首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo assess the accuracy and trending capability of continuous measurement of haemoglobin concentration [Hb], haemoglobin oxygen saturation (SaO2) and oxygen content (CaO2) measured by the Masimo Radical-7 pulse co-oximeter in horses undergoing inhalational anaesthesia.Study designProspective observational clinical study.AnimalsA group of 23 anaesthetized adult horses.MethodsIn 23 healthy adult horses undergoing elective surgical procedures, paired measurements of pulse co-oximetry-based haemoglobin concentration (SpHb), SaO2 (SpO2), and CaO2 (SpOC) and simultaneous arterial blood samples were collected at multiple time points throughout anaesthesia. The arterial samples were analysed by a laboratory co-oximeter for total haemoglobin (tHb), SaO2 and manually calculated CaO2. Bland-Altman plots, linear regression analysis, error grid analysis, four-quadrant plot and Critchley polar plot were used to assess the accuracy and trending capability of the pulse co-oximeter. Data are presented as mean differences and 95% limits of agreement (LoA).ResultsIn 101 data pairs analysed, the pulse co-oximeter slightly underestimated tHb (bias 0.06 g dL–1; LoA –1.0 to 1.2 g dL–1), SaO2 (bias 1.4%; LoA –2.0% to 4.8%), and CaO2 (bias 0.3 mL dL–1; LoA –2.1 to 2.7 mL dL–1). Zone A of the error grid encompassed 99% of data pairs for SpHb. Perfusion index (PI) ≥ 1% was recorded in 58/101 and PI < 1% in 43/101. The concordance rate for consecutive changes in SpHb and tHb with PI ≥ 1% and < 1% was 80% and 91% with four-quadrant plot, and 45.8% and 66.6% with Critchley polar plot.ConclusionsPulse co-oximetry has acceptable accuracy for the values measured, even with low PI, whereas its trending ability requires further investigation in those horses with a higher [Hb] variation during anaesthesia.  相似文献   

2.
ObjectiveEvaluation of the reliability of pulse oximetry at four different attachment sites compared to haemoglobin oxygen saturation measured by a co-oximeter and calculated by a blood gas analyser in immobilized impala.Study designRandomized crossover study.AnimalsA total of 16 female impala.MethodsImpala were immobilized with etorphine or thiafentanil alone, or etorphine in combination with a novel drug. Once immobilized, arterial blood samples were collected at 5 minute intervals for 30 minutes. Then oxygen was insufflated (5 L minute−1) intranasally at 40 minutes and additional samples were collected. A blood gas analyser was used to measure the arterial partial pressure of oxygen and calculate the oxygen haemoglobin saturation (cSaO2); a co-oximeter was used to measure the oxygen haemoglobin saturation (SaO2) in arterial blood. Pulse oximeter probes were attached: under the tail, to the pinna (ear) and buccal mucosa (cheek) and inside the rectum. Pulse oximeter readings [peripheral oxygen haemoglobin saturation (SpO2) and pulse quality] were recorded at each site and compared with SaO2 and cSaO2 using Bland-Altman and accuracy of the area root mean squares (Arms) methods to determine the efficacy. P value < 0.05 was considered significant.ResultsPulse quality was ‘good’ at each attachment site. SpO2 measured under the tail was accurate and precise but only when SaO2 values were above 90% (bias = 3, precision = 3, Arms = 4). The ear, cheek and rectal probes failed to give accurate or precise readings (ear: bias = −4, precision = 14, Arms = 15; cheek: bias = 12, precision = 11, Arms = 16; and rectum: bias = 5, precision = 12, Arms = 13).Conclusions and clinical relevanceIn order to obtain accurate and precise pulse oximetry readings in immobilized impala, probes must be placed under the tail and SaO2 must be above 90%. Since SaO2 values are usually low in immobilized impala, pulse oximeter readings should be interpreted with caution.  相似文献   

3.
ObjectivesTo determine the reliability of peripheral oxygen haemoglobin saturation (SpO2), measured by a Nonin PalmSAT 2500A pulse oximeter with 2000T transflectance probes at four attachment sites (third eyelid, cheek, rectum and tail), by comparing these measurements to arterial oxygen haemoglobin saturation (SaO2), measured by an AVOXimeter 4000 co-oximeter reference method in immobilized white rhinoceros (Ceratotherium simum).Study designRandomized crossover study.AnimalsA convenience sample of eight wild-caught male white rhinoceros.MethodsWhite rhinoceros were immobilized with etorphine (0.0026 ± 0.0002 mg kg–1, mean ± standard deviation) intramuscularly, after which the pinna was aseptically prepared for arterial blood sample collection, and four pulse oximeters with transflectance probes were fixed securely to their attachment sites (third eyelid, cheek, rectum and tail). At 30 minutes following recumbency resulting from etorphine administration, the animals were given either butorphanol (0.026 ± 0.0001 mg kg–1) or an equivalent volume of saline intravenously. At 60 minutes following recumbency, insufflated oxygen (15 L minute–1 flow rate) was provided intranasally. In total, the SpO2 paired measurements from the third eyelid (n = 80), cheek (n = 67), rectum (n = 59) and tail (n = 76) were compared with near-simultaneous SaO2 measurements using Bland-Altman to assess bias (accuracy), precision, and the area root mean squares (ARMS) method.ResultsCompared with SaO2, SpO2 measurements from the third eyelid were reliable (i.e., accurate and precise) above an SaO2 range of 70% (bias = 1, precision = 3, ARMS = 3). However, SpO2 measurements from the cheek, rectum and tail were unreliable (i.e., inaccurate or imprecise).Conclusions and clinical relevanceA Nonin PalmSAT pulse oximeter with a transflectance probe inserted into the space between the third eyelid and the sclera provided reliable SpO2 measurements when SaO2 was > 70%, in immobilized white rhinoceros.  相似文献   

4.
ObjectiveTo compare the effect of invasive continuous positive airway pressure (CPAP), pressure-controlled ventilation (PCV) with positive end-expiratory pressure (PEEP) and spontaneous breathing (SB) on PaO2, PaCO2 and arterial to central venous oxygen content difference (CaO2-CcvO2) in healthy anaesthetized dogs.Study designProspective randomized crossover study.AnimalsA group of 15 adult male dogs undergoing elective orchidectomy.MethodsDogs were anaesthetized [buprenorphine, medetomidine, propofol and isoflurane in an air oxygen (FiO2= 0.5)]. All ventilatory treatments (CPAP: 4 cmH2O; PCV: 10 cmH2O driving pressure; PEEP, 4 cmH2O; respiratory rate of 10 breaths minute–1 and inspiratory-to-expiratory ratio of 1:2; SB: no pressure applied) were applied in a randomized order during the same anaesthetic. Arterial and central venous blood samples were collected immediately before the start and at 20 minutes after each treatment. Data were compared using a general linear mixed model (p < 0.05).ResultsMedian PaO2 was significantly higher after PCV [222 mmHg (29.6 kPa)] than after CPAP [202 mmHg (26.9 kPa)] and SB [208 mmHg (27.7 kPa)] (p < 0.001). Median PaCO2 was lower after PCV [48 mmHg (6.4 kPa)] than after CPAP [58 mmHg (7.7 kPa)] and SB [56 mmHg (7.5 kPa)] (p < 0.001). Median CaO2-CcvO2 was greater after PCV (4.36 mL dL–1) than after CPAP (3.41 mL dL–1) and SB (3.23 mL dL–1) (p < 0.001). PaO2, PaCO2 and CaO2-CcvO2 were no different between CPAP and SB (p > 0.99, p = 0.697 and p = 0.922, respectively).Conclusions and clinical relevanceCPAP resulted in similar arterial oxygenation, CO2 elimination and tissue oxygen extraction to SB. PCV resulted in improved arterial oxygenation and CO2 elimination. Greater oxygen extraction occurred with PCV than with CPAP and SB, offsetting its advantage of improved arterial oxygenation. The benefit of invasive CPAP over SB in the healthy anaesthetized dog remains uncertain.  相似文献   

5.
ObjectiveFactors described as contributors to the ‘penumbra effect’ in relation to pulse oximetry include optical shunting, circulatory anastomoses and probe parallelity. This study aimed to clarify the main underlying mechanism involved.Study designProspective clinical trial.AnimalsA total of 30 dogs and 15 cats (client-owned).MethodsIn anaesthetized dogs and cats, a pulse oximeter probe was placed on the tongue to measure haemoglobin oxygen saturation (SpO2) and perfusion index. In 15 dogs, the probe was positioned at the root (baseline) of the tongue, then at 0.5 and 1 cm rostral to it, to investigate the effect of circulatory anastomoses on SpO2 values. In cats (which do not have lingual arteriovenous anastomoses), the probe was positioned at the root and apex of the tongue. To assess the effect of probe parallelity on SpO2 values in dogs, two lines were drawn parallel to the planes of the light-emitting diode and the detector surfaces and the intersection angle calculated using ImageMeter Pro, Google Play. In a further 15 dogs, the probe was placed at the tongue edge (0% optical shunt), with 50% optical shunt, then with the 50% optical shunt shielded. Data were analysed using Friedman’s test, Student t test and Pearson’s correlation coefficient (p < 0.05).ResultsIn dogs, SpO2 values were significantly higher at 1.0 cm than at baseline (p < 0.0001). In cats, there were no significant differences in SpO2 values at each location. There was no significant difference in SpO2 between 0% and 50% optical shunt in dogs. SpO2 had a moderate negative correlation with tongue thickness and negligible correlation with intersection angle.Conclusions and Clinical relevanceCirculatory anastomoses are probably responsible for observed changes in SpO2 as the probe is placed towards an extremity, rather than optical shunting or probe parallelity.  相似文献   

6.
ObjectiveTo determine the accuracy of variables that influence blood pH, obtained from central venous (jugular vein) blood samples compared with arterial (dorsal pedal artery) samples in anaesthetized dogs with respiratory acidosis.Study designProspective, comparative, observational study.AnimalsA group of 15 adult male dogs of various breeds weighing 17 (11-42) kg [median (range)].MethodsDogs were premedicated with buprenorphine (0.03 mg kg–1) and medetomidine (0.01 mg kg–1) administered intramuscularly by separate injections, anaesthetized with propofol intravenously to effect and maintained with isoflurane in 50% air-oxygen. Arterial and central venous catheters were placed. After 15 minutes of spontaneous breathing, arterial and central venous blood samples were obtained and analysed within 5 minutes, using a bench-top gas analyser. Differences between arterial and central venous pH and measured variables were assessed using Wilcoxon rank sum test and effect size (r: matched-pairs rank-biserial correlation) was calculated for each comparison. The agreement (bias and limits of agreement: LoAs) between arterial and central venous pH and measured variables were assessed using Bland-Altman; p < 0.05. Data are reported as median and 95% confidence interval.ResultsArterial blood pH was 7.23 (7.19-7.25), and it was significantly greater than central venous samples 7.21 (7.18-7.22; r = 0.41). Agreement between arterial and venous pH was acceptable with a bias of 0.01 (0.002-0.02) and narrow LoAs. PCO2 [arterial 54 (53-58) mmHg, 7.2 (7.1-7.7) kPa; venous 57 (54-62) mmHg, 7.6 (7.2-8.3) kPa], bicarbonate ion concentration and base excess did not differ between samples; however, agreement between arterial and venous PCO2 was not acceptable with a bias of –2 (–5 to 0) mmHg and wide LoAs.Conclusions and clinical relevanceBlood pH measured from central venous (jugular vein) blood is an acceptable clinical alternative to arterial blood (dorsal pedal artery) in normovolaemic anaesthetized dogs with respiratory acidosis.  相似文献   

7.
ObjectiveTo compare the sedative and cardiopulmonary effects of intranasal (IN) and intramuscular (IM) administration of dexmedetomidine and midazolam combination in New Zealand White rabbits.Study designA randomized, crossover experimental study.AnimalsA total of eight healthy New Zealand White rabbits, aged 6–12 months, weighing 3.1 ± 0.3 kg (mean ± standard deviation).MethodsThe animals were randomly assigned to administration of dexmedetomidine (0.1 mg kg–1) with midazolam (2 mg kg–1) by either IN or IM route separated by 2 weeks. The electrocardiogram, pulse rate (PR), peripheral haemoglobin oxygen saturation (SpO2), mean noninvasive arterial pressure (MAP), respiratory frequency (fR) and rectal temperature were measured before drug administration (baseline), T0 (onset of sedation) and at 5 minute intervals until recovery. The onset of sedation, duration of sedation and sedation score (SS) were also recorded.ResultsThe PR was significantly lower in treatment IM than in treatment IN over time (p = 0.027). MAP < 60 mmHg developed in two and four rabbits in treatments IN and IM, respectively. SpO2 progressively decreased over time in both treatments. fR was lower than baseline at several time points in both treatments. Onset of sedation was shorter in treatment IN (90 ± 21 seconds) than in treatment IM (300 ± 68 seconds) (p = 0.036). Duration of sedation was longer in treatment IM (55.2 ± 8.7 minutes) than in treatment IN (39.6 ± 2.1 minutes) (p = 0.047). No significant difference in SS was observed between treatments (p > 0.05).Conclusions and clinical relevanceCombination of dexmedetomidine (0.1 mg kg–1) and midazolam (2 mg kg–1) decreased fR, PR and SpO2 regardless of the administration route in New Zealand White rabbits. A more rapid action and shorter duration of sedation were observed after treatment IN than after treatment IM administration.  相似文献   

8.
ObjectiveTo describe the anesthetic and adverse effects of an injectable anesthetic protocol in dogs as part of a high-volume sterilization program under field conditions in Belize.Study designProspective, observational, field study.AnimalsA total of 23 female and eight male dogs (14.2 ± 7.7 kg; age ≥ 8 weeks).MethodsUsing a volume per kg-based dose chart, dogs were administered ketamine (4.5 mg kg−1), medetomidine (0.04 mg kg−1) and hydromorphone (0.09 mg kg−1) intramuscularly. After induction of anesthesia, an endotracheal tube was inserted and dogs were allowed spontaneous breathing in room air. Monitoring included peripheral oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), respiratory rate, rectal temperature and end-tidal carbon dioxide (Pe′CO2). Meloxicam (0.2 mg kg−1) was administered subcutaneously after surgery. Data were analyzed with linear models and chi-square tests (p < 0.05).ResultsOnset of lateral recumbency (3.4 ± 2 minutes) was rapid. Desaturation (SpO2 < 90%) was observed at least once in 64.5% of dogs and was more frequent in large dogs (p = 0.019). Hypercapnia (Pe′CO2 ≥ 50 mmHg; 6.7 kPa) was observed in 48.4% of dogs. MAP was 111 ± 19 mmHg, mean ± standard deviation. Hypertension (MAP ≥ 120 mmHg), bradycardia (HR ≤ 60 beats minute−1) and tachycardia (HR ≥ 140 beats minute−1) were observed in 45.2%, 16.1% and 3.3% of dogs, respectively. Hypotension and hypothermia were not observed. Sex was not significantly associated with any complication. Return of swallowing reflex and time to standing were 71 ± 23 and 152 ± 50 minutes after injection, respectively. Return of swallowing was significantly longer in large dogs.Conclusions and clinical relevanceAt the doses used, ketamine–medetomidine–hydromorphone was effective in dogs for high-volume sterilization. In this field setting, adverse effects included hypoventilation, hypoxemia and prolonged recovery.  相似文献   

9.
ObjectiveTo evaluate the effects of progressively increasing doses of acepromazine on cardiopulmonary variables and sedation in conscious dogs.Study designProspective, experimental study.AnimalsA group of six healthy, adult, mixed-breed dogs weighing 16.5 ± 5.0 kg (mean ± standard deviation).MethodsDogs were instrumented with thermodilution and arterial catheters for evaluation of hemodynamics and arterial blood gases. On a single occasion, acepromazine was administered intravenously to each dog at 10, 15, 25 and 50 μg kg–1 at 20 minute intervals, resulting in cumulative acepromazine doses of 10 μg kg–1 (ACP10), 25 μg kg–1 (ACP25), 50 μg kg–1 (ACP50) and 100 μg kg–1 (ACP100). Hemodynamic data and sedation scores were recorded before (baseline) and 20 minutes after each acepromazine dose.ResultsCompared with baseline, all acepromazine doses significantly decreased stroke index (SI), mean arterial pressure (MAP) and arterial oxygen content (CaO2) with maximum decreases of 16%, 17% and 21%, respectively. Cardiac index (CI) decreased by up to 19% but not significantly. Decreases of 26–38% were recorded for oxygen delivery index (DO2I), with significant differences for ACP50 and ACP100. Systemic vascular resistance index (SVRI) and heart rate did not change significantly. No significant difference was found among acepromazine doses for hemodynamic data. After ACP10, mild sedation was observed in five/six dogs and moderate sedation in one/six dogs, whereas after ACP25, ACP50 and ACP100, moderate sedation was observed in five/six or six/six dogs.Conclusions and clinical relevanceIn conscious dogs, acepromazine decreased MAP, SI, CaO2 and DO2I, but no significant dose effect was detected. SVRI was not significantly changed, suggesting that the reduction in MAP resulted from decreased CI. The ACP25, ACP50 and ACP100 doses resulted in moderate sedation in most dogs; ACP10 resulted in only mild sedation.  相似文献   

10.
ObjectiveAcute kidney injury (AKI) may be a complication in dogs undergoing surgery. Urinary heat shock protein 72 (uHSP72) is a sensitive biomarker of canine AKI. To assess the occurrence of perioperative AKI, based on uHSP72 compared with serum creatinine (sCr), and whether its occurrence is associated with the American Society of Anesthesiology physical status (ASA status).Study designClinical prospective study.AnimalsA total of 80 client-owned and shelter dogs.MethodsDogs scheduled for elective or emergency surgery were assigned ASA status (ASA I–IV). Preoperative and 24 hour postoperative serum and urine samples were collected. sCr, uHSP72 and urinary creatinine (uCr) were measured.ResultsPostoperative uHSP72/uCr concentration [median (range)] of all dogs undergoing surgery [2.40 (0.14–252) ng mg−1] was significantly increased compared with preoperative uHSP72/uCr [1.30 (0.11–142) ng mg−1] concentration (p < 0.001). Conversely, postoperative sCr concentration of all dogs [0.88 (0.3–1.6) mg dL−1] significantly decreased compared with preoperative sCr concentration [0.8 (0.2–5.0) mg dL−1; p = 0.001]. Median uHSP72/uCr concentration differed both preoperatively (p = 0.007) and postoperatively (p = 0.019) among the ASA status groups. Increased uHSP/uCr was measured in 20 dogs preoperatively and 33 dogs postoperatively, whereas only five dogs fulfilled the criteria of AKI based on sCr.ConclusionsThe occurrence of increased uHSP72/uCr perioperatively suggests that the proportion of dogs with AKI is considerably higher than perceived.Clinical relevanceDogs undergoing surgery should be closely monitored for AKI before and after anesthesia, using currently available markers (e.g., sCr) and more sensitive markers.  相似文献   

11.
ObjectiveTo evaluate the sedative effects of two doses of alfaxalone when added to a combination of dexmedetomidine and methadone injected intramuscularly (IM) in healthy Beagles.Study designRandomized, blinded, crossover, experimental study.AnimalsA group of six adult Beagles.MethodsDogs were sedated on three different occasions with IM dexmedetomidine (3 μg kg–1) and methadone (0.3 mg kg–1) combined with two doses of alfaxalone (0.5 and 1 mg kg–1; A0.5 and A1, respectively) or saline (A0). Quality of sedation, response to tail clamping and rectal temperature were recorded at baseline, 5, 15, 25, 35 and 45 minutes. Pulse and respiratory rates, oxygen saturation of haemoglobin (SpO2) and noninvasive blood pressure (NIBP) were recorded every 5 minutes. Onset of sedation and duration of recumbency, response to venous catheterization and recovery quality were assessed. Physiological variables (analysis of variance) were analysed between treatments and within treatments compared with baseline (Student t test). Nonparametric data were analysed using Friedman and Cochran’s Q tests. Significance was p < 0.05.ResultsSedation scores were significantly higher when alfaxalone was co-administered (area under the curve; p = 0.024, A0.5; p = 0.019, A1), with no differences between doses. Onset of sedation was similar, but duration of recumbency was longer in A0.5 than in A0 [median (minimum–maximum), 43 (35–54) versus 30 (20–47) minutes, p = 0.018], but not in A1. Response to venous catheterization and tail clamping, and quality of recovery (acceptable) presented no differences between treatments. A decrease in all physiological variables (compared with baseline) was observed, except for NIBP, with no differences between treatments. All dogs required oxygen supplementation due to reduced SpO2.Conclusions and clinical relevanceAdding alfaxalone to methadone and dexmedetomidine enhanced sedation and duration of recumbency. Although cardiopulmonary depression was limited, oxygen supplementation is advisable.  相似文献   

12.
13.
ObjectiveEvaluation of the accuracy of Masimo signal extraction technology (SET) pulse oximetry in anaesthetized late gestational pregnant sheep.Study designProspective experimental study.AnimalsSeventeen pregnant Merino ewes.MethodsAnimals included in study were late gestation ewes undergoing general anaesthesia for Caesarean delivery or foetal surgery in a medical research laboratory. Masimo Radical-7 pulse oximetry (SpO2) measurements were compared to co-oximetry (SaO2) measurements from arterial blood gas analyses. The failure rate of the pulse oximeter was calculated. Accuracy was assessed by Bland &; Altman's (2007) limits of agreement method. The effect of mean arterial blood pressure (MAP), perfusion index (PI) and haemoglobin (Hb) concentration on accuracy were assessed by regression analysis.ResultsForty arterial blood samples paired with SpO2 and blood pressure measurements were obtained. SpO2 ranged from 42 to 99% and SaO2 from 43.7 to 99.9%. MAP ranged from 24 to 82 mmHg, PI from 0.1 to 1.56 and Hb concentration from 71 to 114 g L?1. Masimo pulse oximetry measurements tended to underestimate oxyhaemoglobin saturation compared to co-oximetry with a bias (mean difference) of ?2% and precision (standard deviation of the differences) of 6%. Accuracy appeared to decrease when SpO2 was <75%, however numbers were too small for statistical comparisons. Hb concentration and PI had no significant effect on accuracy, whereas MAP was negatively correlated with SpO2 bias.Conclusions and clinical relevanceMasimo SET pulse oximetry can provide reliable and continuous monitoring of arterial oxyhaemoglobin saturation in anaesthetized pregnant sheep during clinically relevant levels of cardiopulmonary dysfunction. Further work is needed to assess pulse oximeter function during extreme hypotension and hypoxaemia.  相似文献   

14.
ObjectiveTo compare the effects of meloxicam or carprofen on glomerular filtration rate (GFR), and to evaluate the effect of meloxicam on urinary N-acetyl-β-D-glucosaminidase (NAG) activity, of cats after dental surgery.Study designRandomized, blinded, controlled trial.AnimalsA total of 24 mixed breed cats.MethodsCats were randomly assigned to one of three groups (n = 8 per group): meloxicam (0.2 mg kg–1); carprofen (4 mg kg–1); or saline (2 mL). Acepromazine (0.04 mg kg–1) and buprenorphine (0.02 mg kg–1) were administered intramuscularly as preanaesthetic medication. Test drugs were injected subcutaneously at the time of preanaesthetic medication. Anaesthesia was induced with intravenous propofol and maintained with isoflurane in oxygen. Mean arterial blood pressure (MAP), respiratory rate (fR), heart rate (HR) and haemoglobin oxygen saturation values (SpO2) were recorded. All cats underwent ultrasonic dental scaling with polishing. Teeth extraction involved mucosal flap creation, removal of alveolar bone and flap closure. Plasma iohexol clearance (ICL), a measure of GFR, was estimated before and 24 hours after anaesthesia induction in all cats. Urinary NAG index was estimated in saline and meloxicam groups at the same time points as GFR. Between-group and -time point differences in GFR and NAG index were compared using mixed model analyses. Data are presented as mean ± standard deviation (p < 0.05).ResultsThere was no significant difference in plasma ICL rate (range: from 1.22 ± 0.05 to 1.27 ± 0.04 mL kg minute–1) between groups or between time points. Urinary NAG index (range: from 1.0 ± 0.19 to 1.36 ± 0.29 Units gram–1) was not significantly different between meloxicam and saline groups. MAP, HR, fR and SpO2 did not differ significantly between groups.Conclusions and clinical relevanceMeloxicam and carprofen appeared to produce nonsignificant effects on GFR, and meloxicam did not affect the urinary NAG activity, of cats after dental surgery.  相似文献   

15.
ObjectiveTo investigate the statistical association of severe intraoperative hypoxemia in thoracic surgery with mortality, postoperative hospitalization times and cost of care.Study designRetrospective study.AnimalsDogs that underwent thoracic surgery in three veterinary hospitals between October 1, 2018 and October 1, 2020.MethodsAnesthesia and hospitalization records from 112 dogs were reviewed and 94 cases met inclusion criteria. Recorded data included signalment, disease etiology, pulmonary or extrapulmonary nature of disease, surgical procedure performed, episodes of severe intraoperative hypoxemia defined as a pulse oximetry reading (SpO2) <90% of 5 minutes or longer duration, survival to discharge, time from extubation to hospital discharge and total invoice cost for clinical visit. Dogs were divided into two groups, those that experienced severe hypoxemia (group A) and those in which SpO2 reading <90% was not observed throughout the procedure (group B).ResultsGroup A had a greater risk of mortality (odds ratio 10.6, 95% confidence interval 1.9–106.7; p = 0.002), prolonged hospitalization (median 62 hours versus 46 hours; p = 0.035) and more expensive cost of care (median US$10,287 versus $8506; p = 0.056) than group B. No significant difference was found for the type of surgical procedure or pulmonary versus extrapulmonary nature of disease.Conclusions and clinical relevanceSevere intraoperative hypoxemia was statistically associated with an increased risk of mortality and longer postoperative hospitalization times. Although not achieving statistical significance, there was a trend toward increased costs to the client for animals with intraoperative hypoxemia.  相似文献   

16.
ObjectiveTo evaluate the time to hemoglobin oxygen desaturation in chickens (Gallus gallus domesticus) with and without preoxygenation before isoflurane induction of anesthesia and rocuronium-induced apnea.Study designProspective, randomized crossover study.AnimalsA total of 10 healthy adult Lohmann Brown-Lite hens.MethodsHens were anesthetized with isoflurane for intravenous (IV) and intraarterial catheter placement and allowed to fully recover from anesthesia. Hens in the preoxygenation treatment were administered oxygen (2 L minute–1) via a facemask for 3 minutes prior to induction of anesthesia with 3% isoflurane in oxygen. In the alternative treatment, hens were not preoxygenated prior to induction of anesthesia with isoflurane in oxygen. Apnea was then induced with rocuronium bromide (1.0 mg kg–1) administered IV, and anesthesia was maintained with IV propofol infusion. A cloacal pulse oximeter measured hemoglobin oxygen saturation (SpO2). Time was recorded from the start of apnea until SpO2 was 90% (desaturation). The trachea was intubated, and anesthesia was maintained with isoflurane in oxygen with manual ventilation until spontaneous breathing returned and SpO2 ≥ 99%. PaO2 was measured before each treatment, after preoxygenation, postinduction and at desaturation. Data were analyzed between treatments using Wilcoxon matched-pairs signed rank tests with Holm-?idák multiple comparison test, and within treatments using Friedman test with Dunn’s multiple comparison test (p < 0.05). Data are reported as median (range).ResultsTime from start of apnea until hemoglobin desaturation was not significantly different between preoxygenated and nonpreoxygenated hens [26.5 (16–50) seconds and 24.0 (5–57) seconds, respectively; p = 0.25]. No differences in PaO2 between treatments were observed at any time point.Conclusions and clinical relevancePreoxygenation for 3 minutes before isoflurane mask induction of anesthesia and apnea does not significantly increase time until desaturation in hens.  相似文献   

17.
ObjectiveTo compare a propofol continuous rate infusion (CRI) with a target-controlled infusion (TCI) in dogs.Study designRandomized prospective double-blinded clinical study.AnimalsA total of 38 healthy client-owned dogs.MethodsDogs premedicated intramuscularly with acepromazine (0.03 mg kg–1) and an opioid (pethidine 3 mg kg–1, morphine 0.2 mg kg–1 or methadone 0.2 mg kg–1) were allocated to P-CRI group (propofol 4 mg kg–1 intravenously followed by CRI at 0.2 mg kg–1 minute–1), or P-TCI group [propofol predicted plasma concentration (Cp) of 3.5 μg mL–1 for induction and maintenance of anaesthesia via TCI]. Plane of anaesthesia, heart rate, respiratory rate, invasive blood pressure, oxygen haemoglobin saturation, end-tidal carbon dioxide and body temperature were monitored by an anaesthetist blinded to the group. Numerical data were analysed by unpaired t test or Mann–Whitney U test, one-way analysis of variance and Dunnett’s post hoc test. Categorical data were analysed with Fisher’s exact test. Significance was set for p < 0.005.ResultsOverall, propofol induced a significant incidence of relative hypotension (mean arterial pressure 20% below baseline, 45%), apnoea (71%) and haemoglobin desaturation (65%) at induction of anaesthesia, with a higher incidence of hypotension and apnoea in the P-CRI than P-TCI group (68% versus 21%, p = 0.008; 84% versus 58%, p = 0.0151, respectively). Propofol Cp was significantly higher at intubation in the P-CRI than P-TCI group (4.83 versus 3.5 μg mL–1, p < 0.0001), but decreased during infusion, while Cp remained steady in the P-TCI group. Total propofol administered was similar between groups.Conclusions and clinical relevanceBoth techniques provided a smooth induction of anaesthesia but caused a high incidence of side effects. Titration of anaesthesia with TCI caused fewer fluctuations in Cp and lower risk of hypotension compared with CRI.  相似文献   

18.
ObjectiveTo determine whether physiological, haematological, biochemical or electrolyte variables can predict severe haemorrhage in cats.Study designRandomized crossover study whereby each cat underwent mild and severe haemorrhage, with a 2 month period between events.AnimalsA group of six domestic cats aged 21 ± 1 months and weighing 4.9 ± 1.2 kg, mean ± standard deviation.MethodsCats were anaesthetized (buprenorphine, alfaxalone, isoflurane in oxygen at a fixed end-tidal concentration of 1.7%) before the haemorrhage event. In total, 34 variables were measured twice (prehaemorrhage and posthaemorrhage). The difference and percent change for each variable were compared between haemorrhage events (paired t test). Significant variables were placed into 13 different ratios (posthaemorrhage value of one variable divided by a posthaemorrhage value of a second variable) and compared (paired t test), and Cohen’s d (d) was calculated. Receiver operating characteristic curves were plotted and cut-off values for weak, moderate and strong indicators of severe haemorrhage were obtained.ResultsThe blood loss was 4.5 ± 1.1 mL kg–1 and 26.8 ± 5.5 mL kg–1 for mild and severe haemorrhage events, respectively. The most significant variables with large effect sizes were heart rate (HR), systolic arterial blood pressure (SAP), end-tidal carbon dioxide (Pe′CO2), serum albumin, haematocrit and actual bicarbonate ion concentration [HCO3(act)]. The most robust ratios were: 1) shock index (d = –2.8; HR:SAP); 2) HR:Pe′CO2 (d = –2.9); 3) serum albumin: haematocrit (d = 1.5); and 4) HR:HCO3(act) (d = –1.6). These ratios were included in the final proposed Cat Acute Bleeding Scoring System (CABSS).Conclusionsand clinical relevance Cats subjected to mild and severe haemorrhage demonstrated statistically and clinically relevant changes whereby four ratios could be created to make up the CABSS. The ratios detected and quantified the presence of severe haemorrhage in anaesthetized cats.  相似文献   

19.
ObjectiveTo determine the effect of intravenous vatinoxan administration on bradycardia, hypertension and level of anaesthesia induced by medetomidine–tiletamine–zolazepam in red deer (Cervus elaphus).Study design and animalsA total of 10 healthy red deer were included in a randomised, controlled, experimental, crossover study.MethodsDeer were administered a combination of 0.1 mg kg–1 medetomidine hydrochloride and 2.5 mg kg–1 tiletamine–zolazepam intramuscularly, followed by 0.1 mg kg–1 vatinoxan hydrochloride or equivalent volume of saline intravenously (IV) 35 minutes after anaesthetic induction. Heart rate (HR), mean arterial blood pressure (MAP), respiration rate (fR), end-tidal CO2 (Pe′CO2), arterial oxygen saturation (SpO2), rectal temperature (RT) and level of anaesthesia were assessed before saline/vatinoxan administration (baseline) and at intervals for 25 minutes thereafter. Differences within treatments (change from baseline) and between treatments were analysed with linear mixed effect models (p < 0.05).ResultsMaximal (81 ± 10 beats minute–1) HR occurred 90 seconds after vatinoxan injection and remained significantly above baseline (42 ± 4 beats minute–1) for 15 minutes. MAP significantly decreased from baseline (122 ± 10 mmHg) to a minimum MAP of 83 ± 6 mmHg 60 seconds after vatinoxan and remained below baseline until end of anaesthesia. HR remained unchanged from baseline (43 ± 5 beats minute–1) with the saline treatment, whereas MAP decreased significantly (112 ± 16 mmHg) from baseline after 20 minutes. Pe′CO2, fR and SpO2 showed no significant differences between treatments, whereas RT decreased significantly 25 minutes after vatinoxan. Level of anaesthesia was not significantly influenced by vatinoxan.Conclusions and clinical relevanceVatinoxan reversed hypertension and bradycardia induced by medetomidine without causing hypotension or affecting the level of anaesthesia in red deer. However, the effect on HR subsided 15 minutes after vatinoxan IV administration. Vatinoxan has the potential to reduce anaesthetic side effects in non-domestic ruminants immobilised with medetomidine–tiletamine–zolazepam.  相似文献   

20.
ObjectiveTo evaluate the performance of the Parasympathetic Tone Activity (PTA) index in assessing the nociception–antinociception balance in anaesthetized dogs undergoing castration.Study designProspective clinical study.AnimalsA group of 22 healthy client-owned dogs.MethodsThe dogs underwent general anaesthesia, with continuous monitoring of mean and instantaneous PTA (PTAm, PTAi), mean arterial pressure and heart rate. The values of these variables were divided according to the occurrence or absence of a haemodynamic reaction (HDR) at different time points: during surgical preparation, cutaneous incision, testicles extraction, cutaneous suture, after fentanyl administration, and after dexmedetomidine administration during recovery. Data were collected initially and 1, 3 and 5 minutes after each time point. The performance of the dynamic variation of the PTA (ΔPTA) to predict HDR or its resolution within 3 or 5 minutes was assessed using receiver operating characteristic (ROC) curves analysis. A p value < 0.05 was considered significant.ResultsDuring HDR, a decrease in PTAi (–34% and –31%) and PTAm (–26% and –30%) occurred at 3 (p = 0.005; p = 0.004) and 5 minutes (p = 0.001), respectively. After fentanyl administration, a decrease in haemodynamic variables occurred with a 45% increase in PTAi (p = 0.004). The ROC curve analysis of pooled data of the ΔPTAi for the prediction of HDR within 3 minutes indicated an area under the curve (AUC) of 0.70 (p = 0.0016) (threshold value: –16%). After fentanyl administration, the ROC curve analysis of ΔPTAi for the prediction of resolution of HDR within 3 minutes indicated an AUC of 0.69 (threshold value: +12%).Conclusions and clinical relevanceThe PTAi appears to be an interesting tool to assess the nociception–antinociception balance. However, further studies with a variety of clinical scenarios and anaesthesia protocols are required to conclude on its performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号