首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
试验模拟低中高3个污染水平、6种PAEs(DMP、DEP、DIBP、DBP、BBP和DEHP)的污染,利用课题组前期筛选出的高效降解真菌,尖孢镰刀菌PO-Yi (Fusarium oxysporum),通过盆栽试验进一步研究其对蔬菜(辣椒、茄子)土壤中PAEs的降解作用。结果表明, PO-Yi可以不同程度地促进蔬菜(辣椒和茄子)土壤中PAEs的降解,其中绝对降解率最高的为DEP,在20 mg/kg的PAEs污染水平时,达39.5%,比10 mg/kg的PAEs提高了14.2%,对辣椒土壤中的降解效果要比茄子土壤中的降解效果好;尖孢镰刀菌PO-Yi菌对3种污染程度不同的辣椒土壤和茄子土壤都有良好的生物修复表现,30d内能将总量60 mg/kg PAEs降解76.8%和63.1%;菌株PO-Yi、土著微生物和不同蔬菜作物(辣椒与茄子)在PAEs复合污染的盆栽土壤中表现出对土壤PAEs降解的协同效应。  相似文献   

2.
2株邻苯二甲酸酯高效降解菌的筛选鉴定及其降解性能   总被引:1,自引:1,他引:0  
为获得用于修复邻苯二甲酸酯(PAEs)污染的高效降解菌,通过富集培养的方法从土壤中筛选出2株PAEs降解菌(RXX-2、RXX-3),经形态观察、生化鉴定和16S r DNA序列分析对菌株进行了鉴定,并对其降解性能进行了分析。结果表明:菌株RXX-2和RXX-3初步鉴定为食异源物鞘氨醇菌(Sphingobium xenophagum)和鳗败血假单胞菌(Pseudomonas anguilliseptica)。菌株RXX-2降解PAEs的最佳条件为p H 8、温度30℃、转速175 r·min~(-1)、接种量1.5%;菌株RXX-3降解PAEs的最佳条件为p H 7、温度30℃、转速175 r·min~(-1)、接种量1.0%。在最佳降解条件下,经过5 d的培养,菌株RXX-2对邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)的降解率分别达到71.43%和52.85%,RXX-3对DBP和DEHP的降解率分别达到98.98%和62.96%,表明2株降解菌在PAEs污染环境的生物修复方面具有良好的应用前景。  相似文献   

3.
一株DBP高效降解菌的筛选及降解特性研究   总被引:2,自引:0,他引:2  
邻苯二甲酸二丁酯(DBP)属邻苯二甲酸酯(PAEs),DBP与基质间非共价键连接,是环境污染物。由于DBP性质相对稳定,微生物降解是其降解主要途径。试验从荒废污染设施土壤中成功筛选一株DBP高效降解菌,经16S r RNA比对与剑菌(Ens ife r sp.)相似度为99%,将其命名为DNB-S2。经研究发现DNB-S2最适生长条件为:温度35℃;p H 7.0;DBP浓度500 mg·L~(-1);转速125 r·min~(-1)。DNB-S2能利用高浓度DBP,在500 mg·L~(-1)DBP浓度下,48 h内降解率达95%。底物广谱性研究发现DNB-S2可降解PAEs家族中其他污染物邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)。为PAEs污染的生物降解提供理论基础和技术支持。  相似文献   

4.
从邻苯二甲酸酯(PAEs)污染的青菜(Brassica rapa var.chinensis)中筛选获得1株编号为W34的内生菌。通过生理生化特征和16S rRNA基因测序对该菌进行鉴定,并研究W34对6种PAEs的共代谢降解特性,优化共代谢降解条件,初步探索共代谢基质对W34降解代谢PAEs的影响。结果表明,内生菌W34为枯草芽孢杆菌(Bacillus subtilis),该菌能以6种PAEs为碳源生长,可同时降解邻苯二甲酸二正丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二(2-乙基)己酯(DEHP)和邻苯二甲酸二正辛酯(DnOP) 6种PAEs。其中,该菌对DBP和BBP的降解能力较强,20 mg/L质量浓度下DBP和BBP的降解半衰期均小于0.33 d。添加D-纤维二糖为共代谢基质,W34对DMP、DEP、DEHP和DnOP的降解率均显著提升。吐温-80添加量、碳源种类、碳源质量浓度和接菌量对这4种PAEs的降解率均有显著影响。通过单因素试验,得到该菌的吐温-80最佳添加量为0.025%,最佳碳源为蔗糖(浓度为...  相似文献   

5.
土壤邻苯二甲酸酯(PAE)污染对生态环境和农产品安全均构成威胁。为实现PAE污染土壤的生物修复,明确共代谢基质对微生物降解PAE的影响机制,从PAE污染的大蒜中筛选获得能降解PAE的内生菌。通过生理生化特征和16S rRNA基因测序对其种属进行了鉴定,并研究了内生菌对6种PAE的共代谢降解特性,优化了共代谢降解条件,初步探索了共代谢条件下内生菌对PAE的降解代谢途径。结果表明:从大蒜中共筛选出3株能降解PAE的内生菌DGB-1、DGB-3和DGB-8,经鉴定3者皆为巨大芽孢杆菌(Bacillus megaterium)。3株菌株均能以6种PAE为碳源生长,但处理3 d后PAE的降解率仅0.89%~10.40%,降解能力较弱。添加D-纤维二糖为共代谢基质后,3株菌株对6种PAE的降解率均显著提升,其中菌株DGB-1和DGB-3处理3 d后能完全降解20 mg/L质量浓度的邻苯二甲酸二丁酯(DBP)和邻苯二甲酸丁苄酯(BBP)。以DGB-1为供试菌株,发现吐温80添加量、碳源种类、碳源浓度和接菌量对6种PAE的降解率均有显著影响,最佳降解条件为吐温80添加量0.025%,碳源为D-纤维二糖...  相似文献   

6.
邻苯二甲酸酯降解菌的筛选、降解特性及土壤修复研究   总被引:4,自引:3,他引:1  
为寻找高效邻苯二甲酸二(2-乙基己基)酯(DEHP)降解菌,采用富集培养法从城市污水处理厂活性污泥中分离筛选出一株DEHP降解菌并命名为ASW6D。通过扫描电镜、16S r RNA同源性序列分析,初步将菌株ASW6D鉴定为分枝杆菌属(Mycobacterium sp.)。菌株ASW6D可在较宽温度(20~40℃)和pH(5~10)范围下高效降解DEHP,其最适生长降解条件为30℃、pH 8.0,3 d内可将初始浓度为500 mg·L~(-1)的DEHP降解82.87%。进一步采用GC-MS分析DEHP降解的中间产物,推测出DEHP的生物代谢途径为先通过β-氧化缩短DEHP侧链,生成邻苯二甲酸二丁酯(DBP),再将DBP转化为邻苯二甲酸(PA)。将菌株ASW6D接种到DEHP污染的土壤,可将土壤中DEHP去除率提高58.67%,表明ASW6D在PAEs污染环境生物修复方面的应用具有一定的潜力。  相似文献   

7.
为了进一步研究土壤中主要邻苯二甲酸酯(PAEs)污染物的微生物修复,选择邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)作为目标污染物,采用富集驯化法从设施菜地土壤中筛选出一株可同时降解邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)的细菌AS001。通过形态、生理生化特征、16S rDNA序列分析,初步鉴定为节杆菌属(Arthrobacter sp.),重点考察了该菌株在不同转速、pH、初始浓度、接菌量和温度条件下对邻苯二甲酸酯的降解特性。结果表明,菌株AS001的最佳降解条件为:转速175 r·min-1,pH 7.0,初始浓度100 mg·L-1,接菌量4%,温度35 ℃,且不同条件下菌株对DBP的降解效果高于对DEHP的降解效果。为该区域土壤中PAEs污染修复的环境条件提供一定的理论依据。  相似文献   

8.
利用平板分离技术,以5种邻苯二甲酸酯类物质(DMP、DEP、DBP、DEHP、DOP)为能源和碳源,对巢湖底泥进行驯化培养,从中筛选出活性菌株DM1,经鉴定,该菌为皮氏伯克霍尔德氏菌(Burkholderia pickettii)。气相色谱分析的结果表明:B.pickettii.z-1菌对五种混合体系邻苯二甲酸酯的降解趋势符合一级动力学方程:,且随着基质邻苯二甲酸酯浓度梯度的增加,PAEs的降解速率减小。B.pickettii.z-1菌对不同PAEs化合物的降解速率差别很大,较短侧链的DMP和DEP降解较快,较长侧链的DEHP、DOP降解较慢。  相似文献   

9.
从大庆地区石油污染土壤分离出一株石油降解菌命名为2JQ,经16SrDNA及理化检测鉴定为粪产碱菌,采用气相色谱法(GC)对该菌石油及石油烃正十二烷、正十四烷、正十六烷、正二十烷、正三十二烷降解效率进行研究,测定该菌在高盐及高pH条件下生长情况.结果表明,2JQ菌株对石油降解率达到67.1%,5种石油烃降解率分别为68.21%、64.70%、58.04%、49.73%、19.87%.该菌在高盐、高pH条件下生长良好,适合在大庆地区盐碱土壤中进行石油污染降解.  相似文献   

10.
甲胺磷降解细菌的筛选与降解特性研究   总被引:2,自引:0,他引:2  
利用甲胺磷作为唯一碳源和氮源的培养方法,从长期受有机磷农药污染的土壤中分离到一株降解菌MAP-3,初步确定MAP-3为假单孢菌属菌(Pseudomonas)。研究了该菌株降解甲胺磷的降解特性,该菌降解甲胺磷的最适温度为30℃,最适pH值为7.0,降解率达89%。MAP-3除了能降解甲胺磷外,还能降解敌敌畏、氧化乐果等有机磷农药。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号