were disentangled by simultaneously tracking δ13C in three pools - soil organic matter (SOM), microbial biomass, dissolved organic carbon (DOC) - and in CO2 efflux during incubation of 1) soil after C3-C4 vegetation change, and 2) the reference C3 soil.The study was done on the Ap horizon of a loamy Gleyic Cambisol developed under C3 vegetation. Miscanthus giganteus - a perennial C4 plant - was grown for 12 years, and the δ13C signature was used to distinguish between ‘old’ SOM (>12 years) and ‘recent’ Miscanthus-derived C (<12 years). The differences in δ13C signature of the three C pools and of CO2 in the reference C3 soil were less than 1‰, and only δ13C of microbial biomass was significantly different compared to other pools. Nontheless, the neglecting of isotopic fractionation can cause up to 10% of errors in calculations. In contrast to the reference soil, the δ13C of all pools in the soil after C3-C4 vegetation change was significantly different. Old C contributed only 20% to the microbial biomass but 60% to CO2. This indicates that most of the old C was decomposed by microorganisms catabolically, without being utilized for growth. Based on δ13C changes in DOC, CO2 and microbial biomass during 54 days of incubation in Miscanthus and reference soils, we concluded that the main process contributing to changes of the δ13C signature in soil pools was preferential utilization of recent versus old C (causing an up to 9.1‰ shift in δ13C values) and not 13C fractionation per se.Based on the δ13C changes in SOM, we showed that the estimated turnover time of old SOM increased by two years per year in 9 years after the vegetation change. The relative increase in the turnover rate of recent microbial C was 3 times faster than that of old C indicating preferential utilization of available recent C versus the old C.Combining long-term field observations with soil incubation reveals that the turnover time of C in microbial biomass was 200 times faster than in total SOM. Our study clearly showed that estimating the residence time of easily degradable microbial compounds and biomarkers should be done at time scales reflecting microbial turnover times (days) and not those of bulk SOM turnover (years and decades). This is necessary because the absence of C reutilization is a prerequisite for correct estimation of SOM turnover. We conclude that comparing the δ13C signature of linked pools helps calculate the relative turnover of old and recent pools.  相似文献   

12.
The Brazilian Cerrado is a large and expanding agricultural frontier, representing a hotspot of land-use change (LUC) from natural vegetation to farmland. It is known that this type of LUC impacts soil organic matter (SOM) dynamics, particularly labile carbon (C) pools (living and non-living), decreasing soil health and agricultural sustainability, as well as increasing soil greenhouse gas (GHG) emissions, and accelerating global climate change. In this study, we quantified the changes in the quantity and quality of SOM and GHG fluxes due to changes in land use and cropland management in the Brazilian Cerrado. The land uses studied were native vegetation (NV), pasture (PA) and four croplands, including the following management types: conventional tillage with a single soybean crop (CT), and three no-tillage systems with two crops cultivated in the same year (i.e., soybean/sorghum (NTSSo), soybean/millet (NTSMi) and maize/sorghum (NTMSo)). Soil and gases were sampled in the rainy season (November, December and January) and dry season (May, July and September). The highest soil C and nitrogen (N) stocks (6.7 kg C m−2 and 0.5 kg N m−2, 0–0.3-m layer) were found under NV. LUC reduced C stocks by 25% in the CT and by 10% in the PA and NT. Soil N stocks were 30% lower in the PA and NTMSo and 15% lower in the croplands with soybean compared to NV. δ13C values clearly distinguished between the C-origin from NV (−25‰) and that from other land uses (−16‰). Soil (0–0.1 m) under NV also presented higher labile-C (625 g C m−2), microbial-C (70 g C m−2) and microbial-N (5.5 g N m−2), whereas other land uses presented values three times lower. GHG emissions (expressed as C-equivalent) were highest in the NV (1.2 kg m−2 year−1), PA (1.3 kg m−2 year−1) and NTMSo (0.9 kg m−2 year−1) and were positively related to the higher SOM turnover in these systems. Our results suggest that in order to maintain SOM, it is necessary to adopt “best” management practices, that provide large plant residue inputs (above- and belowground). This can be seen as a pathway to achieving high food production with low GHG emissions.  相似文献   

13.
Conversion of a native ecosystem can impact the nature and dynamics of organic carbon (C) fractions. The goal of this study was to determine the effects of cultivation and monoculture wheat production on soil organic C and biological C fractions compared to a previously flooded native pasture in northern Turkey. Soil samples were collected from four randomly selected locations of each management system. Some soil chemical [pH, calcium carbonate (CaCO3), total nitrogen (N), and organic C], physical (sand, clay, and silt), and biological properties [microbial biomass carbon (MBC), mineralizable C, and mineralizable N] were measured. Conversion of pasture to cultivated land slightly increased soil pH, but CaCO3, total organic C (TOC), and N contents were significantly (P < 0.05) decreased with cultivation. Total organic C and N contents were more than three times less in cultivated soils compared to pasture. Microbial biomass C was significantly decreased (P < 0.05) with long-term cultivation, and the greater seasonal fluctuations were measured at the surface of both ecosystems. The greatest level of potentially mineralizable C was observed in the pasture rather than the cultivated soil, but the proportional distribution of mineralized C to TOC was greater in the cultivated soil. These results suggested that the long-term cultivation (15 years) of previously flooded native ecosystems increased C mineralization and resulted in 72% C loss at the surface soil. Cultivated soils have a greater potential to restore atmospheric carbon dioxide (CO2) if proper cultivation and management systems are used.  相似文献   

14.
蒙古高原草原土壤微生物量碳氮特征   总被引:48,自引:0,他引:48  
李香真  曲秋皓 《土壤学报》2002,39(1):97-104
沿着水分梯度采集了蒙古高原不同草原类型表层土壤样品 1 44个 ,分析了土壤微生物量C、N含量及其与年平均温度和降雨量的关系。结果表明 :蒙古高原草原土壤微生物量C、N与土壤有机C、全N、降雨量、温度均表现出了很好的相关性。微生物量C变化在5 1 7~ 797mgkg- 1之间 ,微生物量N变化在 1 1 0~ 1 1 8 6mgkg- 1之间。微生物量C∶N比变化在 5~ 9之间。土壤微生物量碳 (Cmic)占土壤有机碳 (Corg)的比例 (Cmic Corg)变化在 1 1 5 %~ 4 1 %之间 ,Cmic Corg与土壤有机C、全N、降雨量均成显著的负相关。土壤呼吸表现为草甸草原土壤 >典型草原 >荒漠草原 ,土壤呼吸与降雨量显著正相关 ,与温度显著负相关。呼吸熵 (QCO2 )与降雨量成二次抛物线关系。放牧对微生物量的影响与不同草原类型和放牧率有关。  相似文献   

15.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions.  相似文献   

16.
Knowledge about soil organic carbon (SOC) stock and its allocation into different pools is important for global food and environmental security. Accordingly, an attempt is made in the present study to investigate into the dynamics of SOC pools i.e. total soil organic carbon (TOC), oxidisable organic carbon (OC) and its different fractions viz. very labile (CVL), labile (CL), less labile (CLL) and non-labile (CNL) in soils under a 26 years old long-term experiment with rice (Oryza sativa L) – wheat (Triticum aestivum L) cropping system on Inceptisols under humid agro-climatic region of India with different soil management practices (control, 100% recommended dose of NPK, and 50% recommended dose of NPK + 50% N through farmyard manure (FYM). Of the several pools analyzed, a higher proportion of C was found in labile pool followed by very labile, non-labile, and less labile ones constituting about 46, 26.5, 20 and 7.3% of the total organic C at surface soil. The NPK+FYM treatment was found to have higher SOC pools, lability index (LI), recalcitrance indices and stratification ratio as compared to others. Results indicated that balanced fertilization with inorganic and organics is important for maintaining overall sustainability of the rice-wheat system.  相似文献   

17.
To investigate the current available nitrogen (N) and chemical properties of paddy soils affected by crop rotation between irrigated paddy rice (Oryza sativa L.) and upland soybean [Glycine max (L.) Merr.] (paddy-upland rotation), topsoils were collected from 22 fields of four different farmers in the northeastern region of Japan. Regardless of organic material application, a significant negative correlation was found between available soil N and an increase in the proportions of upland seasons to total crop seasons after the initiation of paddy-upland rotation. Soil total N and total carbon (C) also tended to decrease with an increase in upland frequency. In fields with repeated applications of cattle manure compost, the soil available N was higher than in fields where only crop residue was applied. A significant negative correlation was also found between the soil available N:total N ratio and upland frequency. This indicates that the part of soil N related to available N was notably lost by the use of paddy fields as upland fields. In order to sustain available soil N over the minimum suitable level of 80?mg?kg?1, upland frequency should not exceed 65% when only crop residues and no other organic materials are applied. The upland frequency can be raised by the repeated application of organic materials which maintain a higher level of available soil N. The results imply that care should be taken to maintain the N fertility of paddy soil at a suitable level in paddy-upland rotation, and that upland frequency and organic materials applied are important factors to do this.  相似文献   

18.
The impact of alley cropping on post-lignite mine soils developing from quaternary deposits after 9 years of recultivation was evaluated on the basis of microbial indicators, organic C and total N contents, and the isotope characteristics of soil C. Soils were sampled at the 0 to 3, 3 to 10, and 10 to 30 cm depths under black locust (Robinia pseudoacacia L.), poplar (Populus spp.), the transition zone and in the middle of alley under rye (Secale cereale). There was no significant effect of vegetation on microbial properties presumably, due to the high variability, whereas organic C and total N contents at the 0- to 3-cm layer were significantly higher under black locust and poplar than in the transition zone and rye field. Organic C total N contents, and basal respiration, microbial biomass, and microbial quotient decreased with soil depth. Soil organic C and total N contents were more than doubled after 9 years of recultivation, with annual C and N accretion rate of 162 g C org m−2 year−1 and 6 g N t m−2 year−1. Microbial properties indicated that the soils are in early stages of development; the C isotope characteristics confirmed that the sequestered C was predominantly from C3 plants of the alley cropping.  相似文献   

19.
Under the hot and moist conditions of irrigated agriculture in the arid subtropics, turnover of organic matter is high, which can lead to considerable carbon (C) and nitrogen (N) losses. Therefore, sustainable use of these soils requires regular manure application at high rates. To investigate the contribution of consecutive manure applications to an arid sandy soil to various soil N pools, goat manure was isotopically labeled by feeding 15N‐enriched Rhodes grass hay and applied to the soil during a two‐year field experiment. In the first year, soils received 15N‐labeled manure to distinguish between soil‐derived and manure‐derived N. In the second year, these plots were split for the application of either 15N‐labeled or unlabeled manure to discriminate N derived from previous (first year) and recent (second year) manure application. Soil samples (of control and 15N‐manured soil) were collected at the end of the first and the second year, and incubated in two laboratory experiments with labeled or unlabeled manure. At the beginning of Experiment 1, 7% of total N, 11% of K2SO4 extractable N, and 16% of microbial biomass N were derived from previously field‐applied manure. While the application of manure during incubation increased microbial biomass N by 225% and 410% in the control soil and the previously field‐manured soil, respectively, N2O emissions were more affected on the control soil, releasing considerable amounts of the soil N‐pool (80% of total emissions). In Experiment 2, 4% of total N, 7% of K2SO4 extractable N, and 7% of microbial biomass N derived from previously applied manure, and 4%, 8%, and 3% from recently applied manure, respectively. Microbial biomass N and N2O‐N derived from manure declined with time after manure application, whereas in Experiment 1 this tendency was only observed for microbial biomass N.  相似文献   

20.
 Studies were conducted to evaluate the relationships among different active N pools of organic matter in soils at two long-term cropping systems in Iowa. Results indicated that multi-cropping systems, particularly meadow-based systems, enhanced bioactivities of soils. Mono-cropping systems, particularly soybean, reduced soil microbial biomass and enzyme activities. The mineralizable N pool (potential N mineralization;N o) was more sensitive to changes in the size of the microbial biomass N (Nmic) than to changes in organic N. One unit change in organic N did not lead to substantial changes in N o, but 1 unit change in Nmic resulted in three or more units change in N o. The active N pools and turnover rate were more sensitive to changes in organic C than to changes in microbial biomass C (Cmic). A unit change in organic C resulted in 10.6 units change in N o, but a unit change in Cmic resulted in only 0.8 unit change in N o. Cmic or Nmic are better indexes than organic C or N for the estimation of N o or N availability, because biomass values are more highly correlated with cumulative N mineralized during 24 weeks of incubation, with r values ranging from 0.57 (P<0.001) to 0.88 (P<0.001). Received: 18 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号