首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
A 4-year (2008–2009 to 2011–2012) study was conducted on the effect of mineral phosphorus (P) + sulphur (S) and biofertilizers on rain-fed chickpea (Cicer arietinum L.) at the Punjab Agricultural University’s Research Station, Ballowal Saunkhri, India. The experiment comprised of five combinations of P and S, viz. control (P0S0), no P + 10 kg S ha?1 (P0S10), 15 kg P + 10 kg S ha?1 (P15S10), no P + 20 kg S ha?1 (P0S20) and 30 kg P + 20 kg S ha?1 (P30S20); and three seed inoculation levels, viz. control, Rhizobium and phosphate-solubilizing bacteria (PSB), were laid out in randomized complete block design. Combined application of P + S resulted in improved growth, nodulation, yield attributes and yield. The increase in seed yield over control due to P + S ranged from 11.8% to 17.7%. Seed inoculation with Rhizobium recorded the highest growth, nodulation, yield attributes and yield of chickpea and was statistically at par with PSB and significantly better than no inoculation. Highest benefit/cost ratio (B:C, 2.19) was obtained in P30S20. In view of environmental pollution and high costs of chemical fertilizers, biofertilizers alone or in combination may help to achieve sustainable and ecological agricultural production.  相似文献   

2.
Field experiments evaluated the effects of integrated nutrient management on symbiotic parameters, growth, nutrient accumulation, productivity and profitability of lentil (Lens culinaris Medikus). Application of recommended dose of nutrients (RDN, 12.5 kg N ha?1 + 40 kg P2O5 ha?1) + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers [Rhizobium + phosphate solubilizing bacteria (PSB) + plant growth promoting rhizobacteria (PGPR)] + 1.0 g ammonium molybdate kg?1 seed recorded the highest number & dry weight of nodules, leghaemoglobin content, root & shoot dry weight, plant height, number of pods plant?1 and 100-seed weight. The next best treatment was RDN + seed inoculation with biofertilizers + 1.0 g ammonium molybdate kg?1 seed. On the basis of mean of three-year data, the treatment of RDN + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers 1.0 g ammonium molybdate kg?1 seed proved the best in realizing the highest grain yield (34.0%), gross returns (34.0%) and net returns (54.8% higher over control). Nitrogen, phosphorus and potassium in the grains and straw were significantly improved where RDN was applied in combination with seed inoculation, basal application of ZnSO4 and seed treatment with 1 g ammonium molybdate than their single applications.  相似文献   

3.
A long-term field experiment was conducted for 8 years on a Vertisol in central India to assess quantitatively the direct and residual N effects of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter in a soybean–wheat rotation. After cultivation of soybean each year, its aerial residues were removed before growing wheat in the same plots using four N levels (120, 90, 60 and 30 kg ha?1) and Azotobacter inoculation. Inoculation of soybean increased grain yield by 10.1% (180 kg ha?1), but the increase in wheat yields with inoculation was only marginal (5.6%; 278 kg ha?1). There was always a positive balance of soil N after soybean harvest; an average of +28 kg N ha?1 yr?1 in control (nodulated by native rhizobia) plots compared with +41 kg N ha?1 yr?1 in Rhizobium-inoculated plots. Residual and direct effects of Rhizobium and Azotobacter inoculants caused a fertilizer N credit of 30 kg ha?1 in wheat. Application of fertilizers or microbial inoculation favoured the proliferation of rhizobia in crop rhizosphere due to better plant growth. Additional N uptake by inoculation was 14.9 kg N ha?1 by soybean and 20.9 kg N ha?1 by wheat crop, and a gain of +38.0 kg N ha?1 yr?1 to the 0–15 cm soil layer was measured after harvest of wheat. So, total N contribution to crops and soil due to the inoculants was 73.8 kg N ha?1 yr?1 after one soybean–wheat rotation. There was a total N benefit of 13.8 kg N ha?1 yr?1 to the soil due to regular long-term use of microbial inoculants in soybean–wheat rotation.  相似文献   

4.
Plant–microorganism associations have long been studied, but their exploitation in agriculture partially or fully replacing chemical fertilizers is still modest. In this study, we evaluated the combined action of rhizobial and plant growth-promoting rhizobacteria inoculants on the yields of soybean and common bean. Seed inoculation with rhizobia (1.2?×?106 cells seed?1) was compared to co-inoculation with Azospirillum brasilense in-furrow (different doses) or on seeds (1.2?×?105 cells seed?1) in nine field experiments. The best in-furrow inoculant dose was 2.5?×?105 cells of A. brasilense seed?1 for both crops. Inoculation with Bradyrhizobium japonicum increased soybean yield by an average 222 kg?ha?1 (8.4 %), and co-inoculation with A. brasilense in-furrow by an average 427 kg?ha?1 (16.1 %); inoculation always improved nodulation. Seed co-inoculation with both microorganisms resulted in a mean yield increase of 420 kg?ha?1 (14.1 %) in soybean relative to the non-inoculated control. For common bean, seed inoculation with Rhizobium tropici increased yield by 98 kg?ha?1 (8.3 %), while co-inoculation with A. brasilense in-furrow resulted in the impressive increase of 285 kg?ha?1 (19.6 %). The cheaper, more sustainable inoculated treatment produced yields equivalent to the more expensive non-inoculated + N-fertilizer treatment. The results confirm the feasibility of using rhizobia and azospirilla as inoculants in a broad range of agricultural systems, replacing expensive and environmentally unfriendly N-fertilizers.  相似文献   

5.
A field experiment was conducted during the winter seasons between 2004 and 2006 to assess the role of balanced fertilization and bioregulators (foliar-applied brassinosteroid 0.5 mg I?1, thiourea 1000 mg I?1 and kinetin 10 mg I?1) in enhancing the productivity of wheat. Conjoint application of NPKSZn (120 kg N, 40 kg P2O5, 30 kg K2O, 40 kg S, 5.5 kg Zn ha?1) recorded maximum improvements in yield attributes and significantly out-yielded all the fertilization treatments with 14.90, 4.97 and 6.39% increments in grain yield compared with NPK, NPKS and NPKZn treatments, respectively. Nutrient (N, P, K, S, Zn) content and uptake were also improved significantly with balanced fertilization. Among the bioregulators, application of 0.50 mg I?1 brassinosteroid recorded maximum increments in grain yield (14.10%), followed by 10 mg I?1 kinetin (12.31%) and 1000 mg I?1 thiourea (9.92%), over control (4.99 t ha?1). Bioregulators significantly enhanced the uptake of nutrients (N, P, K, S, Zn) over control. NPKSZn treatment also gave the maximum net return (Rs. 51,209 ha?1). Among the bioregulators, brassinosteroid provided the maximum net return (Rs. 47,292 ha?1) and benefit:cost (B:C) ratio (3.37) followed by thiourea (Rs. 45,500 ha?1 and 3.35). Kinetin also provided yield advantage, however, it gave a significantly reduced B:C ratio compared with control.  相似文献   

6.
The study evaluated the effects of phosphorus (0, 20, 30, and 40 kg P2O5 ha?1) and biofertilizers [Rhizobium (Rhizobium leguminosarum bv viciae), plant growth promoting rhizobacteria (PGPR) (Pseudomonas fluorescens), Rhizobium + PGPR, and uninoculated control] in lentil. Application of 40 kg P2O5 ha?1 resulted in the highest number of nodules, nodule dry weight, leghemoglobin content in nodules, chlorophyll content, yield attributes, and grain yield. Coinoculated treatment performed better than uninoculated control, and individual inoculations of Rhizobium and PGPR in terms of all above mentioned parameters. Application of 20 kg P2O5 ha?1 + Rhizobium inoculation gave statistically similar and 20 kg P2O5 ha?1 + Rhizobium + PGPR inoculation gave significantly higher grain yield than that by 40 kg P2O5 ha?1 alone. The use of Rhizobium alone and Rhizobium + PGPR consortium can save not only 20 kg P2O5 ha?1 but also increase the grain yield of lentil.  相似文献   

7.
Influence of different phosphorus (P) sources on growth, yield and oil quality of linola was evaluated when randomized in complete block design using three replications. Treatments were control (No P), hydropriming, soil phosphorus (50 kg ha?1), seed inoculation with phosphate solubilizing bacteria (PSB, Bacillus spp.) and seed priming with single super phosphate (2%) alone and combined with reduced soil phosphorus (25 kg P ha?1). Among treatments, hydropriming and seed inoculation reduced seedling 50% and mean emergence time with highest emergence index, seedling fresh and dry weights and chlorophyll contents. Seed inoculation with soil P (25 kg ha?1) produced highest seeds per capsule, 100-seed weight, seed and biological yield, harvest index. Maximum oil percentage, low protein contents and high cost benefit ratio with net economic returns were also found for seed inoculation combined with soil phosphorus. Nonetheless, soil phosphorus application can be reduced when seed inoculation with PSB is employed.  相似文献   

8.
The objective of this study was to evaluate the effects of organic and inorganic fertilizers on the yield and quality of sugar beet genotypes (Beta vulgaris L.). Therefore, a field trial was carried out in Peshawar, Pakistan, during the winters in 2012–2013. The field experiment was conducted in a randomized complete block design with split plots, having three replications. Fertilizer treatments (control, composted manure Higo Organic Plus at 5 t ha?1, Maxicrop Sea Gold seaweed extract at 5 L ha?1, farm yard manure at 10 t ha?1, inorganic nitrogen–phosphorus (NP) at 90:60 kg ha?1, NP at 120:90 kg ha?1 and NP at 150:120 kg ha?1) were allotted to main plots, while genotypes (Sandrina, Serenada and Kawe Terma) were allotted to the sub-plots. Plots treated with the application of NP at 120:90 kg ha?1 produced the highest beet yield (76.4 t ha?1) and sugar yield (11.1 t ha?1), and had the second highest polarizable sugar content (14.52%) and more economic return (Rs. 553,000 per hectare) as compared to control plots. Sugar beet genotype Serenada had significantly higher beet yield (55.5 t ha?1) and sugar yield (7.9 t ha?1) and a higher economic return (Rs. 380,000 per hectare) than the other genotypes. Sugar beet genotype Serenada supplied with NP at 120:90 kg ha?1is recommended for the general cultivation in the agro-climatic conditions of Peshawar valley.  相似文献   

9.
The effect of cattle manure and sulfur fertilizer on seed yield and oil composition of pumpkin (Cucurbita pepo var. Styriaca) under inoculated with Thiobacillus thiooxidans was investigated in a factorial study based on a randomized complete block design. Experimental factors consisted of cattle manure (M) (M0: 0, M1: 10; and M2: 20 t ha?1), sulfur (S) (S0: 0, S1: 250; and S2: 500 kg ha?1) and T. thiooxidans (B): inoculated (B1) and non-inoculated (B0). Results demonstrated that the application of T. thiooxidans, cattle manure, and S fertilizer decreased the soil pH. The largest number of seed per fruit (367), highest fruit yield (70.57 t ha?1), seed iron (Fe) content (16.26 mg 100 g?1), and seed yield (111 kg ha?1) was obtained when 20 t ha?1 manure was applied in combination with 500 kg ha?1 S inoculated with T. thiooxidans. In this condition, the content of S, Fe, phosphorus (P), and nitrogen (N) in plant shoots was increased by 44.8%, 22.58%, 33.89%, and 10.38%, respectively, compared to the control. Moreover, the highest content of seed protein was observed in 10 t ha?1 manure and 500 kg ha?1 S fertilizer inoculated with T. thiooxidans. When 250 kg ha?1 S fertilizer was applied, 20 t ha?1 manure decreased seed P content sharply. At the rate of 500 kg ha?1 S fertilizer, the highest content of seed P was obtained from 20 t ha?1 manure. Totally, 20 t ha?1 cattle manure, along with 500 kg ha?1 S fertilizer as well as T. thiooxidans inoculation, improved oil and seed yield of medicinal pumpkin.  相似文献   

10.
Sorghum is cultivated on Vertisols in the Ethiopian Highlands. An experiment was conducted in the Gumara-Maksegnit watershed in 2013 and 2014 to assess the effect of rate and timing of nitrogen fertilizer application on the possibility to shorten the maturity period and to improve the productivity of sorghum. The experiment was laid out as Randomized Complete Block Design with three replications. Treatments were nitrogen doses between 0 and 87 kg N ha?1 as urea applied at planting, at knee-height stage or in split doses at both stages. Results showed that application of 23, 41, 64 and 87 kg ha?1 N gave a yield increase of 40, 53, 62 and 69% over the control (0 kg N ha?1), respectively. In addition, split application of 41 kg ha?1, 64 kg ha?1 and 87 kg ha?1 of nitrogen fertilizer, half at planting and half at knee height stage, gave 19%, 15% and 18% increase in sorghum grain yield over a single dose application, respectively. Applying 87 kg ha?1 nitrogen fertilizer with split application half at planting and half at knee height stage, along with 46 kg ha?1 of P2O5, gave the highest grain yield and income.  相似文献   

11.
Abstract

Field experiments were conducted during 2013–2014 at Tashkent, Uzbekistan to evaluate the performance of chickpea variety “Jakhongir” with the variable proportion of nitrogen (N) and bio-fertilizer inoculation in the moderate saline (5.6?±?0.6?dSm?1) soil condition. The studied treatments were No control (non-fertilized), N1 mineral-N (50?kg?N?ha?1), N2, mineral-N (75?kg?N?ha?1), N3, mineral-N (100?kg?N?ha?1) equivalent 0%, 50%, 75%, and 100% from recommended rate for chickpea, Rhizobium inoculation (Bio)?+?No control, Rhizobium inoculation (Bio)?+?N1, Rhizobium inoculation (Bio)?+?N2, and Rhizobium inoculation (Bio)?+?N3. Seed inoculation with Rhizobium was significantly superior over no inoculation treatments at all rate of N fertilization. The middle rate of N fertilization 75?kg?N?ha?1 combined with biofertilizer inoculation had of superior effect on chickpea, producing 73.2% more yield (1.68?Mg ha?1), oil, protein, and sugar content performed 16.4%; 15.0%, and 17.9% higher value, respectively, in comparison to control.  相似文献   

12.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

13.
Leaf color chart (LCC) guides fertilizer nitrogen (N) application to rice as per requirement of the crop on the basis of a critical leaf color. Two field experiments were conducted to evaluate the effect of silicon (Si) and LCC based N management in aerobic rice. Following LCC-based N management, from 60 to 90 kg N ha?1 and 75 to 100 kg N ha?1 with 10–40% and 25–30% less fertilizer N was used without any reduction in yield as compared to the package of practices of 100 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) kg N ha?1 respectively, during both the seasons. The highest grain yield was noticed with 90 kg N ha?1 (30 kg N ha?1 as basal + LCC-3) and 100 kg N ha?1 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) along with the application of calcium silicate (CaSiO3) at 2 t ha?1 as sources of Si and on par with 60 kg N ha?1 (no basal + LCC-3) and 75 kg N ha?1 (30 kg N ha?1 as basal + LCC-3), respectively, during the season in 2008 and 2009. Higher fertilizer N use efficiency was recorded with Si and need-based N management using LCC-3 rather than recommended dose of fertilizer N.  相似文献   

14.
An experiment was conducted to study the response of maize to magnesium (Mg) and to find out the residual effect of Mg and green manure (GM) on transplanted aman (T. aman) rice in the maize–GM–T. aman cropping pattern. There were six treatments: T1 (recommended dose of fertilizer (RDF) + 0 kg Mg + 2 t CaCO3 ha?1), T2 (RDF + 10 kg Mg + 2 t CaCO3 ha?1), T3 (RDF + 20 kg Mg +2 t CaCO3 ha?1), T4 (RDF + 30 kg Mg + 2 t CaCO3 ha?1), T5 (RDF) and T6 (2 t CaCO3 ha?1). The response of maize to Mg was quadratic and the optimum dose of Mg was found to be 19 kg ha?1, which resulted in maximum yield of 10,507 kg ha?1. The residual effect of Mg along with GM and reduced dose of chemical fertilizer resulted in significant increase of grain yield of rice. Thus, N250P60K100Mg19S40Zn5B2 kg ha?1 for maize, only 20 kg N ha?1 for GM (Sesbania) and N60P9K33S10Zn1B1 kg ha?1 for T. aman appeared as the best combination for maximizing the productivity and may be recommended for this pattern at non-calcareous light-textured soils of Bangladesh. Application of lime increased soil pH, and this together with fertilizer and GM tended to improve soil fertility and thus may be recommended for soil amelioration.  相似文献   

15.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

16.
ABSTRACT

While pulses are staple food-legumes in Ethiopia, their productivity is low due to low soil fertility. Elite rhizobial strains that significantly increased shoot dry weight and nitrogen (N) contents of common beans and soybeans in greenhouse were selected for two-year field trials to evaluate their effect on yields of the pulses in the field. Each pulse had six treatments, namely four rhizobial inoculants, uninoculated control, and synthetic N fertilizer. In the drought-affected year 2015, inoculated pulses tolerated moisture stress better than non-inoculated controls. Inoculation was conducive to higher or equivalent yields compared to synthetic N fertilizer. At Halaba, bean inoculated with strain HAMBI3562 gave the highest grain yield (1500 ± 81 kg ha?1; mean±SE) while the control yielded only 653 ± 22 kg ha?1. At Boricha, HAMBI3570 gave a grain yield (640 ± 35 kg ha?1) comparable to synthetic N. When rainfall was optimal in 2016, inoculation with HAMBI3562 and HAMBI3570 gave grain yields (around 4300 kg ha?1) equivalent to synthetic N. With soybean, strain HAMBI3513 produced consistently higher or comparable biomass and grain yields compared to synthetic N. In conclusion, HAMBI3562 and HAMBI3570 for beans and HAMBI3513 for soybeans can serve as inoculants for areas having similar conditions as the test areas.  相似文献   

17.
Though mineral N application impaired nodulation initiation and function, it improves the productivity of common bean. The effect of inorganic application on common bean productivity, however, is dependent on the availability of plant nutrients including nitrogen (N) in the soils. Therefore, multilocation field experiments were conducted at Babillae, Fedis, Haramaya, and Hirna to evaluate the effect of inherent soil fertility status on responsiveness of common bean to different rates of N fertilizer application and its effect on nodulation, yield, and yield components of common bean. The treatments were six levels of N fertilizer (0, 20, 40, 60, 80, and 100 kg N ha?1) laid out in randomized completed block design with three replications. The result revealed that 20 kg N ha?1 application significantly improved the nodule number (NN) and nodule dry weight (NDW) except Hirna site, in which reduction of NN and NDW was observed. Although the remaining investigated yield and yield components were significantly improved due to N fertilizer in all study sites, 40 kg N ha?1 application resulted in significantly increased GY of common bean at Fedis, Haramaya, and Hirna site, while 60 kg N ha?1 at Babillae site. The highest total biomass yield (7011.6 kg ha?1) and GY (2475.28 kg ha?1) of common bean were recorded at Hirna and Haramaya sites, respectively, indicating the importance of better fertile soil for good common bean production. Hence, it can be concluded that the effect of inorganic N on common bean was irrespective of soil fertility rather the total amount of N in soil would affect the need of different rate of inorganic N.  相似文献   

18.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

19.
A field experiment was conducted during two consecutive years of 2010–2011 and 2011–2012 to study the effect of biofertilizers in conjunction with organic and inorganic sources of nutrient management on productivity, quality and soil health on field pea at ICAR RC for NEH Region, Nagaland Centre Jharnapani, Nagaland, India. The experiment was laid out in split plot design with five nutrient sources in main plots and four treatment of biofertilizers with zinc in sub plots. Results indicated that the application of 100% recommended dose of fertilizer (RDF) through inorganic + 50% recommended dose of nitrogen (RDN) through vermicompost significantly improved root nitrogen (N) content, cation exchange capacity (CEC) of roots, NA activates, seed yield (1153 and 1262 kg ha?1), straw yield (2182 and 2332 kg ha?1) in the year of 2010–2011 and 2011–2012, respectively. Nutrients (N, P, K, S and Zn) uptake by seed and straw, protein content, protein harvest, soil organic carbon (SOC), available N, P, K, S, Zn and economics significantly higher with 100% RDF through inorganic + 50% RDN through vermicompost during both the years. Seed inoculation with biofertilizers along with 5 kg Zn ha?1 markedly enhanced the root N content, CEC of roots, nitrogenase activities (NA), seed yield (1080 and 1193 kg ha?1), straw yield (1978 and 2128 kg ha?1), nutrients [N, phosphorus (P), potassium (K), sulfur (S) and zinc (Zn)] uptake, soil organic carbon (SOC) (%), and available N, P, K, S, and Zn of pea in both the years, respectively. These sources also give more income and benefit cost ratio per rupees invested.  相似文献   

20.
It is important to develop integrated fertilization strategies for various crops that enhance the competitive ability of the crop, maximize crop production and reduce the risk of nonpoint source pollution from fertilizers. In order to study the effects of mineral nitrogen fertilization and biofertilizer inoculation on yield and some physiological traits of rapeseed (Brassica napus L.) under different levels of sulfur fertilizer, field experiments in factorial scheme based on randomized complete block design were conducted with three replications in 2012 and 2013. Experimental factors were: (1) four levels of chemical nitrogen fertilizer (0, 100, 150 and 200 kg N ha?1), (2) two levels of biofertilizer (with and without inoculation) consisting Azotobacter sp. and Azospirillum sp. and (3) two levels of sulfur application (0 and 50 kg S ha?1). Rapeseed yield, oil content of grains and studied physiological traits had a strong association with the N fertilization, biofertilizer inoculation and sulfur (S) application. Higher rates of N fertilization, biofertilizer inoculation and S application increased the grain yield of rapeseed. In the case of physiological traits, the highest value of relative water content (RWC) was recorded in 100 kg N ha?1 that was statistically in par with 150 kg N ha?1 application, while usage of 150 kg N ha?1 showed the maximum cell membrane stability (CMS). Inoculation with biofertilizer and S fertilization resulted in higher RWC and CMS in rapeseed plants. The chlorophyll content showed its maximum values in the highest level of N fertilization, biofertilizer inoculation and S application. The usage of 200 kg N ha?1 significantly decreased the oil content of rapeseed grains, but the highest grain oil content was obtained from the application of 150 kg N ha?1, Azotobacter sp. and Azospirillum sp. inoculation and S fertilization. It seems that moderate N rate (about 150 kg N ha?1) and S application (about 50 kg S ha?1) can prove to be beneficial in improving growth, development and total yield of inoculated rapeseed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号