首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo compare values of haemoglobin concentration (SpHb), arterial haemoglobin saturation (SpO2) and calculated arterial oxygen content (SpOC), measured noninvasively with a pulse co-oximeter before and after in vivo adjustment (via calibration of the device using a measured haemoglobin concentration) with those measured invasively using a spectrophotometric-based blood gas analyser in anaesthetized dogs.Study designProspective observational clinical study.AnimalsA group of 39 adult dogs.MethodsIn all dogs after standard instrumentation, the dorsal metatarsal artery was catheterised for blood sampling, and a pulse co-oximeter probe was applied to the tongue for noninvasive measurements. Paired data for SpHb, SpO2 and SpOC from the pulse co-oximeter and haemoglobin arterial oxygen saturation (SaO2) and arterial oxygen content (CaO2) from the blood gas analyser were obtained before and after in vivo adjustment. Bland–Altman analysis for repeated measurements was used to evaluate the bias, precision and agreement between the pulse co-oximeter and the blood gas analyser. Data are presented as mean differences and 95% limits of agreement (LoA).ResultsA total of 39 data pairs were obtained before in vivo adjustment. The mean invasively measured haemoglobin–SpHb difference was –2.7 g dL?1 with LoA of –4.9 to –0.5 g dL?1. After in vivo adjustment, 104 data pairs were obtained. The mean invasively measured haemoglobin–SpHb difference was –0.2 g dL?1 with LoA of –1.1 to 0.6 g dL?1. The mean SaO2–SpO2 difference was 0.86% with LoA of –0.8% to 2.5% and that between CaO2–SpOC was 0.66 mL dL–1 with LoA of –2.59 to 3.91 mL dL–1.ConclusionsBefore in vivo adjustment, pulse co-oximeter derived values overestimated the spectrophotometric-based blood gas analyser haemoglobin and CaO2 values. After in vivo adjustment, the accuracy, precision and LoA markedly improved. Therefore, in vivo adjustment is recommended when using this device to monitor SpHb in anaesthetised dogs.  相似文献   

2.
ObjectiveEvaluation of the reliability of pulse oximetry at four different attachment sites compared to haemoglobin oxygen saturation measured by a co-oximeter and calculated by a blood gas analyser in immobilized impala.Study designRandomized crossover study.AnimalsA total of 16 female impala.MethodsImpala were immobilized with etorphine or thiafentanil alone, or etorphine in combination with a novel drug. Once immobilized, arterial blood samples were collected at 5 minute intervals for 30 minutes. Then oxygen was insufflated (5 L minute−1) intranasally at 40 minutes and additional samples were collected. A blood gas analyser was used to measure the arterial partial pressure of oxygen and calculate the oxygen haemoglobin saturation (cSaO2); a co-oximeter was used to measure the oxygen haemoglobin saturation (SaO2) in arterial blood. Pulse oximeter probes were attached: under the tail, to the pinna (ear) and buccal mucosa (cheek) and inside the rectum. Pulse oximeter readings [peripheral oxygen haemoglobin saturation (SpO2) and pulse quality] were recorded at each site and compared with SaO2 and cSaO2 using Bland-Altman and accuracy of the area root mean squares (Arms) methods to determine the efficacy. P value < 0.05 was considered significant.ResultsPulse quality was ‘good’ at each attachment site. SpO2 measured under the tail was accurate and precise but only when SaO2 values were above 90% (bias = 3, precision = 3, Arms = 4). The ear, cheek and rectal probes failed to give accurate or precise readings (ear: bias = −4, precision = 14, Arms = 15; cheek: bias = 12, precision = 11, Arms = 16; and rectum: bias = 5, precision = 12, Arms = 13).Conclusions and clinical relevanceIn order to obtain accurate and precise pulse oximetry readings in immobilized impala, probes must be placed under the tail and SaO2 must be above 90%. Since SaO2 values are usually low in immobilized impala, pulse oximeter readings should be interpreted with caution.  相似文献   

3.
ObjectivesTo determine the reliability of peripheral oxygen haemoglobin saturation (SpO2), measured by a Nonin PalmSAT 2500A pulse oximeter with 2000T transflectance probes at four attachment sites (third eyelid, cheek, rectum and tail), by comparing these measurements to arterial oxygen haemoglobin saturation (SaO2), measured by an AVOXimeter 4000 co-oximeter reference method in immobilized white rhinoceros (Ceratotherium simum).Study designRandomized crossover study.AnimalsA convenience sample of eight wild-caught male white rhinoceros.MethodsWhite rhinoceros were immobilized with etorphine (0.0026 ± 0.0002 mg kg–1, mean ± standard deviation) intramuscularly, after which the pinna was aseptically prepared for arterial blood sample collection, and four pulse oximeters with transflectance probes were fixed securely to their attachment sites (third eyelid, cheek, rectum and tail). At 30 minutes following recumbency resulting from etorphine administration, the animals were given either butorphanol (0.026 ± 0.0001 mg kg–1) or an equivalent volume of saline intravenously. At 60 minutes following recumbency, insufflated oxygen (15 L minute–1 flow rate) was provided intranasally. In total, the SpO2 paired measurements from the third eyelid (n = 80), cheek (n = 67), rectum (n = 59) and tail (n = 76) were compared with near-simultaneous SaO2 measurements using Bland-Altman to assess bias (accuracy), precision, and the area root mean squares (ARMS) method.ResultsCompared with SaO2, SpO2 measurements from the third eyelid were reliable (i.e., accurate and precise) above an SaO2 range of 70% (bias = 1, precision = 3, ARMS = 3). However, SpO2 measurements from the cheek, rectum and tail were unreliable (i.e., inaccurate or imprecise).Conclusions and clinical relevanceA Nonin PalmSAT pulse oximeter with a transflectance probe inserted into the space between the third eyelid and the sclera provided reliable SpO2 measurements when SaO2 was > 70%, in immobilized white rhinoceros.  相似文献   

4.
ObjectiveEvaluation of the accuracy of Masimo signal extraction technology (SET) pulse oximetry in anaesthetized late gestational pregnant sheep.Study designProspective experimental study.AnimalsSeventeen pregnant Merino ewes.MethodsAnimals included in study were late gestation ewes undergoing general anaesthesia for Caesarean delivery or foetal surgery in a medical research laboratory. Masimo Radical-7 pulse oximetry (SpO2) measurements were compared to co-oximetry (SaO2) measurements from arterial blood gas analyses. The failure rate of the pulse oximeter was calculated. Accuracy was assessed by Bland &; Altman's (2007) limits of agreement method. The effect of mean arterial blood pressure (MAP), perfusion index (PI) and haemoglobin (Hb) concentration on accuracy were assessed by regression analysis.ResultsForty arterial blood samples paired with SpO2 and blood pressure measurements were obtained. SpO2 ranged from 42 to 99% and SaO2 from 43.7 to 99.9%. MAP ranged from 24 to 82 mmHg, PI from 0.1 to 1.56 and Hb concentration from 71 to 114 g L?1. Masimo pulse oximetry measurements tended to underestimate oxyhaemoglobin saturation compared to co-oximetry with a bias (mean difference) of ?2% and precision (standard deviation of the differences) of 6%. Accuracy appeared to decrease when SpO2 was <75%, however numbers were too small for statistical comparisons. Hb concentration and PI had no significant effect on accuracy, whereas MAP was negatively correlated with SpO2 bias.Conclusions and clinical relevanceMasimo SET pulse oximetry can provide reliable and continuous monitoring of arterial oxyhaemoglobin saturation in anaesthetized pregnant sheep during clinically relevant levels of cardiopulmonary dysfunction. Further work is needed to assess pulse oximeter function during extreme hypotension and hypoxaemia.  相似文献   

5.
6.
ObjectiveTo compare the effect of invasive continuous positive airway pressure (CPAP), pressure-controlled ventilation (PCV) with positive end-expiratory pressure (PEEP) and spontaneous breathing (SB) on PaO2, PaCO2 and arterial to central venous oxygen content difference (CaO2-CcvO2) in healthy anaesthetized dogs.Study designProspective randomized crossover study.AnimalsA group of 15 adult male dogs undergoing elective orchidectomy.MethodsDogs were anaesthetized [buprenorphine, medetomidine, propofol and isoflurane in an air oxygen (FiO2= 0.5)]. All ventilatory treatments (CPAP: 4 cmH2O; PCV: 10 cmH2O driving pressure; PEEP, 4 cmH2O; respiratory rate of 10 breaths minute–1 and inspiratory-to-expiratory ratio of 1:2; SB: no pressure applied) were applied in a randomized order during the same anaesthetic. Arterial and central venous blood samples were collected immediately before the start and at 20 minutes after each treatment. Data were compared using a general linear mixed model (p < 0.05).ResultsMedian PaO2 was significantly higher after PCV [222 mmHg (29.6 kPa)] than after CPAP [202 mmHg (26.9 kPa)] and SB [208 mmHg (27.7 kPa)] (p < 0.001). Median PaCO2 was lower after PCV [48 mmHg (6.4 kPa)] than after CPAP [58 mmHg (7.7 kPa)] and SB [56 mmHg (7.5 kPa)] (p < 0.001). Median CaO2-CcvO2 was greater after PCV (4.36 mL dL–1) than after CPAP (3.41 mL dL–1) and SB (3.23 mL dL–1) (p < 0.001). PaO2, PaCO2 and CaO2-CcvO2 were no different between CPAP and SB (p > 0.99, p = 0.697 and p = 0.922, respectively).Conclusions and clinical relevanceCPAP resulted in similar arterial oxygenation, CO2 elimination and tissue oxygen extraction to SB. PCV resulted in improved arterial oxygenation and CO2 elimination. Greater oxygen extraction occurred with PCV than with CPAP and SB, offsetting its advantage of improved arterial oxygenation. The benefit of invasive CPAP over SB in the healthy anaesthetized dog remains uncertain.  相似文献   

7.
Our purpose was to assess the accuracy and precision of a point of care hemoglobinometer (HemoCue‐B hemoglobin photometer) for measuring hemoglobin concentration in horse blood. Samples of jugular venous blood from 12 healthy adult horses were collected in EDTA. In order to test the device over a wide range of values, each sample was divided into nine aliquots, and autologous plasma was added or removed from the aliquots to produce blood with PCV values that approximated 5, 10, 20, 30, 40, 50, 60, 70, and 80%, respectively. The aliquots were rocked to ensure mixing of plasma and cells. Then hemoglobin by HemoCue‐B (HbHQ) and hemoglobin by the cyanmethemoglobin method (HbCY) were measured on each aliquot. The PCV of each aliquot was also measured and this value was used for subsequent analyses. To test repeatability, hemoglobin was measured twice by the HemoCue‐B on approximately 40% samples. Samples with HbHQ >25.4 g dL?1 required dilution prior to analysis. HbCY ranged from 1.6 to 33.4 g dL?1. After regression, HbCY = ?0.16 + 1.04 HbHQ (n = 101; r2 = 99.6%). By inspection of a modified Bland‐Altman plot, HbHQ values <16 g dL?1 closely approximated HbCY; however, at greater values, HbHQ underestimated HbCY by as much as 3.2 g dL?1. The difference between repeated measurements with the HemoCue‐B was 0.02 ± 0.16 g dL?1 (mean ± SD; n = 10) and nonsignificant. After regression, PCV = ?0.76 + 2.78 HbHQ (n = 101; r2 = 99.4%). We conclude that HemoCue‐B can be used to measure hemoglobin concentration in horse blood, and that it is accurate when hemoglobin is <16 g dL?1. PCV can be estimated by multiplying HbHQ by 2.8 and then subtracting 0.8.  相似文献   

8.
ObjectiveHypoxemia is common during equine field anesthesia. Our hypothesis was that oxygen therapy from a portable oxygen concentrator would increase PaO2 during field anesthesia compared with the breathing of ambient air.Study designProspective clinical study.AnimalsFifteen yearling (250 – 400 kg) horses during field castration.MethodsHorses were maintained in dorsal recumbency during anesthesia with an intravenous infusion of 2000 mg ketamine and 500 mg xylazine in 1 L of 5% guaifenesin. Arterial samples for blood gas analysis were collected immediately post-induction (PI), and at 15 and 30 minutes PI. The control group (n = 6) breathed ambient air. The treatment group (n = 9) were administered pulsed-flow oxygen (192 mL per bolus) by nasal insufflation during inspiration for 15 minutes PI, then breathed ambient air. The study was performed at 1300 m above sea level. One-way and two-way repeated-measures anova with post-hoc Bonferroni tests were used for within and between-group comparisons, respectively. Significance was set at p ≤ 0.05.ResultsMean ± SD PaO2 in controls at 0, 15 and 30 minutes PI were 46 ± 7 mmHg (6.1 ± 0.9 kPa), 42 ± 9 mmHg (5.6 ± 1.1 kPa), and 48 ± 7 mmHg (6.4 ± 0.1 kPa), respectively (p = 0.4). In treatment animals, oxygen administration significantly increased PaO2 at 15 minutes PI to 60 ± 13 mmHg (8.0 ± 1.7 kPa), compared with baseline values of 46 ± 8 mmHg (6.1 ± 1 kPa) (p = 0.007), and 30 minute PI values of 48 ± 7 mmHg (6.5 ± 0.9 kPa) (p = 0.003).ConclusionsThese data show that a pulsed-flow delivery of oxygen can increase PaO2 in dorsally recumbent horses during field anesthesia with ketamine-xylazine-guaifenesin.Clinical relevanceThe portable oxygen concentrator may help combat hypoxemia during field anesthesia in horses.  相似文献   

9.
ObjectiveTo evaluate the oxygen reserve index (ORI) as a noninvasive estimate of the PaO2 during moderate hyperoxaemia [100–200 mmHg (13.3–26.6 kPa)], and to determine ORI values identifying PaO2 > 100, > 150 (20.0 kPa) and > 200 mmHg in anaesthetized donkeys with an inspired fraction of oxygen (FiO2) > 0.95.Study designProspective observational study.AnimalsA group of 28 adult standard donkeys aged (mean ± standard deviation) 4 ± 2 years and weighing 135 ± 15 kg.MethodsDonkeys were sedated intramuscularly with xylazine and butorphanol; anaesthesia was induced with ketamine and diazepam and maintained with isoflurane in oxygen. An adhesive sensor probe was applied to the donkey’s tongue and connected to a Masimo pulse co-oximeter to determine ORI values. An arterial catheter was inserted into an auricular artery. After ORI signal stabilization, the value was noted and PaO2 determined by blood gas analysis. The Pearson correlation coefficient was used to assess the relationship between ORI and PaO2 for oxygen tension < 200 mmHg (< 26.6 kPa). The Youden index was used to identify the value of ORI that detected PaO2 > 150 and 200 mmHg (20.0 and 26.6 kPa) with the highest sensitivity and specificity.ResultsA total of 106 paired measurements were collected. A mild positive correlation was observed between ORI and PaO2 for values < 200 mmHg (26.6 kPa; r = 0.52). An ORI > 0.0, > 0.1 and > 0.3 indicated a PaO2 > 100, > 150 and > 200 mmHg (13.3, 20.0 and 26.6 kPa) with negative predictive values > 94%.Conclusions and clinical relevanceORI may provide a noninvasive indication of PaO2 > 100, > 150 and > 200 mmHg (13.3, 20.0 and 26.6 kPa) in anaesthetized donkeys with an FiO2 > 0.95, although it does not replace blood gas analysis for assessment of oxygenation.  相似文献   

10.
ObjectivesTo evaluate whether a period of hyperoxia or after a period of hypoxia produced changes attributable to reactive oxygen species in anaesthetized horses.Study designProspective randomized experimental study.AnimalsSix healthy (ASA I) geldings, aged 4.5–9.5 years and weighing 510–640 kg?1.MethodsAfter 30 minutes breathing air as carrier gas for isoflurane, horses were assigned randomly to breathe air as carrier gas (CG0.21) or oxygen as carrier gas (CG1.00) for a further 90 minutes. After an interval of 1 month each horse was re-anaesthetized with the other carrier gas for the 90 minute test period. Ventilation was controlled throughout anaesthesia. Arterial blood was sampled to measure gas tensions, lactate, cholesterol, vitamin E, 4-hydroxy-alkenals, 8-epi-PGF, half haemolysis time, half erythrolysis time, and erythrocyte membrane fluidity. Muscle blood flow and oxygenation were evaluated by near infrared spectroscopy and coloured Doppler.ResultsAfter the first 30 minutes horses were hypoxemic. Subsequently the CG1.00 group became hyperoxaemic (PaO2~240 mmHg) whereas the CG0.21 group remained hypoxaemic (PaO2~60 mmHg) and had increased lactate concentration. No significant changes in vitamin E, 4-hydroxy-alkenals, or 8-epi-PGF concentrations were detected. During the 90 minute test period the CG0.21 group had increased resistance to free-radical-mediated lysis in erythrocytes, whereas the CG1.00 group had slightly decreased resistance of whole blood to haemolysis. CG0.21 induced a progressive muscle deoxygenation whereas CG1.00 induced an increase in muscle oxygen saturation followed by progressive deoxygenation towards baseline.Conclusions and clinical relevanceDuring isoflurane anaesthesia in horses, the hyperoxia induced by changing from air to oxygen induced minimal damage from reactive oxygen species. Using air as the carrier gas decreased skeletal muscle oxygenation compared with using oxygen.  相似文献   

11.
ObjectivesTo investigate the influence of two inspired oxygen fractions (FIO2) on the arterial oxygenation in horses anaesthetized with isoflurane.Study DesignRetrospective, case-control clinical study.AnimalsTwo hundred equine patients undergoing non-abdominal surgery (ASA class 1–2), using a standardized anaesthetic protocol and selected from anaesthetic records of a period of three years, based on pre-defined inclusion criteria.MethodsIn group O (n = 100), medical oxygen acted as carrier gas, while in group M (n = 100), a medical mixture of oxygen and air (FIO2 0.60) was used. Demographic data, FIO2, arterial oxygen tension (PaO2) and routinely monitored physiologic data were recorded. The alveolar-arterial oxygen tension difference [P(A-a)O2] and PaO2/FIO2 ratio were calculated. The area under the curve, standardized to the anaesthetic duration, was calculated and statistically compared between groups using t-tests or Mann–Whitney tests as appropriate. Categorical data were compared using Chi-square tests.ResultsNo significant differences in age, body weight, sex, breed, surgical procedure, position, anaesthetic duration or arterial carbon dioxide tension were found. Mean FIO2 was 0.78 in group O and 0.60 in group M. Compared to group O, significantly lower values for PaO2 and for P(A-a)O2 were found in group M. In contrast, the PaO2/FIO2 ratio and the percentage of horses with a PaO2 <100 mmHg (13.33 kPa) were comparable in both groups.ConclusionsAlthough a reduction of the inspired oxygen fraction resulted in a lower PaO2, the P(A-a)O2 was also lower and the number of horses with PaO2 values <100 mmHg was comparable.Clinical relevanceIn healthy isoflurane anaesthetized horses, the use of a mixture of oxygen and air as carrier gas seems acceptable, but further, prospective studies are needed to confirm whether it results in a lower degree of ventilation/perfusion mismatching.  相似文献   

12.
SpO2 values from the Nonin 8600V veterinary pulse oximeter, using a lingual clip-type, transmittance sensor applied to the tongue, were compared to directly-measured SaO2 values from a co-oximeter, calibrated for equine blood, in 5 halothane-anesthetized horse. Normocapnia was maintained with controlled ventilartion. The inspired oxygen concentration was varied by mixing nitrogen in oxygen to obtain SpO2 readings of approximately 60, 65, 70, 75, 80, 85, 90, 92, and 100%. At the time of each SpO2 recording, an arterial blood sample was collected for immediate analysis of SaO2. A total of sixty paired measurements were made. The results showed excellent data correlation with a bias (precision) of 0.55 (2.57) and an R-value of 0.98 over the entire SaO2 range tested. Based on these findings, the Nonin 8600V veterinary pulse oximeter, with the lingual sensor, performed accurately and reliably, and appears to be suitable for clinical use in anesthetized horses. (Vet Emerg & Crit Care, 1999: 13–18)  相似文献   

13.
Reasons for performing the study: Excessive accumulations or depletions of body fat have been associated with increased morbidity and mortality in horses and ponies. An objective, minimally‐invasive method to accurately quantify body fat in living animals is required to aid nutritional management and define welfare/performance limits. Objectives: To compare deuterium oxide (D2O) dilution‐derived estimates of total body water (TBW) and body fat with values obtained by ‘gold standard’ proximate analysis and cadaver dissection. Hypothesis: D2O dilution offers a valid method for the determination of TBW and body fat in equids. Methods: Seven mature (mean ± s.e. 13 ± 3 years, 212 ± 14 kg, body condition scores 1.25–7/9), healthy, Welsh Mountain pony mares, destined for euthanasia (for nonresearch purposes) were used. Blood samples were collected before and 4 h after D2O (0.11–0.13 g/kg bwt, 99.8 atom percent excess) administration. Plasma was analysed by gas isotope ratio mass spectrometry following filtration and zinc reduction. After euthanasia, white adipose tissue (WAT) mass was recorded before all body tissues were analysed by proximate chemical analyses. Results: D2O‐derived estimates of TBW and body fat were strongly associated with proximate analysis‐ and dissection‐derived values (all r2>0.97, P≤0.0001). Bland‐Altman analyses demonstrated good agreements between methods. D2O dilution slightly overestimated TBW (0.79%, limits of agreement (LoA) ‐3.75–2.17%) and underestimated total body lipid (1.78%, LoA ‐0.59–4.15%) and dissected WAT (0.72%, LoA ‐2.77–4.21%). Conclusions and potential relevance: This study provides the first validation of the D2O dilution method for the minimally‐invasive, accurate, repeatable and objective measurement of body water and fat in living equids.  相似文献   

14.
A commercial human pulse oximeter was used in several species to measure heart rate and arterial oxygen saturation (SaO2), and the results compared with those from an ECG and bench oximeter. The heart rates were always the same, but differences in the SaO2 ranged between 4.2 per cent to 10.3 per cent. Correlation coefficients between the two SaO2 measurement techniques ranged from 0.81 to 0.94, depending on the species investigated.  相似文献   

15.
ObjectiveTo evaluate the effects of progressively increasing doses of acepromazine on cardiopulmonary variables and sedation in conscious dogs.Study designProspective, experimental study.AnimalsA group of six healthy, adult, mixed-breed dogs weighing 16.5 ± 5.0 kg (mean ± standard deviation).MethodsDogs were instrumented with thermodilution and arterial catheters for evaluation of hemodynamics and arterial blood gases. On a single occasion, acepromazine was administered intravenously to each dog at 10, 15, 25 and 50 μg kg–1 at 20 minute intervals, resulting in cumulative acepromazine doses of 10 μg kg–1 (ACP10), 25 μg kg–1 (ACP25), 50 μg kg–1 (ACP50) and 100 μg kg–1 (ACP100). Hemodynamic data and sedation scores were recorded before (baseline) and 20 minutes after each acepromazine dose.ResultsCompared with baseline, all acepromazine doses significantly decreased stroke index (SI), mean arterial pressure (MAP) and arterial oxygen content (CaO2) with maximum decreases of 16%, 17% and 21%, respectively. Cardiac index (CI) decreased by up to 19% but not significantly. Decreases of 26–38% were recorded for oxygen delivery index (DO2I), with significant differences for ACP50 and ACP100. Systemic vascular resistance index (SVRI) and heart rate did not change significantly. No significant difference was found among acepromazine doses for hemodynamic data. After ACP10, mild sedation was observed in five/six dogs and moderate sedation in one/six dogs, whereas after ACP25, ACP50 and ACP100, moderate sedation was observed in five/six or six/six dogs.Conclusions and clinical relevanceIn conscious dogs, acepromazine decreased MAP, SI, CaO2 and DO2I, but no significant dose effect was detected. SVRI was not significantly changed, suggesting that the reduction in MAP resulted from decreased CI. The ACP25, ACP50 and ACP100 doses resulted in moderate sedation in most dogs; ACP10 resulted in only mild sedation.  相似文献   

16.
ObjectiveTo compare the efficacy of single-breath continuous positive airway pressure manoeuvre (CPAP-M) with inhaled salbutamol, and a combination of both.Study designRandomized, clinical study.AnimalsA total of 62 client-owned horses (American Society of Anesthesiologists status III–V) anaesthetized for laparotomy.MethodsHorses were premedicated with intravenous (IV) xylazine (0.4–0.6 mg kg–1), anaesthesia was induced with midazolam (0.06 mg kg–1 IV) and ketamine (2.2 mg kg–1 IV) and maintained with isoflurane in oxygen using volume-controlled ventilation without positive end-expiratory pressure. If PaO2 was < 100 mmHg (13.3 kPa), either a CPAP-M (50 cmH2O for 45 seconds) or salbutamol (0.002 mg kg–1) was administered. The intervention was considered successful if PaO2 reached 100 mmHg (13.3 kPa). If PaO2 remained < 100 mmHg (13.3 kPa), treatments were switched. PaO2/FiO2 ratio and estimated shunt fraction (F-shunt) were derived from data obtained from arterial blood gas measurements. Dynamic compliance (Cdyn) was calculated from variables recorded at the moment of arterial blood analysis. Fisher’s exact tests compared success rates between treatments, and linear models were performed to test whether the treatment modified the values of the measurements; p < 0.05.ResultsSalbutamol was the first intervention in 28 horses and was effective in 22 horses. CPAP-M was the first intervention in 34 horses and was effective in 26 horses. CPAP-M after salbutamol was performed in six horses, with four responders, and salbutamol after CPAP-M was administered to eight horses, with one responder. Salbutamol, but not CPAP-M, significantly decreased F-shunt. Both salbutamol and CPAP-M significantly increased Cdyn.Conclusions and clinical relevanceSalbutamol and CPAP-M were comparably effective in improving oxygenation and Cdyn in anaesthetized horses with PaO2 < 100 mmHg (13.3 kPa). Whether combining both treatments might be beneficial needs to be confirmed on a larger number of horses.  相似文献   

17.
ObjectiveTo determine if pressure support ventilation (PSV) weaning from general anesthesia affects ventilation or oxygenation in horses.Study designProspective randomized clinical study.AnimalsTwenty client‐owned healthy horses aged 5 ± 2 years, weighing 456 ± 90 kg.MethodsIn the control group (CG; n = 10) weaning was performed by a gradual decrease in respiratory rate (fR) and in the PSV group (PSVG; n = 10) by a gradual decrease in fR with PSV. The effect of weaning was considered suboptimal if PaCO2 > 50 mmHg, arterial pH < 7.35 plus PaCO2 > 50 mmHg or PaO2 < 60 mmHg were observed at any time after disconnection from the ventilator until 30 minutes after the horse stood. Threshold values for each index were established and the predictive power of these values was tested.ResultsPressure support ventilation group (PSVG) had (mean ± SD) pH 7.36 ± 0.02 and PaCO2 41 ± 3 mmHg at weaning and the average lowest PaO2 69 ± 6 mmHg was observed 15 minutes post weaning. The CG had pH 7.32 ± 0.02 and PaCO2 57 ± 6 mmHg at weaning and the average lowest PaO2 48 ± 5 mmHg at 15 minutes post weaning. No accuracy in predicting weaning effect was observed for fR (p = 0.3474), minute volume (p = 0.1153), SaO2 (p = 0.1737) and PaO2/PAO2 (p = 0.1529). A high accuracy in predicting an optimal effect of weaning was observed for VT > 10 L (p = 0.0001), fR/VT ratio ≤ 0.60 breaths minute?1 L?1 (p = 0.0001), VT/bodyweight > 18.5 mL kg?1 (p = 0.0001) and PaO2/FiO2 > 298 (p = 0.0002) at weaning. A high accuracy in predicting a suboptimal effect of weaning was observed for VT < 10 L (p = 0.0001), fR/VT ratio ≥ 0.60 breaths minute?1 L?1 (p = 0.0001) and Pe′CO2 ≥ 38 mmHg (p = 0.0001) at weaning.Conclusions and clinical relevancePressure support ventilation (PSV) weaning had a better respiratory outcome. A higher VT, VT/body weight, PaO2/FiO2 ratio and a lower fR/VT ratio and Pe′CO2 were accurate in predicting the effect of weaning in healthy horses recovering from general anesthesia.  相似文献   

18.
ObjectiveTo evaluate the effects of incremental doses of acepromazine on hemodynamics in isoflurane-anesthetized dogs.Study designProspective, experimental study.AnimalsHealthy, adult, mixed-breed dogs (two male and four female) weighing 16.8 ± 5.1 kg (mean ± standard deviation).MethodsDogs were anesthetized with propofol (7 mg kg–1) intravenously (IV) and isoflurane. Thermodilution and arterial catheters were placed for hemodynamic monitoring and arterial blood sampling for blood gas analysis. Baseline measurements were performed with stable expired concentration of isoflurane (Fe′Iso) at 1.8%. Each dog was then administered four incremental acepromazine injections (10, 15, 25 and 50 μg kg–1) IV, and measurements were repeated 20 minutes after each acepromazine injection with Fe′Iso decreased to 1.2%. The four acepromazine injections resulted in cumulative doses of 10, 25, 50 and 100 μg kg–1 (time points ACP10, ACP25, ACP50 and ACP100, respectively).ResultsCompared with baseline, cardiac index (CI) increased significantly by 34%, whereas systemic vascular resistance index (SVRI) decreased by 25% at ACP50 and ACP100. Arterial oxygen content (CaO2) was significantly lower than baseline after all acepromazine injections (maximum decreases of 11%) and was lower at ACP50 and ACP100 than at ACP10. No significant change was found in heart rate, stroke index, oxygen delivery index and systolic, mean and diastolic blood pressures. Hypotension (mean arterial pressure < 60 mmHg) was observed in one dog at baseline, ACP10, ACP25 and ACP100, and in two dogs at ACP50.Conclusions and clinical relevanceCompared with isoflurane alone, anesthesia with acepromazine–isoflurane resulted in increased CI and decreased SVRI and CaO2 values. These effects were dose-related, being more pronounced at ACP50 and ACP100. Under the conditions of this study, acepromazine administration did not change blood pressure.  相似文献   

19.
ObjectiveTo compare the cardiovascular effects of four epidural treatments in isoflurane anaesthetised dogs.Study designProspective, randomized. experimental study.AnimalsSix female, neutered Beagle dogs (13.3 ± 1.0 kg), aged 3.6 ± 0.1 years.MethodsAnaesthesia was induced with propofol (8.3 ± 1.1 mg kg?1) and maintained with isoflurane in a mixture of oxygen and air [inspiratory fraction of oxygen (FiO2) = 40%], using intermittent positive pressure ventilation. Using a cross-over model, NaCl 0.9% (P); methadone 1% 0.1 mg kg?1 (M); ropivacaine 0.75% 1.65 mg kg?1 (R) or methadone 1% 0.1 mg kg?1 + ropivacaine 0.75% 1.65 mg kg?1 (RM) in equal volumes (0.23 mL kg?1) using NaCl 0.9%, was administered epidurally at the level of the lumbosacral space. Treatment P was administered to five dogs only. Cardiovascular and respiratory variables, blood gases, and oesophageal temperature were recorded at T-15 and for 60 minutes after epidural injection (T0).ResultsMean overall heart rate (HR in beats minute?1) was significantly lower after treatment M (119 ± 16) (p = 0.0019), R (110 ± 18) (p < 0.0001) and RM (109 ± 13) (p < 0.0001), compared to treatment P (135 ± 21). Additionally, a significant difference in HR between treatments RM and M was found (p = 0.04). After both ropivacaine treatments, systemic arterial pressures (sAP) were significantly lower compared to other treatments. No significant overall differences between treatments were present for central venous pressure, cardiac output, stroke volume, systemic vascular resistance, oxygen delivery and arterial oxygen content (CaO2). Heart rate and sAP significantly increased after treatment P and M compared to baseline (T-15). With all treatments significant reductions from baseline were observed in oesophageal temperature, packed cell volume and CaO2. A transient unilateral Horner’s syndrome occurred in one dog after treatment R.Conclusions and clinical relevanceClinically important low sAPs were observed after the ropivacaine epidural treatments in isoflurane anaesthetised dogs. Systemic arterial pressures were clinically acceptable when using epidural methadone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号