首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A database which holds results of field and laboratory experiments on the impact of subsoil compaction on physical and mechanical soil parameters and on crop yields and environmental impact is being developed within the EU sponsored concerted action (CA) project “Experiences with the impact of subsoil compaction on soil, crop growth and environment and ways to prevent subsoil compaction”. The database accumulates and can provide all available data from the participants of the European Union countries, and is compatible with the European Soil Database and other related databases.

More than 600 sets of data (Excel workbooks) from participants from the European Union, plus Poland, Switzerland and Norway are included in the database. Through a similar EU sponsored CA, Eastern European countries are expected to deliver 260 sets of data thus bringing the total number of Excel workbooks to approximately 860. In total, the database will contain approximately 13,500 data spreadsheets.

The objective of the database is to collect data on subsoil compaction, to store it in a structured format and to make it available for analysis and use. Thereby it will enable elucidation of the impact of subsoil compaction on soil properties, crop yields and environment and evaluate the vulnerability of soils to compaction.  相似文献   


2.
Subsoil compaction is a severe problem mainly because its effects have been found to be long-lasting and difficult to correct. It is better to avoid subsoil compaction than to rely on alleviating the compacted structure afterwards. Before recommendations to avoid subsoil compaction can be given, the key variables and processes involved in the machinery–subsoil system must be known and understood. Field traffic-induced subsoil compaction is discussed to determine the variables important to the prevention of the compaction capability of running gear. Likewise, technical choices to minimise the risk of subsoil compaction are reviewed. According to analytical solutions and experimental results the stress in the soil under a loaded wheel decreases with depth. The risk of subsoil compaction is high when the exerted stresses are higher than the bearing capacity of the subsoil. Soil wetness decreases the bearing capacity of soil. The most serious sources of subsoil compaction are ploughing in the furrow and heavy wheel loads applied at high pressure in soft conditions. To prevent (sub)soil compaction, the machines and equipment used on the field in critical conditions should be adjusted to actual strength of the subsoil by controlling wheel/track loads and using low tyre inflation pressures. Recommendations based on quantitative guidelines for machine/soil interactions should be available for different wheel load/ground pressure combinations and soil conditions.  相似文献   

3.
The physically defined concept “precompression stress (Pc)” is presented at farm scale, including two operation methods in order to define precaution and critical values for the legislation and executive level according to the German Soil Protection Law. The first step is the prevention of subsoil compaction in general by the definition of the mechanical strength of soils, which is defined by the Pc. This Pc value is used as the precaution value, to ensure site-adjusted land use. The second step is to predict the change of soil functions after exceeding the Pc and furthermore to assess if critical values (test and action values) caused by subsoil compaction are reached or already exceeded. Criteria for the definition of critical values by subsoil compaction concerning crop production are discussed in order to also establish such values in the European Soil Framework Directive. The “Pc” concept, which includes predicted and regionalized “Pc”-maps, was verified on a research farm in the weichselian moraine landscape in Northern Germany for areas resistant or susceptible to soil deformation at the given water content throughout the year. Furthermore, the stress-dependent changes of the air capacity after exceeding the Pc was predicted by pedotransfer functions and linked with the farm soil map. As an additional proof for the validity of the Pc concept, a field experiment on a Stagnic Luvisol was also conducted in order to measure the stress distribution up to 60 cm depth using the Stress State Transducer (SST) system at two different wheel loads (3.3 and 6.5 Mg) using a tractor-pulled mono-wheeler. According to the effective soil strength, the wheel load should not exceed 3.3 Mg at field capacity to avoid subsoil compaction.  相似文献   

4.
The papers in this special issue present results of the European Union (EU) concerted action “Experiences with the impact of subsoil compaction on soil crop growth and environment and ways to prevent subsoil compaction”. The results and conclusions of earlier research on subsoil compaction are memorized and it is emphasized that the conclusions are still sound: high axle load traffic on soils of high moisture content causes deep and persistent subsoil compaction. The concerted action on subsoil compaction in the EU and an almost identical concerted action on subsoil compaction in central and eastern Europe are briefly introduced. This special issue presents a selection of papers of the concluding workshop of the concerted action on subsoil compaction in the EU. It includes three papers on modeling the impact of subsoil compaction on crop growth, water availability to plants and environmental aspects; three papers on modeling of subsoil compaction by heavy machinery; four papers on measurement of soil mechanical and physical properties in relation to subsoil compaction and four papers on methods to determine the risk of subsoil compaction and to identify prevention strategies. The trends in agriculture in relation to subsoil compaction are discussed. A positive trend is that policy makers in the EU and worldwide recognize soil as a vital and largely non-renewable resource increasingly under pressure. A negative trend is that wheel loads in agriculture are still increasing causing severe damage to subsoils. The conclusion is that European subsoils are more threatened than ever in history. Manufactures, agricultural engineers and soil scientists should collaborate and research should be initiated to solve this problem and find solutions. Subsoil compaction should be made recognized by all people involved from farmer to policy maker. Therefore an assessment of the existence and seriousness of subsoil compaction throughout Europe should be initiated.  相似文献   

5.
Identifying the vulnerability of soils to compaction damage is becoming an increasingly important issue when planning and performing farming operations. Soil compaction models are efficient tools for predicting soil compaction due to agricultural field traffic. Most of these models require knowledge of the stress/strain relationship and of mechanical parameters and their variations as a function of different physical properties. Since soil compaction depends on the soil's water content, bulk density and texture, good understanding of the relations between them is essential to define suitable farming strategies according to climatic changes. In this work we propose a new pedotransfer function for 10 representative French soils collected from cultivated fields, a vineyard and forests. We investigate the relationship between soil mechanical properties, easily measurable soil properties, water content and bulk density. Confined compression tests were performed on remoulded soils of a large range of textures at different initial bulk densities and water contents. The use of remolded samples allowed us to examine a wide range of initial conditions with low measurement variability. Good linear regression was obtained between soil precompression stress, the compression index, initial water content, initial bulk density and soil texture. The higher the clay content, the higher the soil's capacity to bear greater stresses at higher initial water contents without severe compaction. Initial water content plays an important role in clayey and loamy soils. In contrast, for sandy soils, mechanical parameters were less dependent on initial water content but more related to initial bulk density. These pedotransfer functions are expected to hold for the soils of tilled surface layers, but further measurements on intact samples are needed to test their validity.  相似文献   

6.
Due to its persistence, subsoil compaction should be avoided, which can be done by setting stress limits depending on the strength of the soil. Such limits must take into account soil moisture status at the time of traffic. The objective of the work presented here was to measure soil water changes during the growing period, use the data to calibrate a soil water model and simulate the soil susceptibility to compaction using meteorological data for a 25-year period. Measurements of soil water content were made in sugarbeet (Beta vulgaris L.) from sowing until harvest in 1997 on two sites classified as Eutric Cambisols in southern Sweden. Sampling was carried out at 2-week intervals in 0.1 m layers down to 1 m depth, together with measurements of root growth and crop development. Precompression stress of the soil at 0.3, 0.5 and 0.7 m depth was determined from uniaxial compression tests at water tensions of 6, 30, 60 and 150 kPa and adjusted as a logarithmic function of the soil water tension. Soil water content was simulated by the SOIL model for the years 1963–1988. Risk calculations were made for a wheel load of 8 t and a ground pressure of 220 kPa, corresponding to a fully loaded six-row sugarbeet harvester. Subsoil compaction was expected to occur when the major principal stress was higher than the precompression stress. The subsoil water content was very low in late summer, but increased during the autumn. At the end of August, there was practically no plant available water down to 1 m depth. There was in general good agreement between measured and simulated values of soil water content for the subsoil, but not for the topsoil. In the 25-year simulations, the compaction risk at 50 cm depth was estimated to increase from around 25% to nearly 100% between September and late November, which is the period when the sugarbeet are harvested. The types of simulation presented here may be a very useful tool for practical agriculture as well as for society, in giving recommendations as to how subsoil compaction should be avoided.  相似文献   

7.
Soil compaction influences crop growth, movement of water and chemicals in numerous ways. Mathematical modelling contributes to better understanding of the complex and variable effects. This paper reviews models for simulating topsoil and subsoil compaction effects. The need for including both topsoil and subsoil compaction results from still increasing compactive effect of vehicular pressure which penetrates more and more into the subsoil and which is very persistent. The models vary widely in their conceptual approach, degree of complexity, input parameters and output presentation. Mechanistic and deterministic models were most frequently used. To characterise soil compactness, the models use bulk density and/or penetration resistance and water content data. In most models root growth is predicted as a function of mechanical impedance and water status of soil and crop yield—from interactions of soil water and plant transpiration and assimilation. Models for predicting movement of water and chemicals are based on the Darcy/Richards one-dimensional flow equation. The effect of soil compaction is considered by changing hydraulic conductivity, water retention and root growth. The models available allow assessment of the effects of topsoil and subsoil compaction on crop yield, vertical root distribution, chemical movement and soil erosion. The performance of some models was improved by considering macro-porosity and strength discontinuity (spatial and temporal variability of material parameters). Scarcity of experimental data on the heterogeneity is a constraint in modelling the effects of soil compaction. Suitability of most models was determined under given site conditions. Few of the models (i.e. SIBIL and SIMWASER) were found to be satisfactory in modelling the effect of soil compaction on soil water dynamics and crop growth under different climate and soil conditions.  相似文献   

8.
This paper aims to provide guidance for field practitioners on the vulnerability of different subsoils to compaction under different field conditions and on the tyre pressures necessary to reduce or avoid damage. It also indicates ways of identifying situations where some compaction alleviation may be necessary to improve subsoil conditions and methods for alleviating subsoil compaction problems, without increasing the risk of more extensive compaction damage in the future.  相似文献   

9.
农田土壤机械压实研究进展与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
任利东  王丽  林琳  张斌 《土壤学报》2023,60(3):610-626
土壤机械压实是威胁全球农业可持续发展的重要因素之一。从农田土壤压实的检测、危害、缓解和预防四个方面系统介绍当前国内外土壤压实的最新研究进展与不足。指出检测方法的创新和突破是实现田间尺度下压实土壤空间分布检测的关键;压实土壤危害的研究多集中在耕层土壤,但忽视了深层土壤压实危害及其在应对气候变化中可发挥的生态服务功能;提倡采用轮作轮耕等合理田间管理措施缓解压实土壤;深层土壤压实具有存在时间久和恢复难度大的特征,因此重点应以预防为主,但当前对土壤压实预防重视不足且预防技术体系尚不成熟。鉴于我国农业机械化正处在快速发展期,采取有效预防措施是避免重蹈发达国家土壤压实退化的有效手段。  相似文献   

10.
The prolonged use of vehicular traffic for farming creates subsoil compaction, which reduces crop yield and deteriorates the physical conditions of the soil. Field experiments were conducted during 2002–2003 and 2003–2004 in Pakistan to study subsoil compaction effects on soil bulk density, total porosity, yield and yield components of wheat. Soil compaction was artificially created at the start of the experiment using 7.0 t roller having length of 1.5 m and diameter of 1.22 m. Treatments consisted of T1 = control (no compaction), T2 = two passes of roller, T3 = four passes of roller, T4 = six passes of roller. The experiments were arranged in randomised complete block with four replications. Results indicated that subsoil compaction adversely affected the bulk density, total porosity of soil and root length during both the years. Soil compaction increased the bulk density (BD) from 1.37 for T1 to 1.57, 1.61 and 1.72 Mg m−3 whereas decreased the total porosity from 47.3% for T1 to 40.0, 37.4 and 34.5% for T2, T3 and T4, respectively. Similarly grain yield decreased from 4141.7 for T1 to 3912.8, 3364.5 and 3010.3 kg ha−1 for T2, T3 and T4, respectively. The deteriorating effect of compaction depended upon the degree of compaction. Subsoil compaction adversely affected the yield and yield attributes of wheat during both years of experiments. The subsoil compaction adversely affected soil physical conditions, which substantially decreased the yield of wheat. Therefore, appropriate measures of periodic chiselling, controlled traffic, conservation tillage, and incorporating of crops with deep tap root system in rotation cycle is necessary to minimize the risks of subsoil compaction.  相似文献   

11.
The loads imposed by modern farm machinery have considerable potential to increase subsoil stress. Within the context of economically viable and environmentally sustainable systems, the practices associated with subsoil damage and methods for avoidance are identified. The greatest potential for damage is on fragile, wet or loosened subsoils combined with high wheel or track loads and contact pressures that create noticeable ruts in the topsoil. In-furrow ploughing increases this potential considerably by placing loads on the subsoil. Measures to avoid this potential involve a whole farm approach and an understanding of the many interactions between cropping systems and machinery. Alternatives to in-furrow ploughing that involve working from the surface and building a protective topsoil are discussed. Key measures to reduce the risk to subsoils involve a clear understanding of tyre load and inflation data and simple on-farm methods of achieving this are suggested. Although avoidance has the potential to reduce the risk, confinement of damage to specific strips in the field is seen as a realistic alternative. Controlled traffic operations, together with precision guidance, offer an economic means by which compaction on the cropped area can be avoided. The most effective route to improvement in soil care across the European Union (EU) is an appropriate management structure coupled with a best practice framework.  相似文献   

12.
Protecting soil structure against compaction—proposed solutions to safeguard agricultural soils To safeguard the ecological soil functions and the functions linked to human activities, measures against harmful changes to the soil are required, in line with the precautionary principle. The German Federal Soil Protection Act sets obligations for precaution in agricultural land use and, if harmful changes to the soil are foreseeable, measures for averting a danger. The results of a research project of the Federal Environmental Agency show that it is possible to describe an impairment of the soil structure, using methods of soil analysis. But this as a sole information would not qualify for the identification of harmful changes to the soil in the context of the Soil Protection Act, which requires an assessment of the severity of disruption of soil functions and the respective subject of protection. This would make additional soil investigations on site mandatory. Approaches in agricultural engineering and soil physics have introduced procedures to preserve the soil structure, in accordance with the precautionary principle. But these procedures have different goals and different ranges of application and hence offer partial solutions to safeguard against soil compaction. The assessment model of “trafficability by measuring the rut depth” provides information about the compaction status of the soil under applied conditions for farming gear, without providing detailed information about affected soil layers. The soil‐physical model of classifying soils into “risk classes for harmful soil compaction” focuses on the relationship between topsoil compaction and crop yields. The soil‐physical models “precompression stress” and “loading ratio” provide information for the assessment of subsoil compaction and a prognosis of a possible impairment of the soil structure at the water content of field capacity. It is necessary to validate the individual models with additional regional data about soil structure before a final assessment of the prognoses is made.  相似文献   

13.
Abstract

In this paper we describe the susceptibility of Swedish subsoils to compaction and discuss strategies for prevention of traffic-induced subsoil compaction against the background of experiences from wheeling experiments conducted in Sweden during recent years. The susceptibility of Swedish subsoils to compaction must be considered high because subsoils are often wet during field operations and machinery with high wheel loads is used. The risk of subsoil compaction could be reduced by technical solutions, such as the use of dual and tandem wheels instead of single wheels, low tyre inflation pressure or tracks. However, each of these solutions has its limitations. Results from several wheeling experiments on different soils indicate that residual deformations occur even when the applied stress is lower than the precompression stress. Hence, soil compaction could not be avoided completely by limiting the applied stress to the precompression stress.  相似文献   

14.
Abstract

The effect of retaining living trees in situ following manual land clearing on soil physical properties was studied in a Typic Kandiudult in southern Cameroon. Soil compaction in the surface 100 mm was greatest with complete clearing and least under forest, with retention of living trees resulting in soil compaction levels which were intermediate to both the former. Soil compaction in the surface 100 mm also increased with increasing distance from the tree trunk (or tree stump with complete clearing). Both the above observations were attributed to a combination of high root density, high macrofaunal activity, high ground cover, high organic matter content and low traffic under forest and at the base of trees or tree stumps. Increasing soil compaction also occurred with increasing depth, and was attributed to the existence of few biopores in the subsoil horizons. Absence of biopores was thought to be due to low root densities in the subsoil caused by a combination of low macroporosity, low air porosities during the wet season and low pH. In comparison to sub‐humid and semi‐arid ecologies, therefore, the beneficial effects of retaining living trees in situ following land clearing at this site were less.  相似文献   

15.
In a field study, conducted on 10 conventionally managed field sites in Germany, the effects of high axle loads (15–25 Mg) on soil physical properties were investigated. Soil texture classes ranged from loamy sand to silty clay loam. All sites were annually ploughed, and one site was additionally subsoiled to 40 cm depth. In the context of common field operations wheeling was performed either by a sugar beet harvester (45 Mg total mass, 113 kPa average ground contact pressure) or a slurry spreader (30 Mg total mass, 77 kPa average ground contact pressure). Soil moisture conditions varied from 3.2 to 32 kPa water tension during this pass. Penetration resistance was measured before the pass. Soil cores were collected in a grid scheme at each site before and after the machine passed. Bulk density, aggregate density, air-filled porosity and air permeability at seven distinct soil water tensions ranging from 0.1 to 32 kPa were determined in these cores taken from three layers (topsoil, plough pan and subsoil).At most sites, a pass by the sugar beet harvester or slurry spreader strongly affected topsoil properties. Bulk density and aggregate density increased while air-filled porosity and air permeability decreased. The plough pan was already severely compacted before wheeling: therefore changes were small. The subsoil showed no changes or only minor signs of compaction. Only at one site, which was subsoiled the year before, significant signs of compaction (i.e. changes in bulk density, air-filled porosity and air permeability) were detected in subsoil layers.The results show that using present-day heavy agricultural equipment does not necessarily lead to severe subsoil compaction in soils where a compacted plough pan already exists. However, fields which were subsoiled leading to an unstable soil structure are in serious danger of becoming severely compacted.  相似文献   

16.
Soil compaction is a main cause of soil degradation in the world and the information of soil compaction in subtropical China is limited. Three main Ultisols (quaternary red clay, sandstone and granite) in subtropical China were homogenized to pass through 2 mm sieve and recompacted into soil cores at two bulk densities (1.25 and 1.45 g cm−3). The soil cores were equilibrated at different matric potential values (−3, −6 and −30 kPa) before subjected to multi-step compaction tests. Objectives of this study were to determine how different initial soil conditions and loading time intervals influence pre-compression stress and to evaluate an easy measure to determine soil vulnerability to compaction. It became evident that the soil strength indicator, pre-compression stress, was affected by soil texture, initial soil bulk density and matric potential. The coarser the soil texture, the lower the bulk density and the higher the matric potential, the lower was the pre-compression stress. The pre-compression stress decreased exponentially with increasing initial soil water content. Soil water content and air permeability decreased after compaction. The amount of water loss was affected not only by soil texture, bulk density and initial water content but also by loading time interval. These results indicate soil pore structure and hydraulic conductivity changed during compactions. The applied stress corresponding to the highest changes of pore water pressure during compaction had a significant linear relationship with the pre-compression stress (R=0.88, P<0.001). The correlation was ascribed to that the changes in pore water pressure describe the dynamics of the interactive effects of soil pore characters and soil water movement during compaction. The results suggested the evaluation of soil vulnerability to compaction have to consider the initial soil condition and an easy method to measure the changes in pore water pressure can be applied to compare soil strength and soil vulnerability to compaction.  相似文献   

17.
The relationship between soil strength and crop yield may be summarized by a linear correlation coefficient (usually negative). It is likely, however, that this over-simplifies a complex situation in which the relationship between these variables depends on spatial scale and location. We used the wavelet transform to assess this scale- and location-dependence. We established a transect on an arable field in Eastern England, and studied the correlations of soil strength (top- and subsoil) with crop yield. The transect comprised 267 contiguous 0.72 m × 0.72 m plots. Measurements were taken during two consecutive growing seasons of winter wheat (harvest dates of August 2004 and 2005). Soil strength was measured with a penetrometer in the spring of each growing season. As expected, the overall correlation of soil strength with yield was negative but weak. Wavelet analysis revealed that, at fine spatial scales, topsoil and subsoil strength were correlated more or less equally with yield; however, at coarse spatial scales, topsoil strength had a stronger correlation with yield than did subsoil strength. The correlation of topsoil strength with yield at fine spatial scales (corresponding to about 1 m on the ground) was negative. A likely source of this fine-scale variation was the soil compaction associated with tractor wheelings. The correlation of topsoil strength with yield at the coarsest spatial scale (corresponding to about 50 m on the ground) was positive. This correlation was temporally stable, and might have reflected how soil strength can act as a proxy for other soil attributes. In the 2005 growing season, we found evidence that, at intermediate spatial scales, the correlation of soil strength with yield changed depending on the position on the transect. This was probably due to an interaction between the compaction associated with tractor wheelings and the local soil conditions. There was no evidence of such location-dependence in the correlation of soil strength with yield in the 2004 growing season. In summary, the effect of soil strength on crop yield was not expressed in a constant negative correlation across all spatial scales and locations: the negative correlation occurred mainly at fine spatial scales, and the correlation changed according to the position in the landscape and the prevailing local soil conditions.  相似文献   

18.
The philosophy toward tillage throughout the last century in Hungary can be characterized as a fight against extreme climatic and economic situations. The ‘Hungarian reasonable tillage’ approach that was promoted by Cserháti at the end of the 1800s was aimed at reducing tillage without increasing the risk of crop failure in arable fields. Recently, new tillage trends and systems have been introduced because of the rise in energy prices and because of the need to cut production costs, conserve soil and water resources and protect the environment. In Hungarian relation, the rationalized plowing, loosening and mulching systems are counted to the new tillage solutions. There are new steps in the sowing methods too, such as seedbed preparation and plant in one pass, till and plant, mulch-till and plant and direct drilling, which are environment capable, throughout improving soil condition and avoiding the environment harms. The applicability of various soil conservation tillage methods is currently being tested in research projects and discussed in workshops throughout the country. In this paper, soil quality problems such as compaction, trends in soil tillage, and factors affecting soil quality or condition as well as improvement and maintenance are summarized. The data show that annual disking and plowing causes subsoil compaction at the depth of tillage within 3 years and that the compacted layer expanded both in surface and deeper layers after the 5th year. Soil quality deterioration by tillage-pans was improved by subsoiling and maintained by direct drilling and planting soil-loosening catch crops. Within a loam and a sandy loam soil there were close correlations between earthworm activity and soil quality. Earthworm numbers increased on undisturbed but noncompacted soils and soils that included stubble residues remaining on the surface, but did not increase on soils that were deteriorated by tillage-pans or left bare by the absence of mulch. Our goal for the new millennium, is to use only enough tillage to create and maintain harmony between soil conservation, soil quality and crop production.  相似文献   

19.
Soil compaction is recognized as an increasingly challenging problem for the agricultural, horticultural and forest production in many climatic regions. The Proctor test provides a standardized method to study compactibility of disturbed soils over a range of soil water contents. The objectives of our study were: (a) to determine values of the critical water content for compaction and maximum bulk density from Proctor compaction curves for soils different in their properties; (b) to study the correlation between the maximum bulk density and readily available soil properties. Thirty soil samples were taken from six different locations in Argentina between 58 and 64°W and 34 and 38°S. The degree of saturation at maximum bulk density varied from 73.2 to 96.8%. Comparison of our data with data of two studies in USA showed that relationships between the maximum bulk density and the critical water content were similar to these studies. However, the slope of the relationship between the maximum bulk density and the organic carbon content was 50% less in our study as compared with the two others. The maximum bulk density was highly correlated with the organic carbon content and the silt content, the determination coefficient of the multiple linear regression, r2, was 0.88.  相似文献   

20.
After recent unanticipated occurrences of environmental pollution caused by the time-delayed and sudden release of contaminants previously believed to be held firmly in soils, awareness has increased that the vulnerability of soils to chemical degradation needs to be assessed and mapped. Although some soils appear to be capable of receiving and holding chemical compounds while at the same time retaining their ecological functions, others are readily damaged. Procedures for identifying areas where vulnerable soils occur are presented, with special reference to the minimum soil data sets that would be required in a small scale study at the European level using geographical information systems. These data can readily be compiled, stored and processed with the relational database management system developed for SOTER, The 1:1 million world soil and terrain digital database project of the International Society of Soil Science, which is co-ordinated by the International Soil Reference and Information Centre. the proposed initial soil vulnerability programme would essentially serve to increase awareness about areas prone to chemical soil degradation, and will form the basis for implementing soil pollution assessment programmes at larger scales (1:1 M to 1:250 000). the latter national or regional programmes would include the identification of the major sources of soil pollution, and measurement of the accumulated load and the rate of loading according to uniform and standardized procedures, providing the conceptual basis for developing process based models to assess where particular types of soil degradation are likely to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号