首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of plant nutrition》2013,36(8):1561-1580
Abstract

The Magruder plots are the oldest continuous soil fertility wheat research plots in the Great Plains region, and are one of the oldest continuous soil fertility wheat plots in the world. They were initiated in 1892 by Alexander C. Magruder who was interested in the productivity of native prairie soils when sown continuously to winter wheat. This study reports on a simple estimate of nitrogen (N) balance in the Magruder plots, accounting for N applied, N removed in the grain, plant N loss, denitrification, non‐symbiotic N fixation, nitrate (NO3 ?) leaching, N applied in the rainfall, estimated total soil N (0–30 cm) at the beginning of the experiment and that measured in 2001. In the Manure plots, total soil N decreased from 6890 kg N ha?1 in the surface 0–30 cm in 1892, to 3198 kg N ha?1 in 2002. In the Check plots (no nutrients applied for 109 years) only 2411 kg N ha?1 or 35% of the original total soil organic N remains. Nitrogen removed in the grain averaged 38.4 kg N ha?1 yr?1 and N additions (manure, N in rainfall, N via symbiotic N fixation) averaged 44.5 kg N ha?1 yr?1 in the Manure plots. Following 109 years, unaccounted N ranged from 229 to 1395 kg N ha?1. On a by year basis, this would translate into 2–13 kg N ha?1 yr?1 that were unaccounted for, increasing with increased N application. For the Manure plots, the estimate of nitrogen use efficiency (NUE) (N removed in the grain, minus N removed in the grain of the Check plots, divided by the rate of N applied) was 32.8%, similar to the 33% NUE for world cereal production reported in 1999.  相似文献   

2.
Plant–microorganism associations have long been studied, but their exploitation in agriculture partially or fully replacing chemical fertilizers is still modest. In this study, we evaluated the combined action of rhizobial and plant growth-promoting rhizobacteria inoculants on the yields of soybean and common bean. Seed inoculation with rhizobia (1.2?×?106 cells seed?1) was compared to co-inoculation with Azospirillum brasilense in-furrow (different doses) or on seeds (1.2?×?105 cells seed?1) in nine field experiments. The best in-furrow inoculant dose was 2.5?×?105 cells of A. brasilense seed?1 for both crops. Inoculation with Bradyrhizobium japonicum increased soybean yield by an average 222 kg?ha?1 (8.4 %), and co-inoculation with A. brasilense in-furrow by an average 427 kg?ha?1 (16.1 %); inoculation always improved nodulation. Seed co-inoculation with both microorganisms resulted in a mean yield increase of 420 kg?ha?1 (14.1 %) in soybean relative to the non-inoculated control. For common bean, seed inoculation with Rhizobium tropici increased yield by 98 kg?ha?1 (8.3 %), while co-inoculation with A. brasilense in-furrow resulted in the impressive increase of 285 kg?ha?1 (19.6 %). The cheaper, more sustainable inoculated treatment produced yields equivalent to the more expensive non-inoculated + N-fertilizer treatment. The results confirm the feasibility of using rhizobia and azospirilla as inoculants in a broad range of agricultural systems, replacing expensive and environmentally unfriendly N-fertilizers.  相似文献   

3.
A field experiment was conducted to assess the effect of microbial inoculants and inorganic fertilizers for sustaining the yield of soybean. Application of 100% recommended dose of fertilizer (RDF) gave significantly highest yield (2433 kg ha?1) over 75% RDF (2317 kg ha?1) and without RDF (2205 kg ha?1). Seeds inoculated with Rhizobium (Bradyrhizobium japonicum) and phosphate-solubilizing bacteria (2480 kg ha?1) gave significantly highest soybean yield over without inoculation (2191 kg ha?1). Rhizobium and phosphate-solubilizing bacteria with 100% RDF (2674 kg ha?1) gave significantly highest seed yield than rest of the treatment combinations. Root nodules and their dry weight were remained un-influenced due to fertilizer levels, whereas in bio-fertilizers, it was significantly higher with Rhizobium inoculation (24.3 and 408 mg, respectively) followed by dual inoculation of Rhizobium and PSB. 100% RDF and dual inoculation with Rhizobium and PSB earned Rs. 47916/- and Rs. 51182/- net returns per ha, respectively.  相似文献   

4.
ABSTRACT

Integrated management of soil organic matter and nutritional status of crop plants is essential to sustain the production of organic farming systems. Thus, a 2–year field experiment was conducted to examine the effects of soil additions (192 kg N ha–1, humic+192 kg N ha–1, humic+144 kg N ha–1 and humic+96 kg N ha–1) and foliar applications (amino acids, Azotobacter+yeast, and amino acids plus Azotobacter+yeast) as various fertilizer resources on growth and yield of wheat. Results showed that humic+192 kg N ha–1 × amino acids plus Azotobacter+yeast were the effective combination for producing the highest values of flag leaf area, total dry weight, tiller number m–2, spike weight m–2, and grain yield ha–1. Under foliar application of amino acids plus Azotobacter+yeast, reducing N supply from recommended rate (192 kg N ha–1) to 144 kg N ha–1+ humic achieved higher values of all yield traits, with a saving of 25% of applied mineral nitrogen as well as enhancing nitrogen use efficiency.  相似文献   

5.
An 8-year field study documented the impact of tillage, crop rotations, and crop residue management on agronomic and soil parameters at Brookings, South Dakota. The greatest annual proportion of above-ground biomass phosphorus (P) removed was from the grain (78–87% of total) although crop residue removed some P as well. Greater above-ground total biomass P (grain P + crop residue P) was removed from corn than from soybean and spring wheat crops mainly due to the greater corn grain biomass harvested. Cumulative above-ground biomass P removal was greatest for the corn-soybean rotation (214 kg P ha?1), while it was lowest for the soybean-wheat rotation (157 kg P ha?1). Tillage treatments within crop rotation or residue management treatments did not influence annual or cumulative P removal rates. Olsen extractable soil orthophosphate-P levels declined consistently through time from a mean of 40 µg g?1 (2004) to 26 µg g?1 (2011). Biomass P removal was calculated to be 15.7 ha?1 yr?1 to decrease Olsen extractable soil orthophosphate-P levels by 1 µg g?1 yr?1 over 8 years of the study.  相似文献   

6.
Abstract

Soybean [Glycine max (L.) Merr.] responses to seed inoculation with rhizobium are inconsistent in sites with inoculation history. Field trials were conducted in South-central region of Paraná State (Southern Brazil) aiming to evaluate yield response to inoculation in areas with history of inoculation at a regional-scale (21 trials, 1999/2000 to 2014/2015), and identify nodulation, plant dry weight and nitrogen (N) components underpinning yield formation (10 trials, 2015/2016 and 2016/2017). Seed yield varied from 1853 to 5352?kg ha?1 (first dataset), characterizing a wide range of environmental conditions across seasons. Response to inoculation was inconsistent at regional-scale, with a similar seed yield of inoculated (3286?kg ha?1) and non-inoculated (3298?kg ha?1) soybean. Lack of differences were also observed in all the variables analyzed of second dataset. Research efforts should be applied aiming to identify rhizobia persistence in the soil and its efficacy at N fixation after continuous cropping without inoculation.  相似文献   

7.
Over the years, a scarcity of information on nutrient gains or losses has led to overemphasis being placed on crop yields and economic income as the direct benefits from fertilizer micro-dosing technology. There is increasing concern about the sustainability of this technology in smallholder Sahelian cropping systems. This study was designed in the 2013 and 2014 cropping seasons to establish nutrient balances under fertilizer micro-dosing technology and their implications on soil nutrient stocks. Two fertilizer micro-dosing treatments [2 g hill?1 of diammonium phosphate (DAP) and 6 g hill?1 of compound fertilizer Nitrogen-Phosphorus-Potassium (NPK) (15-15-15)] and three rates of manure (100 g hill?1, 200 g hill?1 and 300 g hill?1) and the relevant control treatments were arranged in a factorial experiment organized in a randomized complete block design with three replications. On average, millet (Pennisetum glaucum (L.) R.Br.) grain yield increased by 39 and 72% for the plots that received the fertilizer micro-dosing of 6 g NPK hill?1 and 2 g DAP hill?1, respectively, in comparison with the unfertilized control plots. The average partial nutrients balances for the two cropping seasons were ?37 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?34 kg K ha?1yr?1 in plots that received the application of 2 g DAP hill?1, and ?31 kg N ha?1yr?1, ?1 kg P ha?1yr?1 and ?27 kg K ha?1yr?1 for 6 g NPK hill?1. The transfer of straw yields accounted for 66% N, 55% P and 89% K for removal. The average full nutrient balances for the two cropping seasons in fertilizer micro-dosing treatments were ?47.8 kg N ha?1 yr?1, ?6.8 kg P ha?1 yr?1 and ?21.3 kg K ha?1 yr?1 which represent 7.8, 24.1 and 9.4% of N, P and K stocks, respectively. The nutrient stock to balance ratio (NSB) for N decreased from 13 to 11 and from 15 to 12 for the plots that received the application of 2 g DAP hill?1 and 6 g NPK hill?1, respectively. The average NSB for P did not exceed 5 for the same plots. It was concluded that fertilizer micro-dosing increases the risk of soil nutrient depletion in the Sahelian low-input cropping system. These results have important implications for developing an agro-ecological approach to addressing sustainable food production in the Sahelian smallholder cropping system.  相似文献   

8.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

9.
ABSTRACT

While pulses are staple food-legumes in Ethiopia, their productivity is low due to low soil fertility. Elite rhizobial strains that significantly increased shoot dry weight and nitrogen (N) contents of common beans and soybeans in greenhouse were selected for two-year field trials to evaluate their effect on yields of the pulses in the field. Each pulse had six treatments, namely four rhizobial inoculants, uninoculated control, and synthetic N fertilizer. In the drought-affected year 2015, inoculated pulses tolerated moisture stress better than non-inoculated controls. Inoculation was conducive to higher or equivalent yields compared to synthetic N fertilizer. At Halaba, bean inoculated with strain HAMBI3562 gave the highest grain yield (1500 ± 81 kg ha?1; mean±SE) while the control yielded only 653 ± 22 kg ha?1. At Boricha, HAMBI3570 gave a grain yield (640 ± 35 kg ha?1) comparable to synthetic N. When rainfall was optimal in 2016, inoculation with HAMBI3562 and HAMBI3570 gave grain yields (around 4300 kg ha?1) equivalent to synthetic N. With soybean, strain HAMBI3513 produced consistently higher or comparable biomass and grain yields compared to synthetic N. In conclusion, HAMBI3562 and HAMBI3570 for beans and HAMBI3513 for soybeans can serve as inoculants for areas having similar conditions as the test areas.  相似文献   

10.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

11.
In Ethiopia, inoculation of soybean with rhizobial inoculants is not common practice, but could provide an option to increase grain yields in low nitrogen (N) acidic soils. In these acid soils, the selection of acid tolerant rhizobia is one strategy that may increase the performance of soybean. In this study, rhizobial strains isolated from Ethiopian soils were evaluated for their acid tolerance and symbiotic N fixation efficiency with soybean, in controlled environments. Following this, four isolated rhizobial strains were evaluated in six field experiments in major soybean growing areas of Ethiopia. Inoculation with the commercial strain or with one of two locally sourced isolates, that were developed as inoculants, improved soybean yield. The yield increase due to inoculation with the commercial strain was consistent and greater than other treatments, while the increase due to the two locally sourced strains was comparable to, or greater than, application of 46 kg N/ha in soils, where the resident rhizobial population was ≤1.4 × 103 cfu/g soil. For soils with high background rhizobial populations, there was no response to inoculation. In one of the experimental sites (Bako), the percentage of N fixed (%Ndfa) was 55 for the commercial strain and 35 for the local strain, ES3. This study demonstrated that field validation is a necessary step in the selection of acid-tolerant strains of rhizobia to increase soybean production for Ethiopia.  相似文献   

12.
A field experiment was conducted to examine responses of soil respiration, nitrification, and denitrification to warming in a winter wheat (Triticum aestivum L.)–soybean (Glycine max (L.) Merr) rotation cropland. The results showed that seasonal variations in soil respiration were positively related to seasonal fluctuations in soil temperature. Seasonal mean soil respiration rates for the experimental warming (EW) and control (CK) plots were 3.98 ± 0.43 and 2.54 ± 0.45 μmol m?2 s?1, respectively, in the winter wheat growing season, and they were 4.59 ± 0.16 and 4.36 ± 0.08 μmol m?2 s?1, respectively, in the soybean growing season. There was a marginally significant level (p = 0.097) for mean nitrification rates between EW and CK plots. Soil temperature and moisture accounted for 58.2% and 58.1% of the seasonal variations observed in the winter wheat and soybean plots, respectively.  相似文献   

13.
Abstract

Quantitative assessment of soil nitrogen (N) that will become available is important for determining fertilizer needs of crops. Nitrogen‐supplying capacity of soil to rice and wheat was quantified by establishing zero‐N plots at on‐farm locations to which all nutrients except N were adequately supplied. Nitrogen uptake in zero‐N plots ranged from 41.4 to 110.3 kg N ha?1 for rice and 33.7 to 123.4 kg N ha?1 for wheat. Availability of soil N was also studied using oxidative, hydrolytic, and autoclaving indices, salt‐extraction indices, light‐absorption indices, and aerobic and anaerobic incubation indices. These were correlated with yield and N uptake by rice and wheat in zero‐N plots. Nitrogen extracted by alkaline KMnO4 and phosphate borate buffer and nitrogen mineralized under aerobic incubation were satisfactory indices of soil N supply. For rice, 2 M KCl and alkaline KMnO4 were the best N‐availability indices. Thus, alkaline KMnO4 should prove a quick and reliable indicator of indigenous soil N supply in soils under a rice–wheat cropping system.  相似文献   

14.
Abstract

The aim of this study was to assess the mitigating effects of lime nitrogen (calcium cyanamide) and dicyandiamide (DCD) application on nitrous oxide (N2O) emissions from fields of green tea [Camellia sinensis (L.) Kuntze]. The study was conducted in experimental tea fields in which the fertilizer application rate was 544 kg nitrogen (N) ha?1 yr?1 for 2 years. The mean cumulative N2O flux from the soil between the canopies of tea plants for 2 years was 7.1 ± 0.9 kg N ha?1 yr?1 in control plots. The cumulative N2O flux in the plots supplemented with lime nitrogen was 3.5 ± 0.1 kgN ha?1, approximately 51% lower than that in control plots. This reduction was due to the inhibition of nitrification by DCD, which was produced from the lime nitrogen. In addition, the increase in soil pH by lime in the lime nitrogen may also be another reason for the decreased N2O emissions from soil in LN plots. Meanwhile, the cumulative N2O flux in DCD plots was not significantly different from that in control plots. The seasonal variability in N2O emissions in DCD plots differed from that in control plots and application of DCD sometimes increased N2O emissions from tea field soil. The nitrification inhibition effect of lime nitrogen and DCD helped to delay nitrification of ammonium-nitrogen (NH4+-N), leading to high NH4+-N concentrations and a high ratio of NH4+-N /nitrate-nitrogen (NO3-N) in the soil. The inhibitors delayed the formation of NO3-N in soil. N uptake by tea plants was almost the same among all three treatments.  相似文献   

15.
Two vermicompost treatments providing 45 (V1) and 90 (V2) kg P ha?1 and mycorrhizae (M) inoculation were evaluated alone and in combinations for wheat (Triticum aestivum L.) growth and soil fertility status. The treatments included; the Control, nitrogen (N): dipotassium oxide (K2O) as basal dose (BD; 120:60 kg ha?1), N: phosphorus pentoxide (P2O5): K2O as recommended dose (RD; 120:90:60 kg ha?1), BD+Myccorhiza (BDM), BD+V1 (BDV1), BDM+V1 (BDMV1), BD+V2 (BDV2), and BDM+V2 (BDMV2). Combination of mycorrhizae and vermicompost (BDMV1 and BDMV2) significantly and maximally improved the growth, plant N, phosphorus (P), and micronutrient concentrations over the control, reduced the soil pH by 5 and 6%, increased OM by 25 and 112%, total N by 41%, and extractable P up to 200% while the extent of improvement was directly related to the content of added vermicompost. Results indicated that vermicompost at either level synergistically affected the mycorrhizae in plant nutrition as well as improved soil fertility status and soil chemical properties.  相似文献   

16.
Abstract. The residual value of mineral N fertilizer applied in the spring was investigated in a field experiment where four cereals (winter wheat, winter barley, spring barley and spring oats) had been grown at reduced (0.7N), normal (1N) or high (1.3N) N fertilizer rates for 20 to 28 years. The effect of previous N fertilizer dressing was tested in two succeeding years by replacing the original N rate with five test N rates ranging from 0 to 240 kg N ha?1 for winter cereals and 0 to 200 kg N ha?1 for spring cereals. In the first test year, winter wheat grown on plots previously supplied with the high rate of mineral fertilizer (202 kg N ha?1 yr?1) yielded more grain and straw and had a higher total N uptake than wheat on plots previously supplied with the normal (174 kg N ha?1 yr?1) or reduced (124 kg N ha?1 yr?1) rate. The grain yield response and N uptake was not significantly affected by the N supply in the test year. The winter wheat grown in the second test year was unaffected by the previous N supply. Grain and straw yield response and total N uptake for spring barley, winter barley and oats, were almost identical irrespective of the previous N rate. After 20 to 28 years there were no significant differences in soil C and N (0 to 20 cm) between soil receiving three rates of N fertilizer. Soil from differently fertilized oat plots showed no significant differences in N mineralizing capacity. Nitrate leaching losses from the soils at the three N rates were estimated and the N balances for the 20 to 28 years experimental period calculated. The data indicated a reduction in overall loss of 189 to 466 kg N ha?1 at the normal and high N rates compared with the reduced N rate. We conclude that the N supplying capacity and soil organic matter content of this fertile sandy loam soil under continuous cereal cropping with straw removal was not significantly affected by differences in N fertilizer residues.  相似文献   

17.
Nitrogen fixation in faba bean (Vicia faba cv. Mesay) as affected by sulfur (S) fertilization (30 kg S ha–1) and inoculation under the semi‐arid conditions of Ethiopia was studied using the 15N‐isotope dilution method. The effect of faba bean–fixed nitrogen (N) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Sulfur fertilization and inoculation significantly (p < 0.05) affected nodulation at late flowering stage for both 2004 and 2005 cropping seasons. The nodule number and nodule fresh weighs were increased by 53% and 95%, relative to the control. Similarly, both treatments (S fertilization and inoculants) significantly improved biomass and grain yield of faba bean on average by 2.2 and 1.2 Mg ha–1. This corresponds to 37% and 50% increases, respectively, relative to the control. Total N and S uptake of grains was significantly higher by 59.6 and 3.3 kg ha–1, which are 76% and 66% increases, respectively. Sulfur and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant of faba bean from 51% to 73%. This corresponds to N2 fixation varying from 49 to 147 kg N ha–1. The percentage of N derived from fertilizer (%Ndff) and soil (%Ndfs) of faba bean varied from 4.3% to 2.8 %, and from 45.1% to 24.0%, corresponding to the average values of 5.1 and 47.9 kg N ha–1. Similarly, the %Ndff and %Ndfs of the reference crop, barley, varied from 8.5 % to 10.8% and from 91.5% to 89.2%, with average N yields of 9.2 and 84.3 kg N ha–1. Soil N balance after faba bean ranged from 13 to 52 kg N ha–1. Beneficial effects of faba bean on yield of a wheat crop grown after faba bean were highly significant, increasing the average grain and N yields of this crop by 1.11 Mg ha–1 and 30 kg ha–1, relative to the yield of wheat grown after the reference crop, barley. Thus, it can be concluded that faba bean can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

18.
Abstract

A field experiment was conducted to test the new approach for estimating crop nitrogen (N) uptake from organic inputs. The soil was prelabeled with 15N by applying 15N fertilizer to sunflower crop (Helianthus annuus L. var. Viki). The 14N plots, which received unlabelled fertilizer, were also set up. At harvest, 15N labeled residues were added to the unlabeled soils at a rate of 73 kg N ha?1 (direct technique) and unlabeled residues were added to the 15N‐labeled soils at the same rate (indirect technique). Control plots without residues were also established. All plots were sown with the wheat (Triticum aestivum L. var merchouch)–fababean (Vicia faba L.)–wheat (Triticum aestivum L. var merchouch) cropping sequence.

In the cropping sequence, the first, second and third crop derived respectively 12.01, 2.4, and 1.93 kg N ha?1 from crop residues estimated by the direct method and 14.77, 3.3, and 1.85 kg N ha?1 estimated by the indirect method. The results showed no significant difference between the two techniques, which suggests that the new soil prelabeling technique compares well with the direct technique.  相似文献   

19.
The study was based on data from selected long-term field trials established at the Experimental Fields of the Institute of Field and Vegetable Crops, Novi Sad (Serbia). The effect of tillage systems on SOC concentration and SOC stock was most pronounced at 0–10 cm depth. In a 0–40 cm soil layer, in a 7-year period, no-till (NT) sequestrated 863 kg SOC ha?1 yr?1 more compared to moldboard plow tillage (PT), while the effects of disc tillage (DT) and chisel tillage (CT) were not significantly different. Unfertilized three-crop rotation (CSW) compared to two-crop rotation (CW) enhanced SOC storage in a 0–30 cm soil layer by 151 kg C ha?1 yr?1 in a 56-year period. Within fertilized treatments, SOC concentration was highest under continuous corn (CC). Mineral fertilization (F) non-significantly increased the SOC stock compared to no fertilization in corn monoculture in a 32-year period. The incorporation of mineral fertilizers and harvest residues (F + HR) and mineral fertilizers and farmyard manure (F + FYM) sequestered 195 and 435 kg C ha?1 yr?1 more than the unfertilized plot, respectively, in a 0–30 cm soil layer, in a 35-year period. Irrigation did not significantly affect SOC sequestration.  相似文献   

20.
Crop residues are beneficial substances affecting crop production and soil properties. A field experiment was carried out to evaluate the effects of wheat (Triticum aestivum L.) residue rates (0, 25, 50 and 75%) combined with N levels (0, 34.5, 69, 103.5 kg ha?1) on yield and yield components of two red common bean (Phaseolus vulgaris L.) cultivars and to monitor chemical soil parameters. The experiment was conducted at Research Center, College of Agriculture, Shiraz University, Shiraz, Iran for two years (2008–2009). The experiment was conducted as a split–split plot arranged in a randomized complete blocks design with three replications. The highest seed yield was obtained when 25–50% of residues were incorporated. The highest seed yield, seed weight per plant, 100-seed weight and seed number per pod were obtained with 103.5 kg N ha?1 with no significant difference to 69 kg N ha?1. Residue incorporation significantly increased soil organic carbon (SOC) as well as available K and P content. It is possible to sow red common bean as a double cropping by soil incorporation of 25–50% wheat residues with application of 69 kg N ha?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号