首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alemow (Citrus macrophylla Wester) seedlings were subjected to moderate or severe water stress by watering them at different intervals for several irrigation cycles. Transpiration rate was measured after irrigation was resumed. Severe water stress reduced transpiration but increased leaf water potential (ψleaf), while moderate water stress reduced transpiration less and did not affect ψleaf. This suggests that moderate water stress influences only stomatal conductance and not root and shoot resistance.  相似文献   

2.
Transpiration and net photosynthesis of eggplant (Solanum melongena L.) cultivar ‘Claresse’ were measured at decreasing leaf water potential (ψleaf). Attached single leaves were used in an open system and 6 levels of irradiance were applied. Mesophyll resistance to diffusion of Co2 (r'm) and stomatal resistance to diffusion of water vapour (rs) were calculated from the gas exchange rates. As ψleaf declined, transpiration and photosynthesis decreased due to stomatal closure and an increase in r'm in the case of photosynthesis. For the same degree of water stress, photosynthesis was maintained better in egg-plant than in other vegetable plants cited in the literature. Twenty four hours after the severely stressed plants were rewatered, gas exchange rates had not recovered completely. This was due to an after-effect of stress on the stomates, and to additional direct effects of drought on the photosynthetic system.  相似文献   

3.
In the northeast of Brazil the drought period determines the yield period of the sugar apple (Annona squamosa L.). As a result, the use of irrigation is essential to stagger production over the course of the year. The results shown here represent an analysis of water status levels in sugar apples in daylight and seasonal periods in semi-arid regions. Two plant groups were studied: one without irrigation and the other with irrigation during drought months. This study showed that younger leaves displayed greater stomatal conductance and transpiration. In drought months, even in irrigated plants, the high air moisture deficit had a strong influence on the stomatal closure, which did not translate into a reduction in transpiration. Over the same period, the leaf water potential was −1.8 and −2.9 MPa at mid-day in irrigated and non-irrigated plants, respectively, and only the irrigated plants could recover their leaf hydration level at night. With a water deficit, plants showed greater control of transpiration through stomatal closure, with a linear relationship between stomatal conductance and transpiration.  相似文献   

4.
Callistemon is an Australian species used as ornamental plant in Mediterranean regions. The objective of this research was to analyse the ability of Callistemon to overcome water deficit in terms of adjusting its physiology and morphology. Potted Callistemon laevis Anon plants were grown in controlled environment and subjected to drought stress by reducing irrigation water by 40% compared to the control (irrigated to container capacity). The drought stress produced the smallest plants throughout the experiment. After three months of drought, the leaf area, number of leaves and root volume decreased, while root/shoot ratio and root density increased. The higher root hydraulic resistance in stressed plants caused decreases in leaf and stem water potentials resulting in lower stomatal conductance and indicating that water flow through the roots is a factor that strongly influences shoot water relations. The water stress affected transpiration (63% reduction compared with the control). The consistent decrease in gs suggested an adaptative efficient stomatal control of transpiration by this species, resulting in a higher intrinsic water use efficiency (Pn/gs) in drought conditions, increasing as the experimental time progressed. This was accompanied by an improvement in water use efficiency of production to maintain the leaf water status. In addition, water stress induced an active osmotic adjustment and led to decreases in leaf tissue elasticity in order to maintain turgor. Therefore, the water deficit produced changes in plant water relations, gas exchange and growth in an adaptation process which could promote the faster establishment of this species in gardens or landscaping projects in Mediterranean conditions.  相似文献   

5.
Citrus rootstock responses to water stress   总被引:1,自引:0,他引:1  
Tolerance to drought-stress (DS) of the citrus rootstock Forner–Alcaide no. 5 (FA-5) was tested and compared with that of its parents, Cleopatra mandarin (CM) and Poncirus trifoliata (PT). Nine-month-old seedlings of CM, PT and FA-5 and 15-month-old grafted trees of ‘Valencia’ orange scions on these three rootstocks were cultivated in sand under glasshouse conditions and irrigated with a nutrient solution. Plants were drought-stressed by withholding irrigation until leaves were fully wilted. Survival time of both seedlings and grafted trees under DS was linked to the water extraction rate from the soil, which depended mainly on leaf biomass and on transpiration rate. Seedling responses to DS affecting leaf water relationships and gas exchange parameters varied among genotypes. FA-5 seedlings survived longer than the other seedlings, maintaining the highest levels of water potential, stomatal conductance, transpiration rate and net CO2 assimilation towards the end of the experiment, when water stress was most severe. Thus, FA-5 was more resistant to DS than its parents (CM and PT). Moreover, rootstock affected the performance of grafted trees under water stress conditions. The higher drought tolerance induced by FA-5 rootstock could be related to the greater osmotic adjustment (OA), which was reflected by smaller reductions in leaf relative water content (RWC) and in higher turgor potentials and leaf gas exchange than the other rootstocks.  相似文献   

6.
The experiment was carried out at the Experimental Field ‘Taoues’, southern Tunisia (34°N, 10°E) to examine the effect of irrigation schedules on water relations for young olive trees, cultivars Chétoui, Chemlali, Coratina, Picholine and Manzanille. Plants were cultivated at 7 m × 7 m spacing and drip irrigated from April to September. Irrigation amounts (IA) of 20%ETc, 50%ETc and 100%ETc were applied, where ETc is the FAO crop evapotranspiration. The effect of IA on midday leaf water potential (Ψleaf), stomatal resistance (Rs) and conductance (gs), soil (Hv) and relative leaf (RWC) water contents was studied. Results showed that a further increase in IA was not systematically followed by an increase of water potential, production and WUE values. Some controversial responses were observed following to a variety with large seasonal variations. At the beginning of the growing season, differences between treatments were not very important because soil water content was still high enough to prevent important changes in Ψleaf values. The most stressed trees showed potentials of −1.53 MPa for Picholine cv. and ranging between −2.30 MPa and −2.10 MPa for the other varieties depending on IA. The less stressed trees provided potentials of −0.97 MPa for Picholine cv. and varying between −1.63 MPa and −2.13 MPa for cultivars Coratina, Manzanille, Chétoui and Chemlali. Then, as the season progresses, and when IA was increased from 20%ETc to 50%ETc, Ψleaf values decreased significantly for cultivars Chemlali (−3.05 MPa), Coratina (−3.75 MPa), Manzanille (−3.0 MPa) and Chétoui (−3.5 MPa). At 100%ETc, Manzanille and Picholine cultivars show better water status with respective potentials of −2.7 MPa and −2.6 MPa. Stomatal resistance monitoring showed maximums at midday for all cultivars with pick value of 4.45 s/cm recorded for Chétoui cultivar irrigated at 50% ETc. The most important variations were recorded for cultivar Chemlali which seem to be the ablest to regulate stomata aperture. Close coordination between Ψleaf and gs and Ψleaf and RWC measurements was found. But, the response varied following to treatment. At low irrigation levels (20%ETc and 50%ETc), gs was found to be linearly and positively correlated to Ψleaf. It increased linearly and positively with increasing values of Ψleaf (r of 0.84 and 0.96, respectively). At 100%ETc, Ψleaf is found to be correlated to gs following to a polynomial function with an optimum gs value of 450 mmol/m2/s and Ψleaf of about −2.5 MPa.  相似文献   

7.
Oleander (Nerium oleander L.) is an evergreen shrub of great ornamental interest which, in recent times, has been increasingly used as a flowering pot plant. Plants grown in pots undergo more frequent water stress conditions than those grown in the soil, due to the limited volume of substrate available for the roots. Oleander is a species adaptable to dry conditions and able to survive long periods of drought. It is well known that under water stress conditions all plants reduce photosynthetic activity, resulting in reduced plant growth. In case of severe water stress, leaves undergo strong wilting and senescence resulting in the loss of ornamental value. In the present work, a study was conducted to evaluate the ecophysiological response to water stress in four oleander cultivars previously recognised (on the basis of traits such as size, habit, earliness, abundance and duration of flowering, aptitude for cutting propagation and rapidity of growth) as suitable for pot plant production. Our data confirm the high drought tolerance of oleander. In the studied cultivars, plants submitted to water stress showed only minor variations in leaf gas exchange parameters [transpiration (E), stomatal conductance (gs) and CO2 net assimilation (A)] for at least 10 days without a change in leaf water content [assessed as relative water content (RWC)] for 22 days from the beginning of the stress treatment. During this period, non-irrigated plants maintained the same water status as control plants and were visually undistinguishable from them. Moreover, plants survived without water supply for one month. Following the supply of water again, they were able to restore RWC, gas exchange parameters and instantaneous water use efficiency [A/E ratio (WUEinst)] to the values of control plants. Furthermore, if at the end of the stress period plants appeared withered and were pale green in colour, they regained their normal appearance after they were irrigated again. Although the four studied cultivars showed some minor differences in leaf gas exchange parameters and in the manner in which the latter parameters changed after irrigation was stopped, the response to water stress was essentially the same. Therefore, as far as drought tolerance is concerned, all these cultivars have a good aptitude for use as flowering pot plants.  相似文献   

8.
The effect of brassinosteroid (BR) on relative water content (RWC), stomatal conductance (gs), net photosynthetic rate (PN), intercellular CO2 concentration (Ci), lipid peroxidation level, activities of antioxidant enzymes and abscisic acid concentration (ABA) in tomato (Lycopersicon esculentum) seedlings under water stress was investigated. Two tomato genotypes, Mill. cv. Ailsa Craig (AC) and its ABA-deficient mutant notabilis (not), were used. Water stress was achieved by withholding water and both the AC and not plants were treated with 1 μM 24-epibrassinolide (EBR) or distilled water as a control. The RWC, gs, Ci and PN were significantly decreased under water stress. However, EBR treatment significantly alleviated water stress and increased the RWC and PN. EBR application also markedly increased the activities of antioxidant enzymes (catalase, ascorbate peroxidase and superoxide dismutase) while it decreased gs, Ci and the contents of H2O2 and malondialdehyde (MDA). Interestingly, ABA concentration in AC and not plants was markedly elevated after EBR treatment although the increasing rate and amplitude of ABA in not plants treated by EBR was significantly lower than those in AC plants. Our study suggested that amelioration of the drought stress of tomato seedlings may be caused by EBR-induced elevation of endogenous ABA concentration and/or the activities of antioxidant enzymes.  相似文献   

9.
Summary

The aims of this work are to describe the effects of pruning and planting density on growth and water relations of ungrafted and grafted sweet cherry trees. A trial with cherry rootstocks ‘Prunus avium’, ‘CAB 11E’, ‘Maxma 14’, ‘Gisela 5’ and ‘Edabriz’ was begun in 1997. Pruning severities were applied to the rootstocks (0, 30, 60 and 90% of the vegetative growth was removed corresponding to P1, P2, P3 and P4 treatments, respectively) after planting to two plant spacings (S1 = 0.25 × 1.0 m and S2= 0.45 × 1.5 m). Canopy, root growth and leaf water potential (ψleaf) were quantified throughout the growing season. Pruning significantly affected root length and root weight of the rootstocks. Uncut plants (P1) showed a heavier and expanded root biomass (231 g and 108 m) than the intensively pruned plants (P4) (187 g and 75 m). The greater root biomass was obtained with the spacing/pruning combination, S1/P1 (285 g), and the smaller with S1/P4 (180 g) and S2/P4 (176 g). ψleaf varied significantly between the rootstocks and plant spacing but not with pruning. ‘Maxma 14’ and ‘P. avium’ attained the lowest values of midday ψleaf, –2.28 and –2.04 MPa, but the highest values of predawn ψleaf, –0.29 and –0.25 MPa, respectively. Generally, with high density (S1), the rootstocks exhibited lower predawn and midday ψleaf. In 1998, cultivars ‘Burlat’, ‘Summit’ and ‘Van’ were grafted onto rootstocks and a trial was installed in 1999. Predawn and midday stem water potential (ψstem) on cherry trees, measured in 2002, were affected significantly by the rootstock/genotype combination. Cultivars grafted on ‘P. avium’ and ‘Maxma 14’ showed the less negative midday ψstem, –1.36 and –1.42 MPa respectively, so these rootstock genotypes perhaps induced a higher drought resistance to the scion. Recorded data show that the scion-rootstock interaction with regard to production performance under water deficits may be an important consideration in cherry tree planting strategies.  相似文献   

10.
Rational irrigation scheduling based on sensing drought stress directly in plants is becoming more important due to increasing worldwide scarcity of fresh water supplies. In order to evaluate a set of potential biochemical and physiological stress indicators and select the best drought stress markers in apple trees, two experiments with potted trees and an experiment with intensive orchard grown apple trees ‘Elstar’ and ‘Jonagold Wilmuta’ were conducted in early summer in tree following years. Biochemical parameters: ascorbic acid, glutathione, tocopherols, chlorophylls, carotenoids, free amino acids, soluble carbohydrates, and physiological parameters already known as stress indicators in apple trees: predawn and midday leaf water potential, net photosynthesis (Pn), stomatal conductance (gs), transpiration (Tr) and intercellular CO2 concentration (Ci) were measured in leaves of apple trees subjected to different intensities of slowly progressing drought or no drought. Our study pointed out zeaxanthin and glutathione as the best drought stress markers in apple trees. Ascorbate and sorbitol appeared to be reliable indicators of moderate drought only. Responses of other tested biochemical parameters were not consistent enough to prove their role as drought stress markers in apple trees. Relative air humidity should be taken in consideration when physiological parameters gs, Pn, Tr and Ci are used as drought stress markers in apple trees. Our study revealed that in situations where low relative air humidity affects gs and with gs connected physiological parameters, biochemical markers may be better tool for determination of drought stress intensities in apple trees.  相似文献   

11.
Our study focuses on the physiological response and yield-quality performance of split-root potted Sangiovese grapevines under a partial root-zone drying (PRD) regime from pre-veraison to harvest by withholding water from one of the two pots and comparing the results to a well-watered control (WW). While predawn water potential (ψpd) tended to equilibrate in PRD with the soil moisture level of the wet pot, both stem (ψst) and mid-day leaf-water potential (ψl) were markedly lower in PRD as compared to WW vines, indicating that Sangiovese shows anisohydric response. On the other hand, the seasonal reduction of leaf assimilation rate (A) in PRD over the 6-week stress period versus WW was 16% as compared to a 41 and 25% for leaf stomatal conductance (gs) and transpiration (E), respectively. As a consequence, intrinsic WUE (A/gs) was markedly increased in the half-stressed vines, suggesting a response more typical of an isohydric strategy. Shoot growth was promptly checked in PRD vines, which had no limitation in yield and better grape composition as per soluble solids and total anthocyanins. These responses occurred in spite of sub-optimal leaf photosynthesis rates and lowered leaf-to-fruit ratio and qualify Sangiovese as a good candidate for adapting to regulated deficit irrigation strategies.  相似文献   

12.
《Scientia Horticulturae》2001,88(4):257-276
Low matric and to a lesser extent osmotic potential reduce significantly leaf area and rose yield. Net assimilation rate and transpiration are also negatively affected although less dramatically. Low water potential causes an increase in the water use efficiency of greenhouse roses when tested in closed, no-discharge systems. When a stable osmotic potential is maintained in open systems, using increased leaching fraction (LF), low osmotic potential results in lower water use efficiency. Osmotic potential in porous media serving for greenhouse cut-rose production is usually lower than the matric potential. However, low matric potential in porous media is usually accompanied by very low unsaturated hydraulic conductivity, causing localized zones of very low matric potential adjacent to the root–medium interface. This phenomenon, that cannot be measured using tensiometers, is the main limiting factor to water uptake by plant roots. Restricted water uptake results in low leaf water potential and cessation of leaf and shoot expansive growth.Combined effects of drought and salinity on photosynthesis have been studied for a number of agronomic crops but studies on roses have been limited. In most greenhouse crops a close relationship between total water potential in the root zone (Ψtsoil) and in the shoot (Ψtshoot) is found and there are good indications about the plant’s ability to make osmotic adjustments in order to lower Ψtshoot and prevent excessive water losses from the leaves thus maintaining the plant’s turgidity. Future studies conducted with roses can provide a better insight into the adaptive processes within the plants when exposed to salt or water stresses.  相似文献   

13.
Pistachio cultivation requires the use of rootstock because grafting is the only form of vegetative propagation. The main commercial rootstocks are Pistacia integerrima L., Pistacia atlantica Desf., Pistacia terebinthus L. and Pistacia vera L. Pistachio is considered to be a drought and saline-resistant crop; however, there is little information describing varietal responses of rootstocks to water stress. Some studies have suggested that P. terebinthus L. is the most drought and cold resistant rootstock. The effect of the rootstock on the water relations of the grafted plant is crucial for improving crop performance under water stress conditions and for developing the best irrigation strategy. This work studied the physiological response to water stress of pistachio plants (P. vera L. cv. Kerman) grafted onto three different rootstocks P. terebinthus L., P. atlantica Desf. and a hybrid from crossbreeding P. atlantica Desf. × P. vera L. Plant physiological responses were evaluated during a cycle of drought and subsequent recovery in potted plants. Parameters measured were soil moisture, trunk diameter, leaf area, leaf number, leaf and stem dry weight, stem water potential, leaf stomatal conductance. The results showed different responses of cv. Kerman depending on the rootstock onto which it had been grafted. The hybrid rootstock was associated with a higher degree of stomatal control and reduced leaf senescence compared to P. atlantica and P. terebinthus, despite being associated with the most vigorous shoot growth. P. terebinthus enabled very effective stomatal control but was also associated with the most rapid leaf senescence. P. atlantica was associated with less vigorous shoot growth and similar levels of water stress as occurred with the others rootstocks under conditions of high evaporative demand, which was associated with lower stomatal control. The selection of the most effective rootstock choice for different environmental conditions is discussed.  相似文献   

14.
The plant growth regulator CycocelTM [(2-chloroethyl)trimethylammonium chloride] can be used to produce drought tolerance in grapevine (Vitis vinifera L.) due to a reduction in the ratio between vegetative growth and fruit production. To evaluate the physiological responses of two grapevine cultivars to drought and CycocelTM treatment, a factorial experiment was conducted in a greenhouse. The factors included irrigation frequency (at 5-, 10-, or 15-day intervals corresponding to no, mild, or severe drought stress), CycocelTM concentration (0, 500, or 1000 mg l1), and cultivar (‘Rasheh’ or ‘Bidane-Sefid’). Stomatal conductance (gs) the net rate of CO2 assimilation (Anet), the rate of transpiration (Tr), and chlorophyll a and b concentrations decreased in plants exposed to mild or severe water-deficit stress, whereas carotenoid, proline, and total soluble sugar concentrations increased compared to plants with no drought stress. The relative water content (RWC) of leaves declined only under severe drought stress. A reduction in intercellular CO2 concentrations (Ci) occurred under mild drought stress; however, under severe drought stress, Ci values increased. Under mild drought stress, the reduction in the net rate of photosynthesis was related to stomatal closure, whereas under severe drought stress, non-stomatal factors were dominant. Water-use efficiency (WUE) improved under mild drought stress relative to non-stressed plants, but under severe drought, it declined. Foliar applications of CycocelTM resulted in increased Anet, gs, Tr, and WUE values, as well as proline and soluble sugar concentrations. ‘Rasheh’ was more tolerant to drought stress than was ‘Bidane-Sefid’. Foliar applications of CycocelTM, particularly at 1000 mg l1, mitigated the negative effects of drought stress by increasing Anet, WUE, RWC, compatible solute concentrations, such as proline, soluble sugar, and chlorophyll a and b concentrations.  相似文献   

15.
Leaf water potential (ψ1), whole tree transpiration (F) and leaf surface conductance (g), together with a number of environmental parameters, were measured from early summer until late winter in a well-watered mature ‘Valencia’ orange (Citrus sinensis (L.) Osb.) orchard during the growing season of 1977/78. F and g showed a seasonal trend, with maximum values reached during the late summer. Tree conductance (Ctree), calculated as the ratio between transpiration and the water potential difference between the wet soil and the sunlit leaves, was found to vary seasonally and showed maximum values during late summer. The soil temperature (Ts) showed a seasonal trend similar to Ctree. Analysis of this and other data from the literature confirmed that the sensitivity of tree conductance to soil temperature is related to the climatic origin of the plant species.The linear regression fitted to the relationship between Ctree and Ts was used to calculate soil temperature at apparent zero Ctree. This datum can be used as an index of plant sensitivity to root medium temperature.  相似文献   

16.
This study investigated the impacts of successive simulated droughts and floods on two plant species (Carex lurida and Liriope muscari) commonly installed in green-infrastructure (GI) sites built in the urban northeast USA. The instantaneous stomatal conductance, and belowground biomass growth (in a second drought experiment only) were used as metrics, since they are indicators of the ability of plants to provide ecosystem functions such as transpiration and carbon uptake. The results indicate that both species have greater tolerance for floods than for droughts. Signs of stress were only evident after a simulated flood exceeding the duration of 95% of all storms that occurred in this geographic region between 1950 and 2000. By contrast, simulated droughts had a more pronounced effect on both the instantaneous conductance measures during drought and the recovery following the cessation of drought in both species. Liriope subjected to drought treatments were all able to recover and to re-establish stomatal conductance levels similar to those displayed by a control group even after repeated drought treatments. By contrast, Carex showed reduced recovery after multiple droughts, in two separate rounds of experiments. However, regardless of moisture conditions and treatment, Carex generally displayed higher stomatal conductance than Liriope, indicating greater transpiration, and CO2 uptake than Liriope. The belowground biomass results supported this finding, i.e. Carex gained more belowground biomass than Liriope during all experiments. At the end of the experiment, the Carex subjected to drought had less than one sixth the belowground biomass of the control treatment, whereas for Liriope this ratio was only 50% (drought to control). The drought treatments, therefore, reduced the biomass of Carex more than it did Liriope, when compared to the respective control plants. Nonetheless, both species survived repeated cycles of droughts and floods, suggesting that these particular species are both likely suitable for use in GI facilities, despite projected future increases in the frequency and intensity of floods and droughts in this geographic region. From a practical perspective, the results suggest no need for irrigation or potential replacement of plants in GI systems in a changed climate.  相似文献   

17.
水分胁迫条件下几种果树茎干直径微变化规律的研究   总被引:1,自引:0,他引:1  
对盆栽葡葡(Vitis vinifera L.)、苹果(Malus pumila Mill)、山植(Crataegus pinnatifida Bunge)和枣(Ziziphusjujuba Mill.)等4种果树水分胁迫条件下茎千直径微变化动态进行研究,结果表明:随着土壤相对含水量的降低,葡萄和苹果的茎于日最大收缩量减小,体内的贮藏水分利用量减少,属于贮藏水分经济利用型果树,而山楂和枣树的茎干日最大收缩量增大,体内贮藏水分利用量增加,属于贮藏水分高消费型果树。在于旱周期中,两种类型果树树体日蒸腾量的变化动态存在差异:贮藏水分经济利用型果树日蒸腾量随土壤相对含水量的降低呈持续下降的趋势,而贮藏水分高消费型果树仅在土壤相对含水量降低到某一临界值以下时,日蒸腾量才开始急剧减小。叶片气孔调节对土壤和植物体水分状况反应的差别是植物体贮藏水分利用方式产生差异的主要原因。  相似文献   

18.
In order to screen almond genotypes for drought tolerance, three different irrigation levels including moderate and severe stress (Ψs = −1.2 and −1.8 MPa respectively) and a control treatment (Ψs = −0.33 MPa) were applied for five weeks to six different cultivated almond seedlings. A factorial experiment was conducted with a RCBD which included 3 irrigations factors, 6 genotype factors and 3 replications. Seeds were prepared from controlled pollination of the bagged trees (after emasculation and flower isolation using isolator packets in the previous year). Genotypes included: homozygote sweet (Butte), heterozygote sweet (SH12, SH18, SH21 and White) and homozygote Bitter (Bitter Genotype). Leaf and root morphological and physiological traits including; midday relative water content, midday leaf (xylem) water potential, shoot dry weight and growth, total leaf area, leaf size, total leaf dry weight, specific leaf area, leaf greenness (SPAD), stomatal size and density, root and leaf nitrogen content and chlorophyll fluorescence were measured throughout the study. Results showed the six genotypes had different reactions to water stress but all genotypes showed an ability to tolerate the moderate and severe stresses and they showed different degrees of response time to drought stress. Almond seedling leaves could tolerate Ψw between −3 and −4 MPa in short periods. Water availability did not significantly affect stomatal density and size of young almond plants. The analysis of leaf anatomical traits and water relations showed the different strategies for almond genotypes under water stress conditions. Although almond seedlings even in severe stress kept their leaves, they showed a reduction in size to compensate for the stress effects. All genotypes managed to recover from moderate stress so Ψw = −1.2 could be tolerated well by almond seedlings but Ψw = −1.8 limited young plant growth. Leaf greenness, leaf size, shoot growth, shoot DW, TLDW and stomatal density were not good markers for drought resistance in almond seedlings. Root DW/LA, lower stomatal size and lower SLA might be related to drought resistance in cultivated almonds. Butte had the least resistance and White showed better performance during water stress while other genotypes were intermediate. Bitter seedlings showed no superiority in comparison with other genotypes under water stress conditions except for better germination and greater root DW which might make them suitable as rootstocks under irrigation conditions.  相似文献   

19.
Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) are leafy vegetable crops grown in south-east Asian countries where rainfall varies dramatically from excess to deficit within and between seasons. We investigated the physiological and growth responses of these plants to waterlogging and water deficit in a controlled experiment in a glasshouse. Juvenile plants were subjected to waterlogging or water deficit for 19 days in case of Chinese kale and 14 days in case of Caisin and compared with well-watered controls. Caisin tolerated waterlogging better than Chinese kale because it produced hypocotyl roots and gas spaces developed at the stem base. In Chinese kale, waterlogging reduced plant fresh weight (90%), leaf area (86%), dry weight (80%) and leaf number (38%). In contrast, waterlogging had no impact on leaf number in Caisin and reduced plant fresh and dry weights and leaf area by 60–70%. Water deficit reduced leaf area, fresh weight and dry weight of both species by more than half. Leaf number in Chinese kale was reduced by 38% but no effect occurred in Caisin. Water deficit increased the concentration of nitrogen in the leaf dry matter by more than 60% in both species and the leaf colour of water deficient plants was dark green compared with the leaf colour of well-watered plants. Soil water deficit delayed flowering of Caisin while waterlogging accelerated it. Thickening and whitening of the cuticle on the leaves of Chinese kale probably increased its ability to retain water under drought while Caisin adjusted osmotically and Chinese kale did not. Waterlogging and water deficit had strong effects on leaf gas exchange of both Brassica species. Water deficit closed the stomata in both species and this was associated with a leaf water content of 9 g g−1 DW. In contrast, waterlogging reduced conductance from 1.0 to 0.1 mol H2O m−2 s−1 in direct proportion to changes in leaf water content, which fell from 11 to 5 g g−1 DW. This separation of the effects of water deficit and waterlogging on conductance was reflected in transpiration, internal CO2 concentration and net photosynthesis. In conclusion, Chinese kale and Caisin showed rather different adaptations in response to waterlogging and water deficit. Caisin was more tolerant of waterlogging than Chinese kale and also showed evidence of tolerance of drought. There is genetic variation to waterlogging within the Brassica genus among the leafy vegetables that could be used for cultivar improvement.  相似文献   

20.
Anthropogenic ground-level ozone (O3) pollution can alter the phosphorus (P), carbon (C), and nitrogen (N) of terrestrial plants’ ecological stoichiometry, which in turn affects forest productivity, nutrient utilization, and carbon sink capacity. However, there is still quite a lot of uncertainty regarding the impact of high O3 levels on C-N-P stoichiometry in organs with a rapid turnover (i.e., fine roots and leaves) across varied functional types. This study investigated the effects of O3 on the stoichiometry of C-N-P nutrient allocation of stocks to various plant organs, with a special focus on tree species frequently employed for urban greening. The impact of O3 on C-N-P stoichiometry among different functional tree types was subsequently evaluated by reviewing the published literature. Under a pooling of all species, elevated O3 decreased and leaf C and P concentrations increased, thereby decreasing the leaf C: P ratio. Elevated O3 increased the N concentration in fine roots, thereby decreasing the C: N ratio, although no significant impact was observed in leaves. Elevated O3 significantly reduced the leaf stocks of C (CSleaf) and N (NSleaf), however, there was no observed variation in these stocks in fine roots. The content of P, C, and N in fine roots and leaves in evergreen broadleaf species exceeded those in deciduous species. Elevated O3 significantly reduced CSleaf, NSleaf, and PSleaf in deciduous broadleaf species, whereas there was a significant reduction for the same in evergreen species. The literature analysis further demonstrated a larger O3-induced increment in leaf P concentration in deciduous species as compared to evergreen species. Elevated O3 significantly increased the difference in C and N stocks between fine roots and leaves in deciduous broadleaf species, whereas this difference was observed to decrease in evergreen species. The results of this study can facilitate an improved understanding of ecological stoichiometric responses of urban greening tree species under O3 stress and the resulting nutrient use strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号