首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
How plants recognize pathogens and activate defense is still mysterious. Direct interaction between pathogen avirulence (Avr) proteins and plant disease resistance proteins is the exception rather than the rule. During infection, Cladosporium fulvum secretes Avr2 protein into the apoplast of tomato leaves and, in the presence of the extracellular leucine-rich repeat receptor-like Cf-2 protein, triggers a hypersensitive response (HR) that also requires the extracellular tomato cysteine protease Rcr3. We show here that Avr2 binds and inhibits Rcr3 and propose that the Rcr3-Avr2 complex enables the Cf-2 protein to activate an HR.  相似文献   

2.
Growing awareness of the environmental damage caused by the use of chemical substances for plant disease control in agriculture has raised the need to study biological alternatives, such as activating the defense response of plant crops by inducers not toxic to the environment. Trichoderma spp. are effective biocontrol agents for a number of soilborne pathogens, and are also known for their ability to enhance plant growth and to induce systemic resistance (ISR) in plants. In our laborator…  相似文献   

3.
植物病害中的信号传导   总被引:3,自引:0,他引:3  
植物由抗病基因介导的防卫过程存在一系列生理生化和分子生物学反应,这些反应从病原菌侵染点开始的超敏反应(HypersensitiveResponse,HR),并延伸到远处组织的系统抗性或获得性抗性(SystemicAcquiredResistance,SAR),受制于一种信号传导网络的调控。这个信号系统有抗病蛋白和病原菌非病毒性蛋白,在一种配体—受体的互作模式下激发,并由信号分子H2O2、NO和系统信号分子水杨酸(SA)、茉莉酸(JA)和乙烯(ET),通过关键调控基因传递和放大,最终诱导一系列防卫反应基因的表达和代谢的变化而产生抗性。植物防卫信号的产生类似于动物免疫系统因子的介导,并可由非寄主病原菌或诱导子诱发。这些信号途径所产生的广谱抗性为植物抗病基因工程的应用奠定了基础。  相似文献   

4.
类番茄茄是茄属中番茄近缘野生种 ,对番茄遗传改良具有潜在价值。苗期接种鉴定和电镜病毒粒子检测。结果表明 ,类番茄茄高抗 CMV(重花叶株系 )、叶霉病 (1.2 .3小种 )和 TMV(1株系 ) ;同时 ,作者对在生产中应用高抗TMV材料时应注意的问题还提出了个人见解  相似文献   

5.
6.
Applications of Trichoderma formulations in crop protection   总被引:1,自引:0,他引:1       下载免费PDF全文
The choice of active Trichoderma strains is important in designing effective and safe biocontrol applications. Many species of Trichoderma have multiple strategies for fungal antagonism and indirect effects on plant health, such as growth promotion, systemic resistance induction and fertility improvements. Some strains are powerful antibiotic producers, and their suitability for use in biocontrol systems must be carefully assessed. However, many other active strains have no antibiotic cap…  相似文献   

7.
Plant secondary metabolites play vital role in plant stress response. In this study we investigated whether root colonization of tomato(Solanum lycopersicum) infected by Trichoderma harzianum leads to alterations in the biosynthesis of secondary plant metabolites including phytohormones and osmolyte proline under drought stress. Exposure of tomato to drought caused a drastic decline in plant growth and physiological parameters. Tomato inoculated with T. harzianum showed increased root and shoot growth and chlorophyll pigments as compared to uninoculated controls as well as drought stressed plants. Proline and total soluble protein content was increased in plants inoculated with T. harzianum under both normal as well as drought conditions. An obvious increase in phenol and flavonoid content was observed due to T. harzianum. In addition, T. harzianum inoculated plants maintained higher levels of growth regulators indole acetic acid, indole butyric acid, and gibberellic acid under drought stress. Improved secondary metabolites which play an important role in plant stress tolerance by T. harzianum may have coordinately worked for bringing the growth regulation by protecting membranes from reactive oxygen species(ROS) and enhance plant growth through accessing more nutrients by root system.  相似文献   

8.
真菌无毒基因克隆与抗性蛋白互作研究   总被引:1,自引:0,他引:1  
无毒基因(avirulence genes, Avr)是病原物遗传因子,能诱发寄主植物产生抗病性。真菌Avr基因的克隆、编码产物结构和功能分析,以及与寄主抗性蛋白的互作机制等方面的研究对于深入了解植物的抗真菌病害分子机理具有重要意义。其编码AVR蛋白(又可以称为效应子,effector)通常富含半胱氨酸,效应子通过吸器或侵入丝被分泌到寄主细胞内促发抗性反应。在抗性反应过程中,效应子能直接或间接地被植物细胞相应的抗性蛋白识别,这种识别机制与效应子和抗性蛋白的区段相关。以几个真菌病害为例,综述了近年来有关无毒基因克隆、表达、以及与抗性蛋白的互作机制等方面的主要研究进展,以期为相关研究的深入提供参考。  相似文献   

9.
Plant disease-resistance (R) proteins are thought to function as receptors for ligands produced directly or indirectly by pathogen avirulence (Avr) proteins. The biochemical functions of most Avr proteins are unknown, and the mechanisms by which they activate R proteins have not been determined. In Arabidopsis, resistance to Pseudomonas syringae strains expressing AvrPphB requires RPS5, a member of the class of R proteins that have a predicted nucleotide-binding site and leucine-rich repeats, and PBS1, a protein kinase. AvrPphB was found to proteolytically cleave PBS1, and this cleavage was required for RPS5-mediated resistance, which indicates that AvrPphB is detected indirectly via its enzymatic activity.  相似文献   

10.
Resistance to bacterial speck disease in tomato occurs when the Pto kinase in the plant responds to expression of the avirulence gene avrPto in the Pseudomonas pathogen. Transient expression of an avrPto transgene in plant cells containing Pto elicited a defense response. In the yeast two-hybrid system, the Pto kinase physically interacted with AvrPto. Alterations of AvrPto or Pto that disrupted the interaction in yeast also abolished disease resistance in plants. The physical interaction of AvrPto and Pto provides an explanation of gene-for-gene specificity in bacterial speck disease resistance.  相似文献   

11.
The transformed Trichoderma strains Ttrm31, Ttrm34 and Ttrm55 were obtained from Trichoderma wild strain T21 mutated by REMI technique for more effective biocontrol of tomato gray mold (Botrytis cinerea) with Trichoderma agent. Those transformants appeared much better in biocontrol activity in vitro or in vivo against tomato gray mold were better than that of wild strain T21. The main results were as follow: The transformed Trichoderma strains were detected in their genetic …  相似文献   

12.
The resistance in tomato plants to bacterial speck caused by Pseudomonas syringae pv. tomato is triggered by the interactions between the plant resistance protein Pto and the pathogen avirulence proteins AvrPto or AvrPtoB. Fen is a gene encoding closely related functional protein kinases as the Pto gene. To investigate the status of resistance to the pathogen and natural variation of Pto and Fen genes in tomato, 67 lines including 29 growing in China were subject to disease resistance evaluation and fenthion-sensitivity test. Alleles of Pto and Fen were amplified from genomic DNA of 25 tomato lines using polymerase chain reaction (PCR) and sequences were determined by sequencing the PCR products. The results indicated that none of the 29 cultivars/hybrids growing in China were resistant to bacterial speck race 0 strain DC3000. Seven of eight tomato lines resistant to DC3000 were also fenthion-sensitive. Analysis of deduced amino acid sequences identified three novel residue substitutions between Pto and pto, and one new substitution identified between Fen and fen. A PCR-based marker was developed and successfully used to select plants with resistance to DC3000.  相似文献   

13.
The beneficial applications of Trichoderma spp. in agriculture include not only the control of plant pathogens, but also the improvement of plant growth, micronutrient availability, and plant tolerance to abiotic stress. In addition, it has been suggested that these fungi are able to increase plant disease resistance by activating induced systemic resistance (ISR) . The mode of action of these beneficial fungi in the Trichoderma -plant-pathogen interaction are many, complex and not comple…  相似文献   

14.
Trichoderma strains are used in agriculture because they provide to the plants the following benefits: i) are rhizosphere competence and establish stable rhizosphere microbial communities; ii) control plant disease caused by pathogenic and competitive microflora, by using a variety of mechanisms; iii) improve vegetative growth, root development and yield; iv) make nutrients more available to the plant. In this work we have investigated the ability of T. harzianum T22 and T. atroviride P…  相似文献   

15.
16.
Novel understanding of Trichoderma interaction mechanisms   总被引:1,自引:0,他引:1       下载免费PDF全文
Trichoderma- based biofungicides are a reality in commercial agriculture, with more than 50 formulations registered worldwide as biopesticides or biofertilizers. Several research strategies have been applied to identify the main genes and compounds involved in the complex, three-way interactions between fungal antagonists, plants and microbial pathogens. Proteome and genome analyses have greatly enhanced our ability to conduct targeted and genome-based functional studies. We have obtained repr…  相似文献   

17.
Hypersensitive response (HR) is one of the most efficient and common resistance mechanisms in plants. Cloning signaling genes are very important to elucidate the resistance mechanisms. A gene in tomato homologous to several resistance proteins in plant was involved in HR and named as RGL (Resistance Gene Like). RGL protein was used as a bait to screen interacting protein(s) from tomato cDNA library through the yeast two-hybrid system. Two interacting proteins were found, which were called as RGLIP-1 and RGLIP-2 (RGL Interacting Protein), respectively. RGLIP-1 is a protein of 291 amino acids with significant homology with thylakoid lumen protein. RGLIP-2 is a protein of 248 amino acids with significant homology with transducin protein. Virus-Induced Gene Silencing (VIGS) of the two genes results in a partial and complete suppression of Avr4-induced HR, which indicates that both genes are involved in hypersensitive response. __________ Translated from Acta Horticulturae Sinica, 2006, 33(1): 52–57 [译自: 园艺学报]  相似文献   

18.
不同丛枝菌根真菌对番茄生长及相关生理因素的影响   总被引:4,自引:0,他引:4  
对番茄中杂9号接种6种不同的丛枝菌根真菌(Glomus versiforme,Glomus mossea-2,Glomus intraradices,Glomus diuphauam,Glomus mossea,Glomus etuni-catum1),通过测定不同菌种对番茄的生长效应及叶片生理变化,表明不同丛枝菌根真菌对番茄有不同程度的生长促进作用,处理番茄的叶片可溶性糖、可溶性蛋白、硝酸还原酶(NR)活性均比对照有所增加,其中对叶片可溶性糖的影响最为显著,它与番茄根系的菌根侵染率呈极显著正相关,还与植株总干重显著正相关,菌根侵染率亦与植株干重显著正相关。故此提出叶片可溶性糖含量可作为丛枝菌根影响番茄生长的生理鉴定指标,依此指标筛选出Glomus versiforme,Glomusmossea-2是对番茄生长促进效果最好的菌种。  相似文献   

19.
A simple and general method for transferring genes into plants   总被引:9,自引:0,他引:9  
《Science (New York, N.Y.)》1985,227(4691):1229-1231
Transformed petunia, tobacco, and tomato plants have been produced by means of a novel leaf disk transformation-regeneration method. Surface-sterilized leaf disks were inoculated with an Agrobacterium tumefaciens strain containing a modified tumor-inducing plasmid (in which the phytohormone biosynthetic genes from transferred DNA had been deleted and replaced with a chimeric gene for kanamycin resistance) and cultured for 2 days. The leaf disks were then transferred to selective medium containing kanamycin. Shoot regeneration occurred within 2 to 4 weeks, and transformants were confirmed by their ability to form roots in medium containing kanamycin. This method for producing transformed plants combines gene transfer, plant regeneration, and effective selection for transformants into a single process and should be applicable to plant species that can be infected by Agrobacterium and regenerated from leaf explants.  相似文献   

20.
哈茨木霉对番茄幼苗促生作用机理的初步研究   总被引:3,自引:1,他引:3       下载免费PDF全文
研究了哈茨木霉对番茄幼苗生长的影响。结果表明,不同含量的哈茨木霉对番茄生长有一定的刺激作用,木霉与土的比例为1∶10时对番茄的刺激生长作用最强,番茄幼苗的株高、根系长度、地上部鲜重和根系鲜重明显增加,施用哈茨木霉制剂后,番茄幼苗对氮、钾的吸收明显比对照高,差异显著,同时番茄幼苗的净光合速率和叶绿素含量高于对照,而呼吸速率与对照无明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号