首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过研究不同磷肥种类和施用方式对新疆棉田棉花磷吸收、产量和土壤磷平衡的影响,明确适合新疆棉田的磷肥种类和施用方式。采用田间试验方法,设置6个处理:不施磷肥(CK)、重过磷酸钙基施(TSP-B)、磷酸一铵基施(MAP-B)、磷酸脲基施(UP-B)、磷酸一铵滴施(MAP-D)、磷酸脲滴施(UP-D),在棉花花蕾期、花铃期、吐絮期分别采集土壤及植物样品,测定土壤有效磷含量、棉花各器官吸磷量和籽棉产量,并计算磷肥利用效率和棉田磷平衡。结果表明:磷酸一铵和磷酸脲处理的土壤有效磷含量、植物吸磷量高于重过磷酸钙处理,并且吐絮期时,滴施处理(MAP-D、UP-D)土壤有效磷含量比基施处理(MAP-B、UP-B)增加了46.34%和105.12%。与不施磷肥和重过磷酸钙处理相比,磷酸一铵和磷酸脲处理的籽棉产量显著提高,且滴施处理略高于基施处理,磷酸一铵滴施处理的籽棉产量相较于不施磷肥和重过磷酸钙处理增加了41.38%和37.82%。磷酸一铵滴施的磷肥当季利用率和农学效率最高,分别为25.44%和19.59 kg·kg~(-1),且棉田磷素盈余最少,为-39.99 kg·hm~(-2)。综上,在新疆棉花种植体系中,磷酸一铵和磷酸脲提高土壤有效磷含量、籽棉产量、磷肥利用率和植物利用土壤磷素的效果优于重过磷酸钙,且滴施略优于基施。  相似文献   

2.
The need is pressing to investigate soil CO_2(carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon sequestration. A field experiment was conducted to compare the influences of drip irrigation(DI) and flood irrigation(FI) on soil organic carbon dynamics and the spatial and temporal variations in CO_2 emissions during the summer maize growing season in the North China Plain using the static closed chamber method. The mean CO_2 efflux over the growing season was larger under DI than that under FI. The cumulative CO_2 emissions at the field scale were 1959.10 and 1759.12 g/m~2 under DI and FI, respectively. The cumulative CO_2 emission on plant rows(OR) was larger than that between plant rows(BR) under FI, and the cumulative CO2 emission on the irrigation pipes(OP) was larger than that between irrigation pipes(BP) under DI. The cumulative CO_2 emissions of OP, BP and bare area(BA) under DI were larger than those of OR, BR and BA under FI, respectively. Additionally, DI promoted root respiration more effectively than FI did. The average proportion of root respiration contributing to the soil CO_2 emissions of OP under DI was larger than that of OR under FI. A general conclusion drawn from this study is that soil CO_2 emission was significantly influenced by the soil water content, soil temperature and air temperature under both DI and FI. Larger concentrations of dissolved organic carbon(DOC), microbial biomass carbon(MBC) and total organic carbon(TOC) were observed under FI than those under DI. The observed high concentrations(DOC, MBC, and TOC) under FI might be resulted from the irrigation-associated soil saturation that in turn inhibited microbial activity and lowered decomposition rate of soil organic matter. However, DI increased the soil organic matter quality(the ratio of MBC to TOC) at the depth of 10–20 cm compared with FI. Our results suggest that the transformation from conventional FI to integrated DI can increase the CO2 emissions and DI needs to be combined with other management practices to reduce the CO_2 emissions from summer maize fields in the North China Plain.  相似文献   

3.
Jun ZHANG 《干旱区科学》2019,11(3):419-430
Drip irrigation can produce high rice yields with significant water savings; therefore, it is widely used in arid area water-scarce northern China. However, high-frequency irrigation of drip irrigation with low temperature well water leads to low root zone temperature and significantly reduce the rice yield compared to normal temperature water irrigated rice, for example, reservoir water. The main purpose of this paper is to investigate the effects of low soil temperature on the yield reduction of drip irrigated rice in the spike differentiation stage. The experiment set the soil temperatures at 18°C, 24°C and 30°C under two irrigation methods(flood and drip irrigation), respectively. The results showed that, at the 30°C soil temperature, drip irrigation increased total root length by 53% but reduced root water conductivity by 9% compared with flood irrigation. Drip irrigation also increased leaf abscisic acid and proline concentrations by 13% and 5%, respectively. These results indicated that drip irrigated rice was under mild water stress. In the 18°C soil temperature, drip irrigation reduced hydraulic conductivity by 58%, leaf water potential by 40% and leaf net photosynthesis by 25% compared with flood irrigation. The starch concentration in male gametes was also 30% less in the drip irrigation treatment than in the flood irrigation treatment at soil temperature 18°C. Therefore, the main reason for the yield reduction of drip irrigated rice was that the low temperature aggravates the physiological drought of rice and leads to the decrease of starch content in male gametes and low pollination fertilization rate. Low temperature aggravates physiological water deficit in drip irrigated rice and leads to lower starch content in male gametes and low pollination fertilization rate, which is the main reason for the reduced yield of drip irrigated rice. Overall, the results indicated that the low soil temperatures aggravated the water stress that rice was under in the drip irrigated environment, causing declines both in the starch content of male gametes and in pollination rate. Low temperature will ultimately affect the rice yield under drip irrigation.  相似文献   

4.
以新疆膜下滴灌棉田为试材,研究氮磷减量与液体有机肥配施对膜下滴灌棉田土壤养分的影响。试验设11个处理:(1)常规施肥(NP);(2)80%常规施肥(80%NP);(3)80%常规施肥+低量氨基酸有机肥(80%NP+LAA);(4)80%常规施肥+中量氨基酸有机肥(80%NP+MAA);(5)80%常规施肥+高量氨基酸有机肥(80%NP+HAA);(6)80%常规施肥+低量黄腐酸有机肥(80%NP+LFA);(7)80%常规施肥+中量黄腐酸有机肥(80%NP+MFA);(8)80%常规施肥+高量黄腐酸有机肥(80%NP+HFA);(9)80%常规施肥+低量沼液有机肥(80%NP+LBS);(10)80%常规施肥+中量沼液有机肥(80%NP+MBS);(11)80%常规施肥+高量沼液有机肥(80%NP+HBS);分别在蕾期、花期、成熟期采集0~20、20~40 cm土层土壤,测定土壤pH值、有机质、氮、磷、钾等有效养分含量。研究结果表明:(1)蕾期时,80%常规施肥配施高量黄腐酸、沼液有机肥显著降低了0~20 cm土层土壤pH值,并对提高土壤速效氮、速效磷含量效果最好。(2)花期时,80%常规施肥配施高量沼液有机肥对提高0~20 cm土层土壤有机质、速效磷含量效果最好。(3)成熟期时,80%常规施肥配施高量沼液有机肥对降低0~20 cm土层土壤pH值、提高土壤有机质含量效果最好。综上所述,新疆滴灌棉田应用80%常规施肥配施高量沼液有机肥效果最好,是新疆滴灌棉田提高土壤肥力和肥料利用率的有效途径。  相似文献   

5.
基于棉田膜下滴灌技术的管网设施,开展了随水滴施高水溶性碳素肥料,以提高棉田冠层CO2浓度及其效应研究。通过设置不同的碳氮施肥组合处理,对棉花冠层CO2浓度、光合速率及产量构成等进行测定分析。结果表明:随水滴施高水溶性碳素肥料(水不溶物〈1%)能有效提高棉田冠层CO2浓度;在不同的碳氮施肥处理中,盛花期冠层CO2浓度随碳...  相似文献   

6.
With rising concern about current irrigation and fertilizer NPK management, the present study was conducted to evaluate the effect of sources and methods of fertilizer application on nutrient distribution, uptake, recovery and fruit yield of tomato grown in a sandy soil. Equal amounts of NPK were applied in solid form or through fertigation at levels of 0%, 50%, 75% and 100% with the remainder 100%, 50% and 25% applied as solid fertilizers to the soil. Available NO3 ?-N and K were confined to the root zone of tomato in 75% and 100% NPK fertigation levels, while they moved beyond the root zone when they applied in two equal splits as solid fertilizers with drip (0% fertigation) and furrow irrigation. The mobility of P was greater in the root zone following its application through fertigation compared to a solid application as super phosphate. Drip irrigation showed significantly higher absolute growth rate (AGR), total dry weight (TDW) and leaf area index (LAI) of tomato over furrow irrigation. Moreover, tomato plants were able to utilize applied nutrients more efficiently in fertigation system than with conventional solid fertilizer application. Highest AGR, TDW and LAI were recorded when nutrients were applied to 100% by drip fertigation. The fruit yield of tomato was higher with drip irrigation (58.62 t ha?1) than with furrow irrigation, (47.37 t ha?1). Maximum fruit yield was recorded with 100% NPK fertigation (74.87 t ha?1) and was associated with a higher number of fruits per plant and a bigger fruit size than the solid applied fertilizers under both drip and furrow irrigation. On average, tomato accumulated more NPK across the fertigation levels than with drip and furrow irrigation. Similarly, the more controlled application of nutrients in fertigation treatments improved NPK recovery and fertilizer use efficiency (FUE) and resulted in lesser leaching of NO3 ?-N and K to deeper soil layers.  相似文献   

7.
地表-地下接力滴灌是集膜下滴灌和地下滴灌优点于一体的新型节水控盐技术,但目前针对该技术应用效果的研究尚少。针对如何对地表-地下接力式滴灌中的地表滴灌和地下滴灌进行水量分配效果最优这一问题,设置100%地表滴灌(W1)、75%地表滴灌+25%地下滴灌(W2)、50%地表滴灌+50%地下滴灌(W3)、25%地表滴灌+75%地下滴灌(W4)、100%地下滴灌(W5)共计5个处理,比较了不同水量分配下的地表-地下接力式滴灌与单一地表滴灌、单一地下滴灌对盐碱棉田土壤水盐分布和棉花产量的影响。结果表明:(1)W3处理根区土壤含水量分布最均匀,干燥区域面积最小。(2)W4处理窄行区域淋洗范围最大,脱盐效果最显著。(3)W3处理棉花吐絮期总干物质量和籽棉产量最大,分别为112.66 g和9 147 kg·hm-2;吐絮期总干物质量比W1和W5处理分别提高11.3%和19.1%,籽棉产量比W1和W5处理分别提高14.1%和11.9%。地表-地下接力式滴灌处理下土壤含水量得以显著改善,在对土壤盐分进行淋洗的过程中表现出接力效应,淋洗面积和淋洗效果均有所增大。相比于单一地表滴灌和单一地...  相似文献   

8.
起垄沟播和常规平播下滴灌棉田土壤水盐的运移   总被引:1,自引:0,他引:1  
为明确滴灌条件下植棉方式对土壤水盐运移的影响,采用田间调查与室内分析相结合的方法,在滨海重度盐碱地开展了起垄沟播和常规平播植棉方式下的水盐运移试验,调查了滴灌前后两种植棉方式不同点位及不同土壤深度的土壤水分、盐分和土壤溶液电导率等指标,分析不同植棉方式土壤水分、盐分和土壤溶液电导率的时空分布特征。结果表明:滴灌条件下起垄沟播的水分入渗深度和盐分淋洗深度均明显大于常规平播植棉方式,起垄沟播植棉膜下(0~20 cm)土壤溶液电导率明显低于常规平播植棉;滴灌对两种种植方式膜外土壤水分和盐分运移未产生明显影响。起垄沟播联合滴灌技术更有利于为棉花生长的水盐环境。研究结果可为盐碱地植棉提供理论参考和实践依据。  相似文献   

9.
磁化水滴灌对棉田土壤脱盐效果及棉花产量的影响   总被引:2,自引:0,他引:2  
以棉花为对象进行磁化水滴灌试验,通过田间小区试验,设置一次磁化、二次磁化和CK处理,研究不同磁场强度处理水灌溉对棉田土壤脱盐效果以及对棉花生长状况和增产效果的影响,旨在提出一种改良土壤盐渍化的新技术。结果表明:滴灌条件下磁化水可以有效增强对土壤全盐含量、Cl~-和Na~+的淋洗作用,二次磁化和一次磁化处理的脱盐作用显著大于对照处理,且二次磁化中3 600~2 000 m T效果最佳,二次磁化和一次磁化处理全盐含量分别降低了25.5%和19.5%,CK降低了10.46%;磁化水灌溉可以提高棉花的生物量,缓解盐分对棉花的伤害,提高棉花产量,增产率达9.61%~15.32%。  相似文献   

10.
农田土壤有机碳的影响因素及其研究   总被引:11,自引:0,他引:11  
大气温室效应气体N2O、CO2增多与全球气温变暖有着密切的关系,由于农业活动导致的碳排放量占碳总排放量的25%,因此研究农田土壤有机碳的影响因素,对增加农田碳素固定和保持,减少由于不合理的土地使用而导致大量CO2的排放,维持农业和生物圈生态系统的可持续发展有着重要意义。本文分析了温度、水分、土地开垦、休闲和撩荒、耕翻、轮作、秸秆还田、肥料管理等对土壤有机碳的影响。减少翻耕次数,增加秸秆还田,优化氮、磷、钾等养分用量及配比,是提高农田,尤其是旱地农田土壤有机碳含量,培肥、改良土壤的重要途径。  相似文献   

11.
通过设置在陇中黄土高原半干旱雨养农业区15年的不同保护性耕作措施长期定位试验,研究了传统耕作(T)、免耕(NT)、免耕结合秸秆覆盖(NTS)、传统耕作结合秸秆还田(TS)4种不同耕作措施下不同土层的土壤总有机碳、土壤活性有机碳、土壤微生物量、碳库管理指数和土壤蔗糖酶、淀粉酶、纤维素酶和过氧化物酶等4种参与碳循环土壤酶,并分析了土壤有机碳及其活性碳组分与土壤酶之间的相关关系。结果表明:0~30 cm土层,NTS处理可显著提高土壤有机碳、土壤活性有机碳、土壤微生物量碳及碳库管理指数,分别较T处理增加了16.3%、28.26%、41.88%、37.04%,NT、TS处理较T处理各指标也均有不同程度提高;在0~30 cm土层,NTS、TS、NT处理与T处理相比,蔗糖酶分别提高了33.84%、21.59%、25.15%,淀粉酶活性分别提高了20.90%、13.43%、12.69%,纤维素酶活性分别提高了39.13%、17.39%、4.34%,过氧化物酶活性分别提高了7.81%、2.08%、3.65%;土壤蔗糖酶、淀粉酶、纤维素酶、过氧化物酶与各形态有机碳及碳库管理指数均表现为显著或极显著正相关关系;蔗糖酶活性增加对有机碳积累作用最显著,有助于土壤总有机碳、活性有机碳、微生物量碳含量提高,土壤纤维素酶对土壤总有机碳和活性有机碳含量的增加有促进作用,过氧化物酶有利于总有机碳的积累。免耕结合秸秆覆盖是适宜该地区农田生态系统健康稳定发展,减少碳库损失的重要途径。  相似文献   

12.
Tong HENG 《干旱区科学》2018,10(6):932-945
Developing effective irrigation and drainage strategies to improve the quality of saline-alkali soil is vital for enhancing agricultural production and increasing economic returns. In this study, we explored how irrigation and drainage modes (flood irrigation, drip irrigation, and sub-surface pipe drainage under drip irrigation) improve the saline-alkali soil in Xinjiang, China. We aimed to study the transport characteristics of soil water and salt under different irrigation and drainage modes, and analyze the effects of the combination of irrigation and drainage on soil salt leaching, as well as its impacts on the growth of oil sunflower. Our results show that sub-surface pipe drainage under drip irrigation significantly reduced the soil salt content and soil water content at the 0-200 cm soil depth. Under sub-surface pipe drainage combined with drip irrigation, the mean soil salt content was reduced to below 10 g/kg after the second irrigation, and the soil salt content decreased as sub-surface pipe distance decreased. The mean soil salt content of flood irrigation exceeded 25 g/kg, and the mean soil desalination efficiency was 3.28%, which was lower than that of drip irrigation. The mean soil desalination rate under drip irrigation and sub-surface pipe drainage under drip irrigation was 19.30% and 58.12%, respectively. After sub-surface drainage regulation under drip irrigation, the germination percentage of oil sunflower seedlings was increased to more than 50%, which further confirmed that combined drip irrigation and sub-surface pipe drainage is very effective in improving the quality of saline-alkali soil and increasing the productivity of agricultural crops.  相似文献   

13.
为明确不同冬灌制度的应用效果,以南疆膜下滴灌棉田为研究对象,选取每年冬灌处理(CK)、不冬灌处理(H1)及隔年冬灌处理(H2)3种冬灌制度,结合高通量测序技术对冬灌后土壤的理化性质、生物学性质以及微生物群落组成进行测定与分析。结果表明:(1)各处理间0~20 cm土层土壤总盐含量无显著差异,与CK相比,H1和H2处理显著降低了脲酶(0.96%~1.35%)和转化酶活性(1.17%)以及微生物量氮含量(4.21%~7.03%),但H2处理显著提高了土壤有机质(14.30%)、全氮(14.29%)、全磷(4.55%)和全钾(7.40%)含量;H1处理显著降低了土壤有机质(6.03%)、全磷(12.5%)和水分(23.08%)含量,提高了微生物量碳氮比(7.37%)。(2)不同处理下细菌群落的丰度和多样性以及真菌群落的丰度无显著差异,但与CK相比,H1和H2处理显著提高了真菌的辛普森指数(4.12%~ 4.55%)。此外,H1较CK处理提高了细菌放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和真菌担子菌门(Basidiomycota)的相对丰度,H2较CK处理提高了细菌变形菌门(Proteobacteria)、芽单胞菌门(Gemmatimonadetes)和真菌被孢霉门(Mortierellomycota)的相对丰度。(3)相关性分析结果表明细菌的群落结构主要受微生物量碳含量的影响,真菌的群落结构和多样性分别受转化酶和脲酶活性的影响。在无法保证每年冬灌用水的情况下,隔年冬灌更有利于保障膜下滴灌棉田的土壤耕地质量。  相似文献   

14.
为探明膜下滴灌条件下滴水流量对棉花根系分布的影响,采用田间定位试验,设置3组滴水流量,分别为1.69 L·h-1(W169)、3.46 L·h-1(W346)和6.33 L·h-1(W633),分析膜下滴灌土壤水吸力对棉花根系空间分布特征的影响。结果表明:滴水流量越大,膜外裸地和膜内土壤的基质吸力越小,边行棉花根系吸水受到的胁迫程度也越小,W633处理膜下根区土壤水吸力分布均匀且适合棉花生长,棉花根长密度水平分布不论是初期还是后期均呈双峰抛物线分布;棉花根重密度呈现出相同的变化规律,内、边行棉花根重密度在花期、铃期、吐絮期的差值分别为42.26、-0.22、97.40 g·m-3。当滴水流量越小时,膜外裸地的基质吸力大于膜内土壤的基质吸力,致使边行棉花的根系吸水受到较大胁迫,W169处理棉花根长密度水平分布由生育初期的双峰抛物线分布变为后期的单峰抛物线分布;内、边行棉花根重密度在花期、铃期、吐絮期的差值分别为299.70、304.86、369.84 g·m-3。表明随着滴水流量的增加,膜下滴灌行间棉花根系生长更加均匀,研究结果可为棉花膜下滴灌系统设计提供技术参考。  相似文献   

15.
不同施肥制度对作物产量及土壤磷钾肥力的影响   总被引:4,自引:0,他引:4  
在潮棕壤上进行了19 a的定位试验,研究了不同施肥制度对作物产量和土壤磷钾肥力变化的影响。结果表明,单施氮肥能显著提高玉米产量,施钾肥能显著提高大豆籽实产量,其效果优于磷肥。循环猪圈肥的施用能在一定程度上增加作物的产量,但不能达到显著水平。氮磷钾配合循环猪圈肥不仅能增加作物产量而且有很好的稳产作用。未施磷肥处理,土壤速效磷含量呈迅速下降趋势,随种植时间推移,土壤速效磷含量下降速率趋缓。施用磷肥,土壤速效磷含量均有显著增加。不施钾肥处理加剧了土壤钾素的消耗,土壤速效钾和缓效钾浓度下降明显;氮磷钾肥并施处理基本能维持土壤钾初始水平;同时施用氮磷钾肥和循环堆肥土壤速效钾和缓效钾浓度均有所增加。  相似文献   

16.
晋西山地果园集流节水保墒栽培技术研究   总被引:1,自引:0,他引:1  
通过山地果园集流节水保墒栽培技术定位观测试验表明:山地果园采用集流设施将汛期超渗产流蓄贮,既可减少果园水土流失,又能满足果树旱季用水,从而提高果树生产水平;采用穴贮肥水,叶面追肥,膜孔滴灌等节水措施,可以更有效地利用天然降水,加快秸秆沤制速度,提高土壤有机质含量;采用塑膜覆盖,覆草等措施可有效减少地面蒸发,调节地表温度,增加土壤有机质,该套用水模式具有简便,实用,经济效益高的特点。  相似文献   

17.
Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation.  相似文献   

18.
In arid and semi-arid regions, freshwater scarcity and high water salinity are serious and chronic problems for crop production and sustainable agriculture development. We conducted a field experiment to evaluate the effect of irrigation water salinity and nitrogen(N) application rate on soil salinity and cotton yield under drip irrigation during the 2011 and 2012 growing seasons. The experimental design was a 3×4 factorial with three irrigation water salinity levels(0.35, 4.61 and 8.04 dS/m) and four N application rates(0, 240, 360 and 480 kg N/hm2). Results showed that soil water content increased as the salinity of the irrigation water increased, but decreased as the N application rate increased. Soil salinity increased as the salinity of the irrigation water increased. Specifically, soil salinity measured in 1:5 soil:water extracts was 218% higher in the 4.61 dS/m treatment and 347% higher in the 8.04 dS/m treatment than in the 0.35 dS/m treatment. Nitrogen fertilizer application had relatively little effect on soil salinity, increasing salinity by only 3%–9% compared with the unfertilized treatment. Cotton biomass, cotton yield and evapotranspiration(ET) decreased significantly in both years as the salinity of irrigation water increased, and increased as the N application rate increased regardless of irrigation water salinity; however, the positive effects of N application were reduced when the salinity of the irrigation water was 8.04 dS/m. Water use efficiency(WUE) was significantly higher by 11% in the 0.35 dS/m treatment than in the 8.04 dS/m treatment. There was no significant difference in WUE between the 0.35 dS/m treatment and the 4.61 dS/m treatment. The WUE was also significantly affected by the N application rate. The WUE was highest in the 480 kg N/hm2 treatment, being 31% higher than that in the 0 kg N/hm2 treatment and 12% higher than that in the 240 kg N/hm2 treatment. There was no significant difference between the 360 and 480 kg N/hm2 treatments. The N use efficien  相似文献   

19.
膜下滴灌棉花水肥耦合效应研究初报   总被引:17,自引:0,他引:17  
对膜下滴灌棉花的水肥耦合效应进行了田间试验。结果表明 :在灌水量不足、农业资源未能充分发挥条件下 ,棉花产量与灌水量及耗水量呈线性关系 ;膜下滴灌棉花的水肥耦合效应明显 ,水肥都具有增产效果 ,但过多的水肥投入并不有利于棉花增产。最后对进一步完善膜下滴灌棉花水肥耦合试验提出了建议。  相似文献   

20.
膜下滴灌灌水频率对土壤水盐运移及棉花产量的影响   总被引:9,自引:1,他引:8  
通过棉花膜下滴灌大田试验,研究了灌水频率对土壤水盐运移和分布规律的影响,并对不同灌水频率的保墒、控盐、增产效果进行了评价.试验结果表明:在灌溉水质为淡水且定额为375 mm时,低频(10 d)和适频(7 d)灌溉下膜内0~60 cm土层的含水量适宜,低频灌溉的含水量最高,而高频(3 d)灌溉下各土层在花铃期处于轻度干旱...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号