首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Factors causing variation in fine root biomass in forest ecosystems   总被引:4,自引:0,他引:4  
Fine roots form one of the most significant components contributing to carbon cycling in forest ecosystems. We study here the effect of variation in root diameter classes, sampling depth and the inclusion of understorey vegetation root biomass in fine root biomass (FRB) estimates. The FRB estimates for different forest biomes are updated using a database of 512 forest stands compiled from the literature. We also investigate the relationships between environmental or forest stand variables and fine root biomass (≤2 mm in diameter) at the stand (g m−2) and tree level (g tree−1). The FRB estimates extrapolated for the whole rooting depth were 526 ± 321 g m−2, 775 ± 474 g m−2 and 776 ± 518 g m−2 for boreal, temperate and tropical forests, respectively, and were 26-67% higher than those based on the original sampling depths used. We found significant positive correlations between ≤1 and ≤2 mm diameter roots and between ≤2 and ≤5 mm roots. The FRB estimates, standardized to the ≤2 mm diameter class, were 34-60% higher and 25-29% smaller than those standardized to the ≤1 mm and ≤5 mm diameter classes, respectively. The FRB of the understorey vegetation accounted for 31% of the total FRB in boreal forests and 20% in temperate forests. The results indicate that environmental factors (latitude, mean annual precipitation, elevation, temperature) or forest stand factors (life form, age, basal area, density) can not explain a significant amount of the variation in the total FRB and a maximum of 30% that in the FRB of trees at the stand level, whereas the mean basal area of the forest stand can explain 49% of the total FRB and 79% of the FRB of trees at the tree level.  相似文献   

2.
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.  相似文献   

3.
Based on allometric relationships and information provided in forest management plans, we determined aboveground net primary productivity (ANPP) for a 10-year period in a Mediterranean beech forest (Fagus moesiaca Cz.) extending across an elevation gradient. The ANPP ranged from 1.87 to 15.71 Mg ha(-1) year(-1), and leaf area index (L*) ranged from 2.3 to 3.6. Although small trees (diameter at breast height < 10 cm) were not sampled, it was unlikely that this accounted for the low L* because there were very few small trees on a per-hectare basis. A weak positive relationship was found between ANPP and L*, and only ANPP was negatively related to elevation. Although L* did not vary with elevation, biomass growth efficiency (ANPP/L*) declined strongly with elevation. Leaf carbon isotope composition, leaf nitrogen content per unit area and specific leaf area of leaves collected from nine trees across an elevation gradient all varied significantly with elevation and were significantly related to one other, suggesting that water limitations at higher elevations may have driven the reduced growth efficiency at the stand level. Strong winds may also have negatively affected ANPP at higher elevations by altering belowground allocation. Further research is needed to test these hypotheses and to determine the belowground dynamics of phytomass in this ecosystem.  相似文献   

4.
Transpiration, leaf characteristics and forest structure in Metrosideros polymorpha Gaud. stands growing in East Maui, Hawaii were investigated to assess physiological limitations associated with flooding as a mechanism of reduced canopy leaf area in waterlogged sites. Whole-tree sap flow, stomatal conductance, microclimate, soil oxidation-reduction potential, stand basal area and leaf area index (LAI) were measured on moderately sloped, drained sites with closed canopies (90%) and on level, waterlogged sites with open canopies (50-60%). The LAI was measured with a new technique based on enlarged photographs of individual tree crowns and allometric relationships. Sap flow was scaled to the stand level by multiplying basal area-normalized sap flow by stand basal area. Level sites had lower soil redox potentials, lower mean stand basal area, lower LAI, and a higher degree of soil avoidance by roots than sloped sites. Foliar nutrients and leaf mass per area (LMA) in M. polymorpha were similar between level and sloped sites. Stomatal conductance was similar for M. polymorpha saplings on both sites, but decreased with increasing tree height (r(2) = 0.72; P < 0.001). Stand transpiration estimates ranged from 79 to 89% of potential evapotranspiration (PET) for sloped sites and from 28 to 51% of PET for level sites. Stand transpiration estimates were strongly correlated with LAI (r(2) = 0.96; P < 0.001). Whole-tree transpiration was lower at level sites with waterlogged soils, but was similar or higher for trees on level sites when normalized by leaf area. Trees on level sites had a smaller leaf area per stem diameter than trees on sloped sites, suggesting that soil oxygen deficiency may reduce leaf area. However, transpiration per unit leaf area did not vary substantially, so leaf-level physiological behavior was conserved, regardless of differences in tree leaf area.  相似文献   

5.
We investigated fine root biomass and distribution patterns in a species-rich temperate Carpinus–Quercus–Fagus–Tilia forest and searched for experimental evidence of symmetry or asymmetry in belowground competition. We conducted extensive root coring and applied the recently introduced in situ-root growth chamber technique for quantifying fine root growth under experimentally altered intra- and interspecific root neighbourhoods in the intact stand. In 75% of all soil cores, fine roots of more than two tree species were present indicating a broad overlap of the root systems of neighbouring trees. Quercus trees had more than ten times less fine root biomass in relation to aboveground biomass or productivity (stem growth) and a much higher leaf area index/root area index ratio than Carpinus, Fagus and Tilia trees. The root growth chamber experiments indicated a high belowground competitive ability of Fagus in interspecific interactions, but a low one of Quercus. We conclude that (1) interspecific root competition is ubiquitous in this mixed stand, (2) root competition between trees can be clearly asymmetric, and (3) tree species may be ranked according to their belowground competitive ability. Fagus was found to be the most successful species in belowground competition which matches with its superiority in aboveground competition in this forest community.  相似文献   

6.
Water stress and fire disturbance can directly impact stand structure, biomass and composition by causing mortality and influencing competitive interactions among trees. However, open eucalypt forests of southwest Australia are highly resilient to fire and drought and may respond differently to increased fire frequency and aridity than forests dominated by non-eucalypt species. We measured the variation in stem density, basal area, stand biomass, sapwood area, leaf area and litterfall across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands along an aridity gradient in southwest Australia that had variable fire histories. Fire frequency was defined as the total number of fires over a ∼30-year period and aridity as the ratio of potential evapotranspiration to annual precipitation. Total stand biomass and sapwood area were predicted from diameter at breast height of individual jarrah and marri trees using allometric equations. Leaf area was estimated using digital cover photography. More arid and frequently burnt stands had higher stem density, especially of smaller trees, which were mainly jarrah. Overall, both standing biomass and leaf area decreased at more arid sites, while sapwood area was largely unaffected by aridity, suggesting that these stands respond to increased water limitation by decreasing their leaf area relative to their sapwood area. Biomass of marri was reduced at more arid and, to a lesser extent, at more frequently burnt stands. However, total stand biomass (jarrah and marri) and leaf area index did not vary with fire frequency, suggesting that less marri biomass (due to slower growth rates, higher mortality or less recruitment) was compensated by an increase in the density of jarrah trees (regeneration). We conclude that increased fire and drought shift tree species composition towards more fire-resistant species and result in denser stands of smaller trees. In contrast, total stand biomass declines with increasing aridity, but has no association with fire frequency.  相似文献   

7.
In the Northern and Baltic countries, grey alder is a prospective tree species for short-rotation forestry. Hence, knowledge about the functioning of such forest ecosystems is critical in order to manage them in a sustainable and environmentally sound way. The 17-year-long continuous time series study is conducted in a grey alder plantation growing on abandoned agricultural land. The results of above- and below-ground biomass and production of the 17-year-old stand are compared to the earlier published respective data from the same stand at the ages of 5 and 10 years. The objectives of the current study were to assess (1) above-ground biomass (AGB) and production; (2) below-ground biomass: coarse root biomass (CRB), fine root biomass (FRB) and fine root production (FRP); (3) carbon (C) and nitrogen (N) accumulation dynamics in grey alder stand growing on former arable land. The main results of the 17-year-old stand were as follows: AGB 120.8 t ha?1; current annual increment of the stem mass 5.7 t ha year?1; calculated CRB 22.3 t ha?1; FRB 81 ± 10 g m?2; nodule biomass 31 ± 19 g m?2; fine root necromass 11 ± 2 g m?2; FRP 53 g DM m?2 year?1; fine root turnover rate 0.54 year?1; and fine root longevity 1.9 years. FRB was strongly correlated with the stand basal area and stem mass. Fine root efficiency was the highest at the age of 10 years; at the age of 17 years, it had slightly reduced. Grey alder stand significantly increased N and Corg content in topsoil. The role of fine roots for the sequestration of C is quite modest compared to leaf litter C flux.  相似文献   

8.
Large-scale inventories of forest biomass and structure are necessary for both understanding carbon dynamics and conserving biodiversity. High-resolution satellite imagery is starting to enable structural analysis of tropical forests over large areas, but we lack an understanding of how tropical forest biomass links to remote sensing. We quantified the spatial distribution of biomass and tree species diversity over 4 ha in a Bolivian lowland moist tropical forest, and then linked our field measurements to high-resolution Quickbird satellite imagery. Our field measurements showed that emergent and canopy dominant trees, being those directly visible from nadir remote sensors, comprised the highest diversity of tree species, represented 86% of all tree species found in our study plots, and contained the majority of forest biomass. Emergent trees obscured 1–15 trees with trunk diameters (at 1.3 m, diameter at breast height (DBH)) ≥20 cm, thus hiding 30–50% of forest biomass from nadir viewing. Allometric equations were developed to link remotely visible crown features to stand parameters, showing that the maximum tree crown length explains 50–70% of the individual tree biomass. We then developed correction equations to derive aboveground forest biomass, basal area, and tree density from tree crowns visible to nadir satellites. We applied an automated tree crown delineation procedure to a high-resolution panchromatic Quickbird image of our study area, which showed promise for identification of forest biomass at community scales, but which also highlighted the difficulties of remotely sensing forest structure at the individual tree level.  相似文献   

9.
Leaf optical properties in Venezuelan cloud forest trees   总被引:1,自引:0,他引:1  
Leaf optical properties and related leaf characteristics were compared for thirteen cloud forest tree species differing in successional status. Sun leaves were sampled for the eight pioneer species and sun and shade leaves were sampled for the five climax species. Sun leaves had a slightly higher absorptance than shade leaves, although differences were small. Sun leaves had a higher leaf mass per unit area (LMA) and a lower chlorophyll concentration per unit leaf mass, resulting in similar chlorophyll concentrations per unit leaf area and hence similar light harvesting capacities as shade leaves. However, shade leaves realized a higher efficiency of absorptance per unit leaf biomass than sun leaves. There were few differences in leaf characteristics of sun leaves between the climax and pioneer species. Absorptance values of cloud forest species were comparable with values reported for rain forest and more seasonal forest species. Intraspecific variation in leaf absorptance was largely the result of variation in LMA, whereas interspecific variation in leaf absorptance was largely a result of variation in chlorophyll concentration per unit leaf area.  相似文献   

10.

? Context

Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales.

? Aims

We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China.

? Method

Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development.

? Results

BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests.

? Conclusion

To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.  相似文献   

11.
Tree effects on understory pasture growth in a silvopastoral system were modeled by explicit simulation of tree canopy light and rainfall interception, evapotranspiration, and nutrient uptake. The algorithms to model these effects were incorporated into a multispecies grazing simulation model, GRASIM, to form the Silvopasture GRASIM model (SGRASIM). The new model was evaluated using forage biomass data and soil moisture data collected from a silvopasture field experiment with black walnut (Juglans nigra L.). The SGRASIM model performed well in simulating the growth of three competing dominant forage species (orchardgrass [Dactylis glomerata L.], Kentucky bluegrass [Poa pratensis L.], and tall fescue [Festuca arundinacea (Schreb.)] in the pasture both under tree canopy and in open pasture (linear regression of observed on simulated biomass for the species gave r 2 values above 0.97). Model growth parameters for forage under tree canopy, compared with those for an open pasture, bear testament to the shading effects from the forest canopy in terms of reduced photosynthetic efficiency, increased leaf area ratio, and photosynthate partitioned to aboveground biomass. The new model reasonably followed the soil moisture time series in the upper soil layer (0–30 cm), where the bulk of the forage roots reside.  相似文献   

12.
The aboveground biomass dynamics and net primary productivity were investigated to assess the productive potential of Dipterocarpus forest in Manipur, Northeast India. Two forest stands (stand I and II) were earmarked randomly in the study site for the evaluation of biomass in the different girth classes of tree species by harvest method. The total biomass was 22.50 t·ha-1 and 18.27 t·ha-1 in forest stand I and II respectively. Annual aboveground net primary production varied from 8.86 to 10.43 t·ha-1 respectively in two forest stands (stand I and II). In the present study, the values of production efficiency and the biomass accumulation ratio indicate that the forest is at succession stage with high productive potential.  相似文献   

13.
庆元林场阔叶林主要类型生物量测定及其评价   总被引:10,自引:0,他引:10  
根据样地调查获得的数据,选择已建立的各种相关生物量预测模型进行统计,对千岗坑林区分别不同的阔叶林类型进行生物量的测定研究,结果表明,4个主要类型由于树种组成和林龄的不同,其直径分布变异较大,在生物量上阔杉混交林生物量最高达337.3t/hm2,常绿与落叶阔叶林的生物量最低为166.0t/hm2,在各类型的生物量组分中,树干组分的比例最大,其次为枝,再次是根,最低是叶。而生态功能的强弱序列为常绿阔叶林>常绿与落叶阔叶混交林>阔松混交林>阔杉混交林,木材生产能力的大小序列为阔杉混交林>阔松混交林>常绿阔叶林>常绿与落叶混交林。  相似文献   

14.
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

15.
ABSTRACT

The relationship between stand attributes and biomass accumulation pattern in a mangrove forest has been intensively studied in this study. We assessed above (AGM) and belowground mass (BGM) and examined the relationship between forest attributes and aboveground mass in the Sundarbans, Bangladesh. The study was conducted with 18 plots having total area of 1.08 ha. The mean AGM and BGM of the study sites were 234.08 and 132.85 Mg ha?1 respectively. H. fomes contributed the highest amount (82.9% of total AGM and 80.53% of total BGM) of above (193.56 Mg ha?1) and belowground mass (107.09 Mg ha?1) at the study site. Our study revealed structural attributes (tree diameter, height, and basal area) positively correlated with AGM. In contrast, species richness and species diversity negatively correlated with AGM. Our study indicated that lack of positive relationship between species diversity and AGM which may be attributable to high AGM of the dominant species (H. fomes) and may have a considerable consequence in AGM of the study area. Thus, maintaining large trees (DBH and height) rather than species diversity in the Sundarbans mangrove forest might be an effective approach for increasing aboveground mass.  相似文献   

16.
SCHoNENBERGER  WALTER 《Forestry》1984,57(1):59-73
In the alpine timberline ecotone at 1350 m in the CraigieburnRange, New Zealand, four distinct mountain beech stand types(a pole, a coppice, a high forest and a shrublike stand) wereanalysed for stand biomass and leaf area by means of allomet-ricregressions based on stem diameter. Differences between stand types in terms of age, structure,biomass and leaf area are interpreted as development stagesafter stand breakdowns due to external impacts. Vegetative reproduction,mainly coppicing, plays an important part in stand regeneration. The young pole stand had 177 t ha–1, the coppice stand272 t ha–1, and the mature high forest stand 323 t ha–1aboveground dry weight. A low mountain beech shrub stand withgnarled, windshaped dwarf trees had only 135 t ha–1. Foliageaccounted for only 3–5% in all stands, the leaf area indexwas also low, at 3.0 in the shrub stand and 3.7–7.4 inthe forest stands. The low foliage proportion is consideredto be a response to the harsh environment.  相似文献   

17.
Sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forests were examined at four locations along an acid deposition and climatic gradient in the Great Lakes region of the USA. The study sites were matched in terms of physiography, soils, stand history, and vegetative characteristics. Measurements of basal area and biomass growth were made for the 1988–1991 growing seasons. There were no significant differences in either basal area of biomass increment among the four sites over the 4 year period. There was a great deal of year-to-year variability with relative basal area growth rates ranging from as low as 0.2% to as high as 2.4% on a single site in successive years. Growth efficiency measures reflected this variability with as much as an 800% difference between successive years on a single site. When coupled with year-to-year variability of up to 34% in leaf area related to heavy seed years and defoliation, this indicates that growth efficiency and leaf area measures are not consistent indicators of aboveground productivity for tolerant deciduous species, especially if derived from short-term measurements or temporary plots.  相似文献   

18.
We investigated the sapling leaf display in the shade among trees of various leaf lifespans co-occurring under the canopy of a warm-temperate conifer plantation. We measured leaf-area ratio (aLAR) and morphological traits of saplings of evergreen broadleaved tree species and a deciduous tree species. Although we found large interspecific and intraspecific differences in aLAR even among saplings of similar size in the homogeneous light environment, we did not find a consistent trend in aLAR with leaf lifespan among the species. While deciduous trees annually produced a large leaf area, some evergreen broadleaved trees retained their leaves across years and had aLAR values as high as those of deciduous trees. Among leaf-level, shoot-level, and individual-level morphological traits, aLAR was positively correlated with current-year shoots mass per aboveground biomass in deciduous trees, and with the area of old leaves per aboveground mass in evergreen broadleaved trees. Thus, tree-to-tree variation in the degrees of annual shoot production and the accumulation of old leaves were responsible for the interspecific and intraspecific variations in aLAR.  相似文献   

19.
Biomass and nutrient (N, P, K, Ca, Mg) stock in various aboveground tree components (stemwood, stembark, branches and leaves) were quantified in an age sequence of pure Larix olgensis planta- tions (20, 35, 53 and 69 years old) in Northeast China. The results show that the aboveground biomass allocation in various tree components was in the order of stemwood (62%-83%), branches (9%-21%), stembark (7%-11%) and leaves (1%-6%) for all stands. The proportion of stemwood biomass to total aboveground biomass increased whereas that of other tree components decreased consistently with stand age from 20 to 53 years old, but kept relatively constant with stand age from 53 and 69 years old. The nutrient allocation in various tree components generally followed the same pattern as the biomass allocation (i.e. stemwood > branches > stembark > leaves). The proportion of nutrient stock in leaves to total aboveground nutrient stock decreased consistently with increasing stand age, while that in stemwood increased with stand age from 20 to 53 years old but then decreased from 53 to 69 years old. The rate of nutrient removal for stands was estimated at different stand ages under different logging schemes, showing that the rate of nutrient removal would be unchanged when the rotation length was shortened to 20 years by the harvest of stem only, but greatly increased by the harvest of total aboveground biomass. The rate of nutrient removal would be a considerable reduction for all elements by debarking, especially for Ca.  相似文献   

20.
Above- and belowground biomass in a Brazilian Cerrado   总被引:1,自引:0,他引:1  
Cerrado is a biome that occupies about 25% of the Brazilian territory and is characterized by a gradient of grassland to savanna and forest formations and by high species richness. It has been severely affected by degradation and deforestation and has been heavily fragmented over the past 4-5 decades. Despite the recognized overall ecological importance of the Cerrado, there are only few studies focusing on the quantification of biomass in this biome. We conducted such a case study in the South-East of Brazil in a cerrado sensu stricto (cerrado s.s.) with the goal to produce estimates of above- and belowground biomass and to develop allometric equations. A number of 120 trees from 18 species were destructively sampled and partitioned into the components: leaves, branches and bole. Five models with DBH (D), height (H), D2H and wood density (WD) as independent variables were tested for the development of allometric models for individual tree aboveground biomass (leaves + branches + bole). One model based on basal area (BA) as a stand parameter was also tested as an alternative approach for predicting aboveground biomass in the stand level. Belowground biomass was estimated by subsampling on 10 sample plots. Mean aboveground tree biomass (bole, branches and leaves) was estimated to be 62,965.5 kg ha−1(SE = 14.6%) and belowground biomass accounted for 37,501.8 kg ha−1 (SE = 23%). The best-fit equation for the estimation of individual tree aboveground biomass include DBH and wood density as explanatory variables (R2 = 0.898; SEE = 0.371) and is applicable for the diameter range of this study (5.0-27.6 cm) and in environments with similar conditions of the cerrado s.s. sampled. In the stand level, the model tested presented a higher goodness of fit than the single tree models (R2 = 0.934; SEE = 0.224). Our estimates of aboveground biomass are higher than reported by other studies developed in the same physiognomy, but the estimates of belowground biomass are within the range of values reported in other studies from sites in cerrado s.s. Both biomass estimates, however, exhibit relatively large standard errors. The root-to-shoot ratio of the sample trees is in the magnitude of reported values for savanna ecosystems, but smaller than estimated from other studies in the cerrado s.s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号