首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
Dry mycelium (DM) of killedPenicillium chrysogenum and its water extract (DME) were used to induce resistance in cotton plants againstFusarium oxysporum f.sp.vasinfectum (Fov). Results showed that the efficacy of either DM or DME in controlling the disease depends on both the concentration and the mode of application. DM amended to the soil at 0.25–2% (w/w) provided 32–75% protection againstFov. Soil drench with 2–5% DME (w/v) and pre-sowing seed soakage with 5–10% DME provided 51–77% and 28–35% protection against the wilt disease, respectively, whereas no protection was obtained with foliar sprays of 1–10% DME. DM and its water extract had no direct antifungal activity on growth ofFov in vitro, suggesting that disease control with DM or DME resulted from the induction of natural defense mechanisms in the cotton plants. Soil drench with 5% DME was as effective as 2% DM powder in inducing resistance againstFov, implying that the resistance-inducing substances were mostly water-soluble. Four cotton cultivars with various genetic resistance levels againstFov were tested at the seedling stage: two resistant ‘Pima’ cultivars and two susceptible ‘Acala’ cultivars. The level of protection achieved in the two susceptible cultivars with DME was equal to, or higher than, that of the two resistant cultivars treated with water. Innate and induced peroxidase activity in cotyledons or hypocotyls and roots coincided with the level of genetic resistance and DME-induced resistance, respectively. Based on our results, an integrated control strategy ofFov with both genetic resistance and induced resistance is suggested.  相似文献   

2.
Verticillium dahliae Kleb. with a complicated genetic diversity is a widely distributed major pathogen resulting in cotton wilt, which causes high economic losses in cotton lint production in the cotton belt of Turkey. A collection of 70 TurkishV. dahliae isolates (68 from wilted cotton plants in 28 districts and two from watermelon plants in two districts) were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants. The mutants were tested against international reference tester isolates and also were paired with one another. Thirty-nine isolates were assigned to vegetative compatibility group (VCG) 2B, 19 to VCG2A and three to VCG4B. One isolate was self-incompatible and eight others could not be assigned to any of the identified VCGs because theirnit mutants showed negative reactions with the tester isolates of four VCGs or theirnit mutants reverted back to the wild type. This is the first report of VCGs inV. dahliae from cotton in Turkey.  相似文献   

3.
A weed survey conducted in 2004 and 2005 in Aydin province of Turkey showed that Solanum nigrum, Xanthium strumarium, Amaranthus retroflexus, Portulaca oleracea, Sonchus oleraceus and Datura stramonium were the most prevalent weeds in the cotton fields exhibiting Verticillium wilt. Verticillium dahliae Kleb. was recovered from A. retroflexus and X. strumarium in those cotton fields. This is the first report of V. dahliae occurring naturally in A. retroflexus in Turkey. Pathogenicity tests on cotton and weeds showed that the virulence of V. dahliae isolates from weeds was higher on cotton plants than on weeds, with the disease severity ranging from 31.7% to 98.0%. Disease severity of V. dahliae isolates was 54.7–93.9% on eggplant, 23.7–51.6% on cucumber and 11.0–16.4% on tomato, whereas it did not cause any disease symptoms, or only low levels, on pepper and bell pepper. Two vegetative compatibility groups (VCGs) were identified among seven tested weed isolates: VCG2A (two isolates) and VCG2B (three isolates) using international reference strains.  相似文献   

4.
The effect of root-knot nematode (RKN) (Meloidogyne incognita) onVerticillium dahliae andFusarium oxysporum f.sp.vasinfectum in cotton (Gossypium hirsutum) was investigated. Two different inoculation methods were used, one in which inoculum was added to the soil, so that nematode and fungal inoculum were in close proximity; the other, inoculation into the stem, whereby the two inocula were spatially separated. Invasion of the roots by RKN enhanced disease severity, as measured by the height of vascular browning in the stem, following inoculation with either wilt pathogen. The effect of RKN on Fusarium wilt was more pronounced than that on Verticillium wilt. Nematode-enhanced infection byF. oxysporum is a well known effect but there are few reports of enhanced infection byVerticillium due to RKN. Relative resistance of a number of cotton cultivars to both wilt diseases, as measured by height of vascular browning, was similar to the known field performance of the cultivars. The use of vascular browning as an estimate of disease severity was therefore validated. http://www.phytoparasitica.org posting Feb. 3, 2003.  相似文献   

5.
为明确棉花内生真菌CEF-373菌株对棉花黄萎病的防效及其作用机理,利用圆盘滤膜法和平板对扣培养法测定菌株CEF-373对大丽轮枝菌Verticillium dahliae菌丝生长的抑制作用,测定其对棉花黄萎病的温室和田间防效,并通过活性氧含量及防御基因表达情况来分析其作用机理。结果表明,菌株CEF-373的挥发性代谢产物和非挥发性代谢产物对大丽轮枝菌菌丝的生长均有显著抑制作用,抑制率最高分别可达37.75%和100.00%。用1×107CFU/mL的菌株CEF-373分生孢子悬浮液灌根后,对棉花黄萎病的温室防效可达71.12%,用质量比为3%的菌株CEF-373固体菌剂拌土栽培后,对棉花黄萎病的温室防效可达62.74%,防治作用显著。菌株CEF-373的发酵液滴灌和微生物肥料处理40 d后,对棉花黄萎病的田间防效达到最大,分别为36.23%和27.71%,而在后期有所降低。菌株CEF-373可以诱导棉花叶片中细胞活性氧的爆发;且菌株CEF-373成功激活了苯丙氨酸解氨酶、过氧化物酶、多酚氧化酶、几丁质酶和病程相关蛋白基因PR10的表达,对大丽轮枝菌的侵染具有抵御作用。表明棉花内生真菌CEF-373菌株通过抑制大丽轮枝菌生长以及诱导寄主系统抗病性来有效防治棉花黄萎病,具有较好的生物防治应用前景。  相似文献   

6.
An innovative inoculation process, involving the drilling of a trunk hole in 3 year-old olive trees and injecting a dense conidial suspension of Verticillium dahliae, was developed to study differentiation in foliar symptom expression between olive cultivars tolerant or susceptible to the pathogen. It was demonstrated that V. dahliae conidia could be translocated and colonize the xylem at the same distance above and below the point of trunk injection in both cultivars. However, the pathogen could be subsequently isolated at statistically significant percentages in susceptible cv. Amphissis compared to the tolerant cv. Kalamon, indicating operation of resistance mechanisms in the vascular phase of the disease. Consequently symptom development in the susceptible cultivar was at least sixfold more intensive compared to the tolerant cultivar, 6–11 months after trunk inoculation. Perennial olive orchard experiments, aimed at selecting Verticillium-resistant root-stocks, were conducted by applying the novel method in 2–3 year-old root-stock suckers of Amphissis olive trees and in the tolerant cvs Lianolia of Corfu and Koroneiki. It was indicated that potentially resistant root-stocks could be obtained following the trunk drilling technique. Resistance differentiation between cvs Amphissis and Kalamon was further verified through root inoculation by various V. dahliae microsclerotial concentrations and demonstrated that the trunk drilling inoculation procedure is equally efficient in resistance evaluation of olives to Verticillium wilt. The trunk inoculation procedure could be useful in selecting and screening root-stocks for resistance to V. dahliae and other vascular pathogens and could elucidate resistance mechanisms in woody plants against vascular wilt diseases.  相似文献   

7.
A phytotoxic protein that evokes the typical symptoms of Verticillium wilt disease in seedlings of Gossypium hirsutum L. (Upland cotton) was isolated from culture filtrates of Verticillium dahliae. The protein was purified by ammonium sulfate precipitation, Sephadex-G100 fractionation, and native PAGE. The 18.5 kDa protein, designated VD18.5, appears to be a single subunit protein with an isoelectric point between 3 and 5. VD18.5 induces symptoms of leaf dehydration, chlorosis, necrosis and stem discoloration in seedlings of the disease susceptible cotton cultivar Siokra 1–4. The LD50 of VD18.5 on protoplasts of Siokra 1–4 was 18 μg mL−1. VD18.5 had no noticeable effect on Pima S-7, which is a disease resistant cultivar. Phytotoxic activity was partially destroyed at high temperature and was abolished by digestion with proteinase K. Mass spectrometry fingerprinting and protein sequence data from VD18.5 yielded no significant matches when submitted to the Mascot search engine and NCBI non-redundant protein databases, respectively. These results suggest that VD18.5 is a novel protein that may be involved in the development of some of the symptoms associated with Verticillium wilt disease in the cotton plant.  相似文献   

8.
大丽轮枝菌蛋白激发子PevD1诱导棉花抗病性及作用机理   总被引:3,自引:0,他引:3  
 PevD1是一种大丽轮枝菌(Verticillium dahliae)分泌蛋白,具有激发烟草过敏反应(HR)和系统获得性抗病(SAR)的功能。为明确蛋白PevD1诱导棉花抗病性及其作用机制,本文利用大肠杆菌表达、纯化的PevD1诱导棉苗植株,检测棉苗对大丽轮枝菌的抗性及免疫应答反应。结果表明,大肠杆菌表达的PevD1重组蛋白不是棉花品种“新陆早42号”的致萎因子,叶片注射8 μg/mL PevD1蛋白诱导3 d后根部接种大丽轮枝菌,15 d后PevD1处理组病害减轻率达35.04%。PevD1能诱导棉花叶片抗性早期信号分子H2O2产生和NO积累,维管束细胞壁加厚、木质素和酚类物质的积累。另外,PevD1处理能提高防御酶PAL、POD和PPO活性,提高棉花抗性基因和木质素合成相关基因PAL、C4H1、4CL的转录水平。说明PevD1通过激发棉花免疫系统而提高抗病性,该研究不仅为利用PevD1蛋白激发子控制棉花黄萎病提供了科学依据,同时也为阐明棉花与大丽轮枝菌互作机理提供了理论基础。  相似文献   

9.
Verticillium dahliae alters water status and consequently, growth and production of pepper plants. On the other hand, arbuscular mycorrhizal fungi (AMF) can reduce damage caused by specific soil-borne plant pathogens and improve drought resistance of pepper. Therefore, one objective of this research was to assess if AMF can modify the development of Verticillium-wilt in pepper plants. A second objective was to study the influence of plant phenology at the moment when V. dahliae was inoculated on the possible biocontrol of the disease by AMF. Results suggested that AMF reduce the deleterious effect of V. dahliae on pepper growth and yield. However, bioprotection against Verticillium-wilt was conditioned by plant phenology at the moment of pathogen attack. The highest efficacy of AMF occurred when V. dahliae was inoculated during the vegetative stage of plants. AMF allowed leaf relative water content to be maintained for longer and delayed both the appearance of disease symptoms and the decrease of photosynthesis in Verticillium-inoculated plants. These benefits on plant physiology increased pepper yield.  相似文献   

10.
为掌握新疆主要植棉区棉花黄萎病的发生现状及其病原菌大丽轮枝菌Verticillium dahliae的落叶型菌系分布以及遗传变异情况,于2015年对26个新疆主要植棉区棉花黄萎病的发生情况进行了随机调查,统计新疆大丽轮枝菌的培养性状,利用大丽轮枝菌落叶型特异引物D1/D2、INTD2F/INTD2R与非落叶型特异性引物ND1/ND2、INTNDF/INTNDR对新疆大丽轮枝菌菌系进行互补鉴定,并对部分菌系的遗传变异进行简单序列重复区间(inter simple sequence repeat,ISSR)分析。结果表明:2015年新疆棉花黄萎病发病田比例为54.0%,其中病情指数在10.0以上的发病田与2013年持平,而病情指数在20.0以上的严重发病田比例为10.8%,比2013年增加3.8个百分点;新疆大丽轮枝菌的培养性状以菌核型为主,比例为70.1%,菌丝型与中间型比例分别为13.4%和16.5%;新疆大丽轮枝菌落叶型菌系比例为53.2%,26株菌株的来源地全部检出落叶型菌系;聚类分析结果显示,当遗传相似系数为0.66时,新疆大丽轮枝菌落叶型与非落叶型菌系聚为2个谱系,菌系地理来源、培养性状与大丽轮枝菌的遗传分化无明显相关性。  相似文献   

11.
Verticillium wilt is the most serious olive disease in the Mediterranean countries and worldwide. The most effective control strategy is the use of resistant cultivars. However, limited information is available about the level and source of resistance in most of the olive cultivars and there are no published data using microsclerotia, the resting structures of Verticillium dahliae, as the infective inoculum. In the present study, we correlated symptomatology and the presence of the fungus along with the DNA relative amount (molecules μl−1) of a defoliating (D) and a non-defoliating (ND) V. dahliae strain in the susceptible cv. Amfissis and the tolerant cvs Kalamon and Koroneiki, as quantified by the Real-Time QPCR technology. The viability of the pathogen in the plant tissues was confirmed by isolating the fungus on PDA plates, while symptom assessment proved the correlation between the DNA relative amount of V. dahliae in plant tissues and cultivar susceptibility. It was further demonstrated that the D and ND strains were present at a significantly higher level in cv. Amfissis than in cvs Kalamon and Koroneiki. It was finally observed that the relative amount of the pathogen in roots was lower than in stems and shoots and declined in plant tissues over time. These data constitute a valuable contribution in evaluating resistance of olive cultivars or olive root-stocks to V. dahliae pathotypes.  相似文献   

12.
Severe Verticillium wilt of cotton in southern Spain is associated with the spread of a highly virulent, defoliating (D) pathotype of Verticillium dahliae. Eleven of the D and 15 of a mildly virulent, nondefoliating (ND) pathotype were analyzed by random amplified polymorphic DNA (RAPD) using the polymerase chain reaction (PCR). Six of 21 primers tested generated pathotype-associated RAPD bands. Another 21 V. dahliae isolates were compared in blind trials both by RAPD-PCR using the six selected primers and pathogenicity tests on cotton cultivars. There was a 100% correlation between pathotype characterization by each method. Unweighted paired group method with arithmetic averages cluster analysis was used to divide the 47 V. dahliae isolates into two clusters that correlated with the D or ND pathotypes. There was more diversity among ND isolates than among D isolates, these latter isolates being almost identical. ND- and D-associated RAPD bands of 2.0 and 1.0kb, respectively, were cloned, sequenced, and used to design specific primers for the D and ND pathotypes. These pathotype-associated RAPD bands were present only in the genome of the pathotype from which they were amplified, as shown by Southern hybridization. The specific primers amplified only one DNA band of the expected size, and in the correct pathotype, when used for PCR with high annealing temperature. These specific primers successfully characterized V. dahliae cotton isolates from China and California as to D or ND pathotypes, thus demonstrating the validity and wide applicability of the results.  相似文献   

13.
Verticillium dahliae antagonistic endorhizosphere bacteria were selected from root tips of tomato plants grown in solarized soils. Fifty-three out of the 435 selected bacterial isolates were found to be antagonistic against V. dahliae and several other soilborne pathogens in dual cultures. Significant biocontrol activity against V. dahliae in glasshouse trials was demonstrated in three of 18 evaluated antagonistic isolates, provisionally identified as Bacillus sp. Although fluorescent pseudomonads were also isolated from root tips of tomato plants, none of the tested isolates exercised any significant antagonistic activity against V. dahliae in dual cultures. So these isolates were not tested in glasshouse trials in this study. Finally, two of the most effective bacterial isolates, designated as K-165 and 5-127, were shown to be rhizosphere colonizers, very efficient in inhibiting mycelial growth of V. dahliae in dual cultures and successfully controlling Verticillium wilt of solanaceous hosts. In glasshouse experiments, root dipping or soil drenching of eggplants with bacterial suspension of 107cfu ml–1 resulted in reduced disease severity expressed as percentage of diseased leaves (40–70%) compared to the untreated controls under high V. dahliae inoculum level (40 microsclerotia g–1 soil). In heavily Verticillium infested potato fields, experiments with potato seeds dusted with a bacterial talc formulation (108cfu g–1 formulation), showed a significant reduction in symptom development expressed as percentage of diseased potato plants and a 25% increase in yield over the untreated controls. As for their effectiveness in increasing plant height, both bacterial isolates K-165 and 5-127 produced indolebutyric, indolepyruvic and indole propionic acids. Both antagonists are considered as plant growth promoting rhizobacteria bacteria since significantly increased the height of treated plants compared with the untreated controls. Chitinolytic activity test showed that both isolates were able to produce chitinase. Testing rhizospheric and endophytic activity of the antagonists it was shown that although the bacteria are rhizosphere inhabitants they also preferentially colonize the endorhizosphere of tomatoes and eggplants. Fatty acid analysis showed that isolate K-165 could belong to Paenibacillus alvei while 5-127 to Bacillus amiloliquefaciens.  相似文献   

14.
Real-time PCR was used to detect and quantify Verticillium dahliae and to assess the susceptibility of four Capsicum annuum cultivars (Luesia, Padrón, SCM331 and PI201234) and the Capsicum chinense cv. C118 to this pathogen. The symptoms which developed after infection included stunting and yellowing, and were more acute in the cv. SCM331, which also suffered defoliation in later stages of the disease and in C118, which suffered severe stunting. Quantification of the pathogen DNA in roots 23 and 34 days post-inoculation (dpi) revealed that there were significantly higher amounts of Verticillium dahliae DNA in C118 than in the other cultivars, followed by SCM331, Padrón and PI201234. The lowest amounts of fungal DNA in roots were found in Luesia. In hypocotyls, the highest amounts of fungal DNA were found in SCM331, while Luesia, Padrón and PI201234 had much lower amounts, and C118 had intermediate levels. When a compatible versus an incompatible system was studied, using the near-isogenic tomato lines LA3030 (susceptible) and LA3038 (resistant to V. dahliae), we were able to detect fungal DNA in both lines. As expected, the fungus/plant DNA ratio was lower in LA3038 than in LA3030 and it decreased with time in LA3038. The amount of Verticillium dahliae DNA in the roots of LA3030 remained constant between days 23 and 34 post-inoculation, but increased 10-fold in collars. Finally, when real-time PCR was applied as a diagnostic method to samples from pepper plants, soil and water collected from farms in northwest Spain, we were able to detect V. dahliae DNA in these samples even when symptoms of the disease were not evident.  相似文献   

15.
A total of 101Verticillium dahliae isolates were recovered from cotton plants at 57 sites in the Aegean region of Turkey between 2003 and 2004. Isolates were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants. Forty-six isolates were assigned to VCG 1, 12 to VCG 2A, 33 to VCG 2B and four to VCG 4B. The remaining six isolates could not be tested for vegetative compatibility because of their inability to yieldnit mutants. All isolates recovered were tested for pathogenicity on cotton cultivars Acala SJ-1 and Deltapine 15-21 by the stem-injection method. The isolates of VCG 2 and 4B, irrespective of their origin, induced weak to severe symptoms on cotton and were similar to the previously described cotton non-defoliating pathotype. In contrast, all cotton isolates of VCG1 caused severe foliar symptoms, stunting, defoliation and often death. This is the first report on VCG 1 ofV. dahliae in Turkey. http://www.phytoparasitica.org posting May 4, 2007.  相似文献   

16.
Effects of crop rotation between rice paddy fields and strawberry nurseries on the control of Verticillium wilt of strawberry were studied. For detecting Verticillium dahliae, the causal agent of Verticillium wilt, in soil, eggplant was used as an indicator plant. We were thus able to detect as low as 1 microsclerotium/g dry soil. In field surveys of Chiba and Hokkaido from 2000 to 2003, V. dahliae was detected in 9 of 10 upland fields but in none of 21 paddy-upland fields. In Hokkaido during 2000–2007, strawberry mother plants were planted, and plantlets were produced in upland and paddy-upland fields to assess V. dahliae infestation. Verticillium wilt of strawberry had never occurred in 72 tested paddy-upland fields, compared to 13.2–73.9% of plantlets infected with V. dahliae in upland fields. In a pot experiment in a greenhouse, two flooding treatments or two paddy rice cultivations suppressed Verticillium wilt symptoms on eggplant. In field experiments, one paddy rice cultivation in Chiba and two in Hokkaido prevented development of Verticillium wilt symptoms on eggplant. Verticillium wilt of strawberry was controlled completely with one paddy rice cultivation in infested fields in Chiba. In these field experiments, the number of microsclerotia of V. dahliae decreased under the flooding conditions for paddy rice cultivation. Based on the reduction in microsclerotia, a crop rotation system with paddy rice for 3 years (three times), green manure for 1 year, and strawberry nursery for 1 year was designed for Hokkaido.  相似文献   

17.
Resistance of 23 important olive cultivars to Verticillium dahliae has been evaluated in four experiments under controlled conditions. Nine-month-old nursery olive plants were inoculated with a cotton non-defoliating (ND) (V4) or a cotton defoliating (D) (V117) isolate of V. dahliae. Resistance was evaluated by assessing symptom severity using a 0–4 rating scale and estimating the area under disease progress curves. The percentage of plants killed and of those which recovered from the disease were used as additional parameters for including a particular cultivar into a defined category. Most of the evaluated cultivars were susceptible, although at different levels, to both isolates of V. dahliae. All cultivars were more susceptible to the D pathotype than to the ND one. A group of 11 cultivars, including several important Spanish cultivars, were susceptible or extremely susceptible to both pathotypes of V. dahliae. A second group showed differences of resistance depending on the pathotype used. They were susceptible or extremely susceptible to the D pathotype but resistant or moderately susceptible to the ND one. Finally, 'Frantoio', 'Oblonga' and 'Empeltre' were moderately susceptible to the D isolate of V. dahliae and resistant to the ND one. The resistance of 'Empeltre' was evident by the plant ability to recover from infection with either isolates. 'Empeltre' is considered to be a valuable cultivar for inclusion in breeding programmes for resistance to Verticillium wilt.  相似文献   

18.
Dry fungal biomass ofPenicillium chrysogenum (dry mycelium), a waste product of the pharmaceutical industry, was extracted with water and applied to the roots of melon plants before or after inoculation withFusarium oxysporum f.sp.melonis (Font). Seedlings (4–6 days after emergence) treated with either acidic dry mycelium extract (DME) or neutralized dry mycelium extract (NDME) were protected against challenge infection withFom. A single drench with 2–5% DME applied 12–72 h before inoculation provided significant control of the disease compared with water-drenched, challenged seedlings. No protection was seen in plants treated 0–6 h before inoculation or 0–48 h after inoculation. Neither DME nor NDME (0.5–5%) had any effect on fungal growthin vitro, which implied that disease controlin vivo was mediated by induced resistance. The resistance induced by DME protected melon plants not only against race 1,2, but also against the three other races of the pathogen, indicating a race-non-specific resistance againstFom. Both DME and NDME significantly increased peroxidase activity and free L-proline content in seedlings 12 h and 48 h after soil drench, respectively. Resistance to Fusarium wilt was significantly associated with elevated levels of peroxidase activity but not with free L-proline content. Thus, peroxidase might be involved in the defense mechanisms activated by DME or NDME. http://www.phytoparasitica.org posting Aug. 31, 2001.  相似文献   

19.
Surveys of 94 artichoke fields throughout the artichoke production areas of Comunidad Valenciana (eastern Spain) were conducted from 1999 to 2002 to determine the incidence and distribution of Verticillium wilt.Verticillium dahliae was isolated from 80.9% of the sampled fields, and detected in all artichoke-growing areas, with a mean disease incidence of 53.8% infected plants. The disease was found to cause severe damage to cv. ‘Blanca de Tudela’, which is the most important artichoke cultivar grown in Spain, and was also observed on the seed-propagated cv. ‘Imperial Star’. In field trials to study the role of infected planting material and soil inoculum on infection of artichoke plants during the cropping season,V. dahliae was transmitted from infected stumps to the plants, confirming that the use of infected stumps could have greatly contributed to the dissemination of the pathogen. Inoculum density ofV. dahliae in soil had an effect on crop infection, in that a higher number of microsclerotia per gram of soil resulted in a higher percentage of infected plants. In addition, yield of cv. Blanca de Tudela was significantly affected byV. dahliae infection, showing that a higher percentage of infection corresponded with lower yield. http://www.phytoparasitica.org posting July 21, 2005.  相似文献   

20.
 棉花黄萎病是一种极难防治的土传性真菌病害,研究病原菌侵染棉花的组织学过程对致病机理解析和抗病资源利用具有重要意义。本研究利用绿色荧光蛋白标记的大丽轮枝菌系统研究了其对抗病棉种海岛棉7124和三裂棉、感病棉种军棉1号和戴维逊棉的侵染过程。结果表明,大丽轮枝菌对抗/感棉种的初始侵染没有明显差异,接菌5 h后,分生孢子均能吸附在感病和抗病棉种的根表面。但侵染过程存在显著差异,侵染感病棉种中病原菌3~5 d到达皮层,5~7 d达到维管束,随后迅速扩展繁殖,侵染14 d后即完成系统侵染,并开始产生黄萎病症状;而病原菌侵染抗病棉种,5~7 d才侵入皮层,7~10 d到达维管束,14 d后仍无法扩展,病原菌的定殖与发展受到限制,无法形成系统侵染,较少形成黄萎病症状。本研究通过绿色荧光蛋白标记大丽轮枝菌对抗/感棉种的侵染过程研究,为大丽轮枝菌致病机理研究和抗性资源利用提供了强有力的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号