首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity patterns, the ecological structure and the typical species of the orthopteran assemblage in the Dadia reserve are investigated. The reserve was designed to protect the black vulture (Aegypius monachus) and other raptors. A total of 39 orthopteran species were found, including Paranocarodes chopardi, a pamphagid species with very restricted distribution. All species can be represented in a network of six complementary habitats, including open oak woodlands, agricultural fields separated with hedges, humid grasslands, as well as serpentine grasslands. The buffer zone of the reserve is far more important for Orthoptera conservation than the core areas, which host most of the black vulture nests. Management focusing on raptors is in general compatible with conservation of Orthoptera. We suggest the maintenance of forest openings in the buffer zone, the maintenance of forest heterogeneity, the enhancement of periodical livestock grazing, and the use of nine indicator species and Paranocarodes chopardi in the reserve monitoring program.  相似文献   

2.
3.
Both disturbance history and previous land use influence present-day vegetation and soils. These influences can have important implications for conservation of plant communities if former disturbance and land use change species abundances, increase colonization of nonnative plant species or if they alter soil characteristics in ways that make them less suitable for species of conservation interest. We compared the plant species composition, the proportion of native and nonnative plant species, and soil biogeochemical characteristics across seven dominant land use and vegetation cover types on the outwash sandplain of Martha’s Vineyard that differed in previous soil tillage, dominant overstory vegetation and history of recent prescribed fire. The outwash sandplain supports many native plant species adapted to dry, low nutrient conditions and maintenance of native species is a management concern. There was broad overlap in the plant species composition among pine (Pinus resinosa, P. strobus) plantations on untilled soils, pine plantations on formerly tilled soils, scrub oak (Quercus ilicifolia) shrublands, tree oak (Q. velutina, Q. alba) woodlands, burned tree oak woodlands, and sandplain grasslands. All of these land cover categories contained few nonnative species. In contrast, agricultural grasslands had high richness and cover of nonnative plants. Soil characteristics were also similar among all of the woodland, shrubland and grassland land cover categories, but soils in agricultural grasslands had higher pH, extractable Ca2+ and Mg2+ in mineral soils and higher rates of net nitrification. The similarity of soils and significant overlap in vegetation across pine plantations, scrub oak shrublands, oak woodlands and sandplain grasslands suggests that the history of land use, current vegetation and soil characteristics do not pose a major barrier to management strategies that would involve conversion among any of these vegetation types. The current presence of high cover of nonnative species and nutrient-enriched soils in agricultural grasslands, however, may pose a barrier to expansion of sandplain grasslands or shrublands on these former agricultural lands if native species are not able to outcompete nonnative species in these anthropogenically-enriched sites.  相似文献   

4.
With recent emphasis on sustainable agriculture, conservation of native biota within agricultural systems has become a priority. Remnant trees have been hypothesized to increase biological diversity in agro-ecosystems. We investigated how remnant Oregon white oak (Quercus garryana) trees contribute to conserving bird diversity in the agro-ecosystem of the Willamette Valley, Oregon, USA. We compared bird use of isolated oak trees in three landscape contexts - croplands, pastures, and oak savanna reserves - and ranked the relative importance of four factors thought to influence bird use of individual trees: (i) tree architecture; (ii) tree isolation; (iii) tree cover in the surrounding landscape; and (iv) landscape context, defined as the surrounding land use. We evaluated species-specific responses and four community-level responses: (i) total species richness; (ii) richness of oak savanna-associates; (iii) tree forager richness; and (iv) aerial and ground forager richness. We documented 47 species using remnant oaks, including 16 species typically occurring in oak savanna. Surprisingly, landscape context was unimportant in predicting frequency of use of individual trees. Tree architecture, in particular tree size, and tree cover in the surrounding landscape were the best predictors of bird use of remnant trees. Our findings demonstrate that individual remnant trees contribute to landscape-level conservation of bird diversity, acting as keystone habitat structures by providing critical resources for species that could not persist in otherwise treeless agricultural fields. Because remnant trees are rarely retained in contemporary agricultural landscapes in the United States, retention of existing trees and recruitment of replacement trees will contribute to regional conservation goals.  相似文献   

5.
In many cases, the designation of Protected Areas (PAs) is not based on biological information, particularly in tropical regions where such information is generally lacking. Thus it is unclear whether tropical PAs are well-placed for conserving biodiversity currently, or under future climate change. We used reserve-design software (‘Zonation’) to investigate current and future conservation value of PAs of Thailand (N = 187 PAs, covering ∼20% of Thailand) in relation to forest-cover and butterfly diversity. Currently, PAs are about 2 °C cooler than non-PAs because PAs tend to occur at higher elevation (66% of land above 1000 m is protected compared with only 6% below 250 m). Temperature is predicted to increase in Thailand in future, but PAs are predicted to remain ∼2 °C cooler than non-PAs in future. We obtained modelled distribution data for 161 butterfly species (∼12% of national butterfly fauna), and used Zonation to rank areas (∼1 km2 grid resolution) based on species richness, complementarity, and forest cover. The conservation value of PAs was approximately twice that of non-PA areas, although many highly-ranked areas are not currently protected. The species richness of PAs was projected to decline by ∼30% in future, but the relative conservation rankings of individual PAs were projected to change very little. The preponderance of PAs in montane regions makes them well-placed to support forest species shifting from areas at lower elevation that become climatically unsuitable in future. By contrast, the conservation value of low-elevation PAs may decline in future if climate conditions become unsuitable for species.  相似文献   

6.
The influence of environmental factors on species richness and species composition may be manifested at different spatial levels. Exploring these relationships is important to understand at which spatial scales certain species and organism groups become sensitive to fragmentation and changes in habitat quality. At different spatial scales we evaluated the potential influence of 45 factors (multiple regression, PCA) on saproxylic oak beetles in 21 smaller broadleaved Swedish forests of conservation importance (woodland key habitats, WKH). Local amount of dead wood in forests is often assumed to be important, but two landscape variables, area of oak dominated woodland key habitats within 1 km of sites and regional amount of dead oak wood, were the main (and strong) predictors of variation in local species richness of oak beetles. The result was similar for red-listed beetles associated with oak. Species composition of the beetles was also best predicted by area of oak woodland key habitat within 1 km, with canopy closure as the second predictor. Despite suitable local quality of the woodland key habitats, the density of such habitat patches may in many areas be too low for long-term protection of saproxylic beetles associated with broadleaved temperate forests. Landscapes with many clustered woodland key habitats rich in oak should have high priority for conservation of saproxylic oak beetles.  相似文献   

7.
We examined the influence of habitat characteristics at the microhabitat, macrohabitat, and landscape spatial scales on small mammals occurring in 12 forest patches within four agricultural landscapes of Prince Edward Island (Canada). Landscape features were important determinants of small mammal variables at all levels, but especially at the community level, whereas microhabitat characteristics tended to influence small mammals at the population level. Macrohabitat characteristics had only minor effects on small mammals occurring in our study sites. Species richness was most strongly influenced by patch area, reaching a threshold at forest patches of roughly 8-10 ha. The proportions of both forest and hedgerow cover within 400 m from the study site were also significant determinants of small mammals species diversity, possibly reflecting their ability to perceive suitable habitats, forage in areas outside the forest patches, and/or disperse in agricultural landscapes. At least one small mammal species (Napaeozapus insignis) benefitted from the presence of agricultural fields at distances up to 1000 m. Tamias striatus benefitted from the presence of hedgerow cover within 400 m from forest patches, possibly allowing them to move between forest patches. Clearly, the maintenance of forest patches of 8-10 ha and of forest cover within 400 m from them is fundamental for the conservation of small mammals inhabiting agricultural landscapes on the Island. Conservation strategies should also consider the establishment of more effective regulations to prevent and/or reduce hedgerow removal on Prince Edward Island.  相似文献   

8.
In cultural landscapes there are often negative biodiversity consequences of agricultural abandonment and subsequent scrub and forest encroachment, due to homogenization and the loss of early-successional habitats. The common forestry practice of removing understory vegetation to prevent fire hazard (fuel management) probably has the side-effect of ameliorating these consequences, but it is uncertain whether it effectively restores habitats for early-successional species. Here we examine the influence of time since fuel management and management frequency on butterfly assemblages, using a chronosequence of cork oak (Quercus suber) stands spanning about 70 years. Overall species richness increased immediately after management and abundances peaked about 2–3 years later, while both declined thereafter for about 10–20 years to pre-disturbance levels. Richness and abundances were also much higher in recurrently managed stands. Most life history groups showed successional trends similar to the overall species richness and abundances, though consistent positive effects of fuel management were only observed for species with univoltine life cycle, herbaceous layer feeding, larval overwintering, and intermediate body size. Individual species were largely associated with recent and recurrent management, though a few specialists occurred most often in undisturbed stands. These findings suggest that fuel management at <10 years intervals is strongly positive for butterfly assemblages in landscapes under land abandonment. However, to maintain the overall forest biodiversity it is critical that patches of undisturbed habitat are also retained at the landscape scale.  相似文献   

9.
No-take reserves constitute one tool to improve conservation of marine ecosystems, yet criteria for their placement, size, and arrangement remain uncertain. Representation of biodiversity is necessary in reserve planning, but will ultimately fail for conservation unless factors affecting species’ persistence are also incorporated. This study presents an empirical example of the divergent relationships among multiple metrics used to quantify a site’s conservation value, including those that address representation (habitat type, species richness, species diversity), and others that address ecological processes and viability (density and reproductive capacity of a keystone species, in this case, the black chiton, Katharina tunicata). We characterized 10 rocky intertidal sites across two habitats in Barkley Sound, British Columbia, Canada, according to these site metrics. High-richness and high-production sites for K. tunicata were present in both habitat types, but high richness and high-production sites did not overlap. Across sites, species richness ranged from 29 to 46, and adult K. tunicata varied from 6 to 22 individuals m−2. Adult density was negatively correlated with species richness, a pattern that likely occurs due to post-recruitment growth and survival because no correlation was evident with non-reproductive juveniles. Sites with high adult density also contributed disproportionately greater potential reproductive output (PRO), defined by total gonad mass. PRO varied by a factor of five across sites and was also negatively correlated with species richness. Compromise or relative weighting would be necessary to select valuable sites for conservation because of inherent contradictions among some reserve selection criteria. We suspect that this inconsistency among site metrics will occur more generally in other ecosystems and emphasize the importance of population viability of strongly interacting species.  相似文献   

10.
The use of shortcuts is widespread in conservation practices to help ensure biodiversity conservation with minimal expenditures. An umbrella species is a species whose conservation confers protection to a large number of naturally co-occurring species. The aim of this study is to test the usefulness of the umbrella species concept for conservation management. As our umbrella, we chose a wide-ranging and flagship species, the European otter (Lutra lutra). Otters are widely distributed predators with numerous genera and species, so otter occurrence could virtually be used as “umbrella” in every freshwater habitat. To test the usefulness of the concept, we investigated whether an umbrella species might protect other species in the long term. We compared (1) bird and amphibian species richness in 1993 and in 2003 on nine sites where otters were monitored for 20 years, and (2) bird, amphibian and mollusc species richness between the previous sites and nine bio-equivalent sites where no otter occurrence has been detected for 20 years. The study was carried out for two spatial scales: total otter home range and core areas (most intensely exploited areas). Our results show that species richness was significantly different between years on sites inhabited by otters. However, we showed that biodiversity did not differ between pairs of bio-equivalent sites inhabited or deserted by otters, whatever the estimation method. Our results cast doubt on the validity of umbrella species use as an objective tool for conservation. However, the keystone functional role that otters could play in ecosystems might be an interesting way to reconsider the purpose of the umbrella species concept.  相似文献   

11.
In European forests, plants, fungi and invertebrates have been proposed as indicator species for assessing conservation value at the stand scale. To cover larger spatial scales, wide-ranging vertebrates could be added to that set of species. For resident forest birds, we (1) explored whether the occurrence of some species could be used to indicate high species richness and abundances, and (2) compared the results among four regions in the Baltic Sea drainage basin with a common species pool but different forest management intensities and varying proportions of deciduous and coniferous trees (south-central and southern Sweden, south-central Lithuania and northeastern Poland). Assemblages of deciduous forest birds in 100-ha landscape units were generally nested, suggesting that species richness within that group may be predicted based on the presence of a few species. Birds of coniferous forests, however, showed poorer conformity to nestedness in Sweden. Specialised species such as the middle spotted (Dendrocopos medius) and lesser spotted woodpeckers (D. minor) in deciduous forest and the three-toed woodpecker (Picoides tridactylus) in coniferous forest generally figured among the best indicators. In deciduous forest, there was high cross-regional consistency in the identity of the best indicators. Moreover, the sites where the best indicator was present also harboured higher relative abundances of most background species. For coniferous forest, however, such a relationship was not found. We conclude that an indicator species approach may be useful for resident birds of deciduous forests in hemiboreal Europe, emphasising that it should constitute one of many complementary tools for conservation management.  相似文献   

12.
Afforestation often causes direct habitat losses for farmland birds of conservation concern, but it is uncertain whether negative effects also extend significantly into adjacent open land. Information is thus required on how these species react to wooded edges, and how their responses are affected by edge and landscape characteristics. These issues were examined in Mediterranean arable farmland, using bird counts at 0, 100, 200, 300 and >300 m from oak, pine and eucalyptus edges, embedded in landscapes with variable amounts and spatial configurations of forest plantations. Bird diversity declined away from edges, including that of woodland, farmland and ground-nesting birds. Positive edge responses were also found for overall and woodland bird abundances, and for five of the nine most widespread and abundant species (Galerida larks, stonechat, linnet, goldfinch and corn bunting). Strong negative edge effects were only recorded for steppe birds, with reduced abundances near edges of calandra larks and short-toed larks, but not of little bustards and tawny pipits. Edge contrast affected the magnitude of edge effects, with a tendency for stronger responses to old and tall eucalyptus plantations (hard edges) than to young and short oak plantations (soft edges). There were also species-specific interactions between edge and fragmentation effects, with positive edge responses tending to be strongest in less fragmented landscapes, whereas steppe birds tended to increase faster away from edges and to reach the highest species richness and abundances in large arable patches. Results suggest that forest plantations may increase overall bird diversity and abundance in adjacent farmland, at the expenses of steppe birds of conservation concern. Clustering forest plantations in a few large patches and thus reducing the density of wooded edges at the landscape-scale might reduce such negative impacts.  相似文献   

13.
滇东喀斯特地区季节性石漠化与植被盖度的动态关系研究   总被引:1,自引:0,他引:1  
对滇东喀斯特石漠化地区12种植被类型进行了石漠化率和植被盖度的季相观测,研究结果显示:封育模式草本阶段(≤3a)、草灌阶段(≤5a)和灌草阶段(≤10a),麻栎纯林(20~30a),混交模式的华山松+麻栎(20~30a和≥30a)、麻栎+大叶栎(≥30a)7种模式的季节性石漠化率与植被盖度此消彼长的关系同时同步发生,关系曲线为"V"字型。封育乔灌阶段(10~20a),华山松纯林(20~30a)和华山松+刺栎(≥30a)混交林的消长关系同时同步出现,前两种模式为"N"字线型,华山松+刺栎为台地线型。封育乔木(20~30a)阶段为消长关系同时同步出现的"N"字线型,滇青冈+刺栎(≥30a)模式的石漠化率与盖度无消长关系。除个别模式由于林龄、树种、配置方式的差异外,其余模式均符合季节性石漠化率与植被盖度的消长关系,线型略有不同。  相似文献   

14.
Quantifying the degree to which natural or protected areas are representative of a specified baseline provides critical information to conservation prioritization schemes. We report results on southeastern Vancouver Island, Canada, where we compared environmental conditions represented across the entire landscape, in oak savanna habitats prior to European settlement (<1850), and in both protected and unprotected oak savannas in the present-day. In this region, oak savannas represent a rare habitat type, harboring many threatened species. Before European settlement, oak savannas occurred in a distinctly different subset of environmental conditions than they do today. Compared to the entire landscape, oak savannas were historically found predominantly in warm, dry, flat, and low-lying areas, but habitat destruction has left oak savannas in largely the exact opposite set of conditions at present. Thus, the range of conditions in both protected and unprotected oak savannas at present are highly unrepresentative of historical conditions. It appears that fire management by indigenous peoples maintained oak savannas historically across large areas of flat low-lying conditions with deep soils, where succession otherwise produces closed coniferous forest. These areas have since been almost entirely converted to agricultural and urban areas, leaving remnant oak savannas largely on steep, rocky hilltops, where the habitat is maintained by shallow soils. Our results provide quantitative guidance for setting conservation priorities for oak savannas in this region, while highlighting the important general issue of the major role traditional land-use practices can play in shaping landscapes, and therefore in influencing the baselines used to set conservation priorities.  相似文献   

15.
A detailed characterization of the relief, parent materials, soils, woody vegetation, and the links between them is given for a small part of the southern taiga zone in the center of the East European Plain. A methodology for determining the vegetation succession patterns on different soils with the use of the selectivity coefficient K is suggested. This coefficient is defined as the ratio between the frequency of occurrence of the given tree species on a given soil and its average frequency of occurrence within the entire analyzed area (in the area of the reserve). The values of K change from 0.2 to 3.6 and indicate positive (K > 1) and negative (K < 1) feedback relationships between the soils and vegetation. Changes in the frequencies of occurrence of different tree species on different soils that took place over 19 years have also been studied. It is shown that spruce has a tendency for settling on podzols, mixed spruce-oak-lime forests tend to develop on podzolized podburs, and lime and oak trees tend to develop on soddy podburs. Birch stands are most often replaced by spruce and pine stands; aspen stands and a part of the birch stands are replaced by lime and oak stands. The ecological plasticity of pine trees and the long age of this tree species ensure the existence of a long transitional succession stage with the predominance of pine. These regularities are important for predicting the further development of forest vegetation.  相似文献   

16.
It has been suggested that an increase in the area of low-intensity land-use on arable land (e.g. set-aside fields and short-rotation coppice), and high or increased farmland habitat heterogeneity, may halt or reverse the observed population decline of farmland birds. We tested these hypotheses by undertaking farmland bird censuses during two contrasting periods of agricultural policies and land-use (i.e. 1994 and 2004) in a farmland region covering a gradient of forest- to farmland-dominated landscapes in Sweden. Local species richness (i.e. at 3 hectare sites) declined significantly between 1994 and 2004. Local species richness was positively related to habitat heterogeneity in both years of study whereas temporal change in species richness was not. Local change in species richness was positively associated with a change in the proportion of non-rotational set aside and short-rotation coppice (i.e. low-intensity land-use forms), but also to changes in the amount of spring-sown crops. However, the effect of low-intensity land-use was significantly dependent on the amount of forest in the surrounding landscape. An increase in low-intensity land-use was linked to an increase (or less marked decrease) in species richness at sites located in open farmland surroundings but to a decrease in richness at sites located in forest surroundings. This interaction between amount of forest and low-intensity land-use could be interpreted as a “rare habitat effect”, where an increase in a farmland habitat only positively affects biodiversity when it was originally uncommon (i.e. open farmland areas). Our results suggest that conservation measures of farmland biodiversity have to be put in a landscape context.  相似文献   

17.
Areas of high conservation value were identified in the Western Ghats using a systematic conservation planning approach. Surrogates were chosen and assessed for effectiveness on the basis of spatial congruence using Pearson’s correlations and Mantel’s tests. The surrogates were, threatened and endemic plant and vertebrate species, unfragmented forest areas, dry forests, sub-regionally rare vegetation types, and a remotely sensed surrogate for unique evergreen ecosystems. At the scale of this analysis, amphibian richness was most highly correlated with overall threatened and endemic species richness, whereas mammals, especially wide-ranging species, were better at capturing overall animal and habitat diversity. There was a significant relationship between a remote sensing based habitat surrogate and endemic tree diversity and composition. None of the taxa or habitats served as a complete surrogate for the others. Sites were prioritised on the basis of their irreplaceability value using all five surrogates. Two alternative reserve networks are presented, one with minimal representation of surrogates, and the second with 3 occurrences of each species and 25% of each habitat type. These networks cover 8% and 29% of the region respectively. Seventy percent of the completely irreplaceable sites are outside the current protected area network. While the existing protected area network meets the minimal representation target for 88% of the species chosen in this study and all of the habitat surrogates, it is not representative with regard to amphibians, endemic tree species and small mammals. Much of the prioritised unprotected area is under reserve forests and can thus be incorporated into a wider network of conservation areas.  相似文献   

18.
Forest ecosystems have been widely fragmented by human land use. Fragmentation induces significant microclimatic and biological differences at the forest edge relative to the forest interior. Increased exposure to solar radiation and wind at forest edges reduces soil moisture, which in turn affects leaf litter decomposition. We investigate the effect of forest fragmentation, soil moisture, soil macrofauna and litter quality on leaf litter decomposition to test the hypothesis that decomposition will be slower at a forest edge relative to the interior and that this effect is driven by lower soil moisture at the forest edge. Experimental plots were established at Wytham Woods, UK, and an experimental watering treatment was applied in plots at the forest edge and interior. Decomposition rate was measured using litter bags of two different mesh sizes, to include or exclude invertebrate macrofauna, and containing leaf litter of two tree species: easily decomposing ash (Fraxinus excelsior L.) and recalcitrant oak (Quercus robur L.). The decomposition rate was moisture-limited at both sites. However, the soil was moister and decomposition for both species was faster in the forest interior than at the edge. The presence of macrofauna accelerated the decomposition rate regardless of moisture conditions, and was particularly important in the decomposition of the recalcitrant oak. However, there was no effect of the watering treatment on macrofauna species richness and abundance. This study demonstrates the effect of forest fragmentation on an important ecosystem process, providing new insights into the interacting effects of moisture conditions, litter quality, forest edge and soil macrofauna.  相似文献   

19.
We sampled the carabid beetles in 22 forests managed by six different silvicultural systems, defined by treatment and tree species composition: even-aged conifer, even-aged beech, even-aged oak, uneven-aged conifer, uneven-aged beech and group mixed (beech + conifer). In each of these forests, we placed pitfall traps in young, medium-aged and mature stands (3 stages). We evaluated the effect of treatment, tree species composition, silvicultural system, stage and habitat type (silvicultural system + stage) on indicators of community conservation value and ecological structure. The species composition and the ecological structure of carabid beetles of the managed stands were then compared to that of nine unmanaged stands (without tree exploitation). In the managed forests, species richness was highest in large young stands (3-10 years old) and in forests managed by even-aged systems (with large clear-cuts), mainly due to eurytopic and opportunist carabid species with high dispersal abilities. Oak and beech, uneven-aged, and mature stands were mainly inhabited by typical forest species, and even-aged conifer stands mainly by ubiquitous species. Several typical forest species recorded in unmanaged stands were lacking from the managed forests. Large scale clear-cutting allows open-habitat species to enter the forest, which increases the species richness at a landscape level but can disfavour typical forest species by competition. Long rotations should be implemented and more areas left unmanaged in Belgium, in order to help typical forest species to re-colonise managed forests.  相似文献   

20.
Mycetophilids is a species-rich insect group for which the ecological requirements in temperate forests are poorly understood. This study of mycetophilids was based on trap samples from 15 oak-dominated sites in the boreonemoral zone of southern Sweden. Species richness and composition were analysed in relation to environmental variables at a local and at larger scales (multiple regression), and compared to results from similar studies in spruce-dominated sites in the boreal zone of Norway (PCA and two-sample t tests). Regressions showing a dominance of regional factors over local in-site variables agree with species-richness models assuming that local communities most often are unsaturated. Precipitation (inter-correlated with elevation) was the strongest factor for explaining the variation in species-richness, which is consistent with previous results indicating that mycetophilids are disfavoured by drought. In addition to precipitation, the area of mixed forest with high biodiversity values (woodland key habitats and protected areas) was a positive factor for species-richness, probably because such habitats combine elements of both coniferous and deciduous forests. PCA ordination revealed a clear separation of the species composition between boreal and boreonemoral forests. Species-richness in boreal forest was significantly higher than in boreonemoral forest, indicating a preference for boreal habitats in many of the species. For mycetophilids and other drought-sensitive insects, it is suggested that (partial) cutting in some dense successional oak stands should be avoided, and that some invading spruces should be tolerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号