首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
针对现有小型甘蔗收获机刀架振动过大的问题,对其进行工况测试与分析,揭示刀架振动情况。试验表明:当路面激励与电动机激励共同作用时,刀架振动过大。在信号分析频率范围0~100Hz内,路面2Hz、电机2 8 Hz共同作用时,刀架加速度有效值RMS为3.11 m/s~2;优化后,在0~100Hz内,刀架加速度有效值RMS为1.19m/s~2,降低了61.8%左右,有效地减少了刀架的振动。  相似文献   

2.
以常发CF700型拖拉机为研究对象,以MATLAB/SIMULINK为研究平台,建立了基于轮胎振动模型的拖拉机1/2整机平面模型。仿真得到了拖拉机以10 km/h车速在D级路面上行驶的振动加速度、轮胎变形量和轮胎动载荷,在GB/T 10910-2004标准规定的较平滑跑道上进行了振动试验,并与仿真的结果进行了对比,结果表明平均误差率为23.2%,在可接受的范围内,为后期研究拖拉机的减振措施提供了理论参考。  相似文献   

3.
为了解决拖拉机座椅振动对驾驶员腰部疲劳的影响,模拟拖拉机作业时的振动状态,在不同振动加速度和频率作用下测试了受试者腰部多裂肌和竖脊肌的表面肌电信号(sEMG),并分析其积分肌电值(iEMG)的变化规律.结果表明:腰部多裂肌和竖脊肌的iEMG在振动频率为4.0Hz的条件下,随振动加速度的增大而增加,在2.0m/s2 时出现最大值;在加速度为1.2m/s2 的条件下,随振动频率增大其变化不大;驾驶员主观感受的腰部肌肉疲劳随振动加速度和频率的增大而加重.  相似文献   

4.
提出了一种"微耕机-土壤"系统数学建模结合MatLab仿真的方法,研究微耕机的振动特性。首先建立了五自由度微耕机数学模型,然后利用MatLab软件建立仿真模型并进行仿真分析,得到系统关键振动部件(发动机、机架、变速箱及刀辊)处振动加速度信号的时域变化曲线,其均方根值分别为5.316、7.125、5.564、5.264m/s~2。在发动机全油门作业工况下,测试微耕机机架和变速箱处的振动加速度信号,得到了信号的时域变化曲线,其均方根值分别为7.33m/s~2和4.93m/s~2。将仿真结果与试验结果进行对比,结果表明:相对误差较小,分别为2.8%和12.9%;"微耕机-土壤"系统数学建模比较准确合理,数学建模结合MatLab仿真方法研究微耕机振动特性的方法可行,为同类产品的设计及减振优化提供了参考。  相似文献   

5.
为探索丘陵山地无人车振动特性,以丘陵山地无人车为研究对象,进行了振动特性试验。在无人车车体选择11个测试点,设计6组试验方案,综合分析测点位置、发动机油门大小和路面不平度对无人车振动特性的影响。试验结果表明,测点3(车架左前部)是无人车整车最合适安装传感器位置,在无人车正常行走、油门1/2位置、挂1档工况下,加速度最大值为47.4 m/s2,加速度最小值为-50.36 m/s2,加速度平均幅值为5.092 m/s2,加速度有效值仅为6.864 m/s2,说明该测点振动表现稳定;其他合适的测点为测点4和测点9。发动机油门大小对于加速度最大值、加速度最小值、加速度平均幅值、加速度方根幅值、加速度有效值均有显著影响,同一测点下,油门1/2和油门3/4相比较初始油门,加速度平均幅值增大297.1%和322.8%。路面不平度对于无人车振动有显著影响:在水泥路面上,无人车底盘加速度值最小,而在沙壤土、黏土和干沙土三种路况下,底盘加速度值分别增加81.23%,77.91%和1.31%。同时提出降低发动机高频振动、增加阻尼、传感器工作时降低行驶速度等减振措施。  相似文献   

6.
联合收获机主驾驶座振动强度及其频率结构试验   总被引:6,自引:0,他引:6  
根据小麦联合收获机振源特点,运用DH5922动态信号测试分析系统,现场测试新疆-2A型联合收获机主驾驶座地板测点的动力响应,得到了测点不同工况下的垂直振动加速度时程曲线和快速傅里叶变换频谱。研究结果表明:小麦联合收获机任一点的振动强度、频率结构随工况不同而变化。收获机空转、发动机空转、田间作业和公路运输4种工况下测点的振动加速度有效值为0.1591m/s2、0.1087m/s2、0.0938m/s2、0.0704m/s2,振动主频分别为142.6Hz、56.6Hz、36.6Hz、36.6Hz。  相似文献   

7.
为提高公交车的燃油经济性,对公交车油耗影响因素进行研究。采用AVL-Cruise软件建立公交车仿真模型,然后通过控制变量法分别对载客量、站间距离、加速度进行油耗分析,得到各影响因素与油耗的数据,最后用MATLAB将数据进行拟合,得到油耗影响因素与油耗的关系式。结果表明:载客量与油耗呈线性正相关。站间距离、加速度与油耗呈非线性相关并且随着站间距离的增加油耗越来越低,但油耗下降幅度逐渐放缓。当加速度的值小于0.75m/s~2时,随着加速度的增大,公交车油耗降低;当加速度的值在0.75~0.8m/s~2之间时,存在百公里油耗最小值;当加速度值大于0.8m/s~2时,百公里油耗随加速度的增大而增大,但不呈线性关系。  相似文献   

8.
小麦联合收割机倾斜输送器振动强度试验研究   总被引:3,自引:0,他引:3  
针对联合收割机倾斜输送器外壳的剧烈振动,运用DH5922动态信号测试分析系统,现场测试了新疆―2A联合收割机倾斜输送器外壳在不同工况下的动力响应,得到了倾斜输送器外壳测点的垂直振动加速度时程曲线和快速傅立叶变换频谱。研究结果表明:联合收割机倾斜输送器外壳上任一点的振动强度、频率结构随工况不同而变化;收割机空转、田间作业、发动机空转、公路运输四种工况下测点振动加速度的有效值分别为24.68m/s2、14.64m/s2、4.26m/s2、3.23m/s2,振动主频为107.9Hz、117.7Hz、57.6Hz、67.4Hz。  相似文献   

9.
半主动空气悬架的模糊神经控制仿真分析   总被引:1,自引:0,他引:1  
以空气悬架客车1/4车辆模型为控制对象,设计了模糊神经控制器,以簧载质量垂直方向振动加速度均方根为控制指标,以车速50,120 km/h标准B级路面和标准C级路面为随机输入,利用MATLAB软件对模型进行了控制仿真分析。结果表明,模糊神经控制器对车辆的行驶平顺性和操纵稳定性均有明显的改善。  相似文献   

10.
探讨了不同工况对于农用车排放及油耗的影响,进而通过实验建立农用车循环工况标准。工况对于排放的影响分析表明:①加速状态下油耗及排放最大,怠速状态下最小;②速度对于排放及油耗的影响呈现先减小后增加趋势,在20~45km/h范围最为高效;③加速度对于油耗及排放的影响表现为先增大后减小趋势,且CO和HC在加速度为0.6m/s~2时出现最大值;④排放及油耗随功率比升高而变大,且变化速度逐渐变大。  相似文献   

11.
开展了农用运输车的平顺性分析与优化研究。首先,在依据拉格朗日方程建立整车垂直方向四自由度振动模型的基础上,根据ISO 2631-1:1997(E)进行了其平顺性的分析评价;然后,基于实车道路试验对理论结果进行了验证;最后,以驾驶室悬置刚度和阻尼、座椅刚度和阻尼为设计变量,以座椅垂向加权加速度均方根值为目标函数,采用蚁群算法进行了平顺性的优化设计。结果表明,原车在车速为10 km/h时乘坐有些不舒服,车速为20 km/h时乘坐比较不舒服,车速30 km/h时乘坐不舒服;优化后座椅垂向加速度功率谱密度峰值大幅降低,整车平顺性得到了显著提高。  相似文献   

12.
为更了解国产拖拉机的振动情况,对拖拉机行驶在不同工作路面条件下的振动特性进行研究。以CF700拖拉机为研究对象,测试拖拉机分别行驶在水田、小麦秸秆田、稻秸秆田和田间小路四种不同的农田道路上时的振动加速度。试验过程中,对拖拉机前桥、后桥、驾驶室底板与座椅位置纵向、横向和垂向共4个位置8个方向的振动加速度进行测试。结果得到,同等条件下,拖拉机在水田行驶时的振动加速度均方根值最小,在水稻秸秆田行驶时的振动加速度均方根值最大;加速度功率谱的峰值频率主要集中在1~5 Hz,垂向的峰值频率一般大于纵向和横向的峰值频率;前、后轮动载荷系数随速度的增加而增大,均在安全行驶的范围内。该研究为后期设计适合国内路面情况的拖拉机减振装置提高理论依据。  相似文献   

13.
在额定转速、不同流量工况下,对带有缝隙引流叶轮和常规叶轮的低比转数离心泵进行空化试验,通过安装在待测试离心泵不同位置上的加速度传感器获得相应的振动加速度信号,进而分析2种叶轮离心泵的空化特征信号,对比2种离心泵的空化特性.试验结果表明:缝隙引流叶轮离心泵比常规叶轮离心泵有更好的抗空化性能;Q=26 m3/h时,在空化过程中3个振动测点处的加速度信号有效值均随有效空化余量的减小而增大,并且缝隙引流叶轮离心泵的振动弱于常规叶轮离心泵,说明振动加速度测试可有效监测空化发生前后信号的变化;在本次试验的多个测点中,出口处的振动测点对空化较为敏感,更适宜作为空化监测点.  相似文献   

14.
在农业药物喷雾过程中,由于喷雾器在水平和垂直方向不必要的频繁运动,造成喷雾的不足或过量,产生农药的浪费、残留和环境污染等问题。为此,设计一种按照不同地形、不同振动程度进行实时调节的喷雾系统,并进行仿真测试。首先通过ADAMS和Mat Lab建模,然后使用五轮仪进行路谱数据采集并结合Lab VIEW进行联合仿真,与此同时进行1Hz0.5g、2Hz0.5g、1Hz1g这3种正弦激励的试验。数据显示:当振幅由0.5g增至1g时,加速度的增幅将近50%;当频率从1Hz增至2Hz时,加速度的增幅则超过了50%。在速度为5km/h和8km/h的两种情况下进行实地与仿真测试,仿真的结果与路面激励下喷雾器喷杆的实际振动情况基本相符。  相似文献   

15.
为了减轻拖拉机驾驶疲劳,在模拟拖拉机座椅振动的条件下,试验研究了振动加速度对被验者的心率变化及其身体疲劳的影响.结果表明:座椅的垂直加速度azw在w0.8~2.0m/s2、且联合加权加速度Aω在1.1~2.3m/s2的范围内,被验者的心率增加率随振动加速度增加逐渐减小,其平均值减小13%;azw在2.0~2.4m/s2、且Aw在2.3~2.7m/s2范围内,被验者的心率增加率减小缓慢,平均减小2%;被验者心率增加率与座椅振动加速度呈二次曲线规律变化,具有密切的相关性;被验者身体各部位的疲劳程度随振动加速度增加而加重,头部和胸背部的疲劳明显高于其它部位.  相似文献   

16.
为探明免耕播种机在玉米留茬地作业时排种装置振动对排种特性的影响,采用六通道pulse LAN-XI振动测试系统及加速度传感器,分别测试免耕播种机在玉米免耕地不同速度作业状态下排种器的振动特性,并对其进行频域分析,得到振动信号的频谱图。分析结果表明:在免耕播种机作业状态下,排种器的振动主频主要集中在0~10Hz与40~55Hz;随着速度的提高,振动的主频率有所提高,在速度为3.6km/h时振动的主频率是最小的,是适合播种机播种的适宜速度。  相似文献   

17.
《南方农机》2001,(3):26
机动车在起伏不平的公路上行驶,速度越快、颠簸越大、路凹凸不平,会使你的机车左右摇摆,前后惯性和向外离心作用,破坏车辆行驶的稳定性。车辆行驶的不稳定性、增加会车、超车和通过障碍物的不安全因素。所以,两车相会、在不同车速的侧向最小安全距离和车轮至路边的最窄距离、应随着车速的提高而加大。如两车车速都是 30km/h时,侧向最小安全距离为 0.57m,车轮离路的最窄距离为 0.6m; 40km/h时,分别为 0.64m和 0.7m; 60km/h时,分别为 0.74m和 0.9m。 车速加快,机动车惯性增加,制动距离也成倍增加。影响机车的制动距离的因素很多,诸如制动器起作用时间、附着力、制动器最大摩擦力、制动时的开始车速和机车的质量等,后两项直接与惯性力有关,车速越高,质量越大,惯性力越大。制动器起作用行驶距离随车速成正比增加,而保持制动距离则与车速的平方与正比的增加,即车速增加 2倍,持续制动距离将要增加 4倍。由于惯性作用,制动距离与机动车装载质量的大小也直接相关。据实验证明:车速 30km/h时,质量大于 3t的载货机车,每增加 1t的载质量,制动距离就要增加 0.5~ 1.0m。 所以,在混合公路上以中速行驶是保证机车行驶空间、时间稳定性的重要因素,也是安全行车的重要保证。 (永泰 )  相似文献   

18.
南疆棉田中大量的田间杂物对播种机造成了较大的振动影响,降低了排种器的排种精度。为了测试不同作业速度下的播种机振动特性,以2BMJ-8/2型机械式棉花精量覆膜播种机为测试点,利用测振仪器布置测点,测试在不同作业速度下的振动位移,并对测试数据进行频谱分析。结果表明:覆膜播种机作业速度为9.8~1 0.5 km/h时,振动幅值主要发生在低频0~1 0 Hz的频率段,受到的振动激励主要为田间杂物的缠绕、土块振动等影响;覆膜播种机作业速度为7.5~8km/h时,播种机振动幅值明显减小,能保持较优的作业效率,工作状况为最优;覆膜播种机低速作业时,振动幅值较小,振动频率在0~50Hz之间,与柴油机的振动频率接近,振动激励主要来自于拖拉机动力振动。  相似文献   

19.
现有智能免耕播种机田间作业时受地形起伏及田间复杂地表状况的影响,对播种作业质量有较显著影响。为此,将加速度传感器安装于播种机不同位置,在留茬免耕地表工况下采集免耕播种机在田间的多种作业信息,测试并分析播种机各位置的振动频率,对播种机各位置振动特性进行研究。同时,根据振动测试结果,分析在振动工况对播种作业质量的影响,研究振动信号对排种器性能的影响。结果表明:播种机作业速度、地表土壤墒情对振动信号产生有显著影响;免耕播种机前进速度在3~9km/h时,播种机的振动频率分布在3~10Hz;播种机作业速度提升,振动加速度明显提升,但不影响振动能量的的分布。研究可为提升智能免耕播种机的作业性能提供了参考。  相似文献   

20.
为了提高拖拉机操作性能,改善其乘坐舒适性,以拖拉机振动特性检测与分析为突破口,测试了其静态及不同路面条件下的动态振动加速度,并对其强度、分布以及变化规律进行分析。结果表明:在装置静态速度逐渐增大的过程中,排气筒位置和驾驶座底板的振动强度会急剧增加,增速明显高于装置的其他区域;在动态低速状态下,引起拖拉机振动的主要原因是路面不平整;而处于动态高速状态时,振动主要由发动机引起,沙土路面反而起到减振作用。此研究可为拖拉机结构设计和优化研究提供有力的理论依据和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号