首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

2.
We studied the effects of six levels of dispersed green-tree retention (GTR) harvesting (clearcut (0%), 10%, 20%, 50%, and 75%, and unharvested reference (100%)) on understory plant communities in the 8th growing season post-harvest in the mixedwood boreal forest in northwestern Alberta. For the partial harvest treatments (10%, 20%, 50%, 75%) sample plots were located in the partially harvested (retention) strips as well as in the intervening machine corridors used by the harvesting equipment. The understory plant community was significantly influenced by the gradient of retention level. The cover of understory vegetation, especially graminoids, increased with increasing harvesting intensity for the retention strips and overall considering both plots types. Species richness was unaffected by retention level but did decrease as tree density increased. Lower levels of retention lead to increased abundance of early successional, shade-intolerant species. The results suggest a threshold in understory response to GTR harvesting between the 10% and 20% retention treatments. In terms of understory cover and composition, machine corridors within partially harvested forests resembled clearcuts. The results suggest that retaining more than 10% during GTR harvesting could have significant benefits in terms of maintaining understory plant communities more similar to unharvested reference forest.  相似文献   

3.
We studied the effects of partial cutting on understory vegetation communities within 19 mixed maple forests in an agriculture-dominated landscape in southwestern Ontario. Woodlots that had been recently harvested were grouped according to provincial silviculture guidelines (standard and heavy cuts) and compared to woodlots that had been uncut for at least 24 years (reference stands). We found significant differences in richness, diversity, and quality of understory vegetation in response to harvest indices. More intensive harvesting resulted in increased richness and diversity, but mostly through the addition of habitat generalists and weedy species. However, partial harvest does not appear to drive vegetation community composition, as ordination methods found no clear community differences between the treatments. Use of the single-tree selection system based on basal area and harvest intensity targets will have an effect on the understory plants, but other factors including past management, disturbance history, and site level microclimate features will also play an important role in shaping vegetation communities. We caution against the removal of large volumes of trees ≥38 cm in diameter, and large reductions in canopy cover, as this can reduce the presence of “conservative” (forest dependent specialist) species, despite a general increase in species richness and diversity. Furthermore, we recommend additional research to investigate the potential for incremental degradation to occur on sites with a long-term history of harvesting, as we found that richness of exotics increased on sites with a history of forest management.  相似文献   

4.
5.
6.
We assessed the composition of understory vascular plant communities in relation to the mosaic of canopy patch types, and their associated structure and environment, within unmanaged, mature boreal mixedwood forests in western Canada. Within a 30 km2 area, we sampled patches of four different canopy types: conifer-dominated, broadleaf-dominated, mixed conifer-broadleaf, and canopy gaps (total n = 98). There were significant differences in understory composition among the four patch types (based on multi-response permutation procedure (MRPP)) and these were mainly due to differences in relative abundances of understory species. The understory communities of conifer patches were characterized by low abundances of shade intolerant species while shade-tolerant and evergreen species were indicators (based on an indicator species analysis (ISA)). Understory communities under gap and broadleaf patches were characterized by higher abundances of grasses and shade intolerant species. Gap, broadleaf, and mixed patches had higher abundances of certain shrub species than did conifer patches. The patch types also differed in terms of their environmental conditions. Conifer patches had drier, cooler soils and the lowest understory light. Broadleaf patches had the warmest soils while understory light during the leaf-off period was similar to that of canopy gaps. Gap patches had the lowest litter cover and PO4 availability and the highest light. Seven environmental variables (soil moisture, soil temperature, total light during the leaf-off period, cover of coarse and fine downed woody material, and availability of NH4+ and Ca2+) were significantly related to understory species composition (in a constrained ordination by means of a distance-based redundancy analysis (db-RDA); 16.5% of variation in understory community data explained). Even within a single patch type, there was substantial environmental variation that was related to understory species composition. Our study suggests that the mosaic of canopy patches within mixedwood forests supports coexistence of both early and late successional understory plant species in mixedwood stands. Maintaining the mixture of canopy patch types within mixedwood stands will be important for conserving the natural patterns of understory plant composition in boreal mixedwood forests.  相似文献   

7.
The threat of climate change is now recognized as an imminent issue at the forefront of the forest sector. Incorporating adaptation to climate change into forest management will be vital in the continual and sustainable provision of forest ecosystem services. The objective of this study is to investigate climate change adaptation in forest management using the landscape disturbance model LANDIS-II. The study area was comprised of 14,000 ha of forested watersheds in central Nova Scotia, Canada, managed by Halifax Water, the municipal water utility. Simulated climate change adaptation was directed towards three components of timber harvesting: the canopy-opening size of harvests, the age of harvested trees within a stand, and the species composition of harvested trees within a stand. These three adaptation treatments were simulated singly and in combination with each other in the modeling experiment. The timber supply was found to benefit from climate change in the absence of any adaptation treatment, though there was a loss of target tree species and old growth forest. In the age treatment, all trees in a harvested stand at or below the age of sexual maturity were exempt from harvesting. This was done to promote more-rapid succession to climax forest communities typical of the study area. It was the most effective in maintaining the timber supply, but least effective in promoting resistance to climate change at the prescribed harvest intensity. In the composition treatment, individual tree species were selected for harvest based on their response to climate change in previous research and on management values at Halifax Water to progressively facilitate forest transition under the altered climate. This proved the most effective treatment for maximizing forest age and old-growth area and for promoting stands composed of climatically suited target species. The size treatment was aimed towards building stand complexity and resilience to climate change, and was the most influential treatment on the response of timber supply, forest age, and forest composition to timber harvest when it was combined with other treatments. The combination of all three adaptation treatments yielded an adequate representation of target species and old forest without overly diminishing the timber supply, and was therefore the most effective in minimizing the trade-offs between management values and objectives. These findings support a diverse and multi-faceted approach to climate change adaptation.  相似文献   

8.
Light is the most common limiting factor in forest plant communities,influencing species composition,stand structure,and stand productivity in closed canopy stands.Stand vertical light structure is relatively simple under a closed canopy because most light is captured by overstory trees.However,wind disturbance events create canopy openings from local to landscape scales that increase understory light intensity and vertical light structural complexity.We studied the effects of an EF-1 tornado on horizontal and vertical(i.e.three-dimensional)light structure within a Quercus stand to determine how light structure changed with increasing disturbance severity.We used a two-tiered method to collect photosynthetic photon flux density at 4.67 m and 1.37 m above the forest floor to construct three-dimensional light structure across a canopy disturbance severity gradient to see if light intensity varied with increasing tornado damage.Results indicate that increased canopy disturbance closer to the tornado track increased light penetration and light structure heterogeneity at lower forest strata.Increased light intensity correlated with increased sapling density that was more randomly distributed across the plot and had shifted light capture higher in the stand structure.Light penetration through the overstory was most strongly correlated with decreased stem density in the two most important tree species(based on relative dominance and relative density)in the stand,Quercus alba L.(r=-0.31)and Ostrya virginiana(Mill.)K.Koch(r=-0.27,p<.01),and indicated that understory light penetration was most affected by these two species.As managers are increasingly interested in patterning silvicultural entries on natural disturbances,they must understand residual stand and light structures that occur after natural disturbance events.By providing spatial light data that quantifies light structure post-disturbance,managers can use these results to improve planning required for long-term management.The study also provides comparisons with anthropogenic disturbances to the midstory that may offer useful comparisons to natural analogs for future silvicultural consideration.  相似文献   

9.
In temperate and boreal mixedwood forests of eastern North America, partial disturbances such as insect outbreaks and gap dynamics result in the development of irregular forest structures. From a forest ecosystem management perspective, management of these forests should therefore include silvicultural regimes that incorporate medium- to high-retention harvesting. We present 12-year results of a field experiment undertaken to evaluate the effects of variable retention harvesting on stand structure, recruitment, and mortality. Treatments were gap harvesting (GAP), diameter-limit harvesting (DL), careful logging (CL), and careful logging followed by scarification (CL + SCAR), and an unharvested control. Although post-harvest basal area in the GAP treatment was significantly lower than that of controls, it maintained a diameter distribution profile and densities of balsam fir regeneration similar to those of pre-harvest conditions. Lower retention treatments (DL, CL, and CL + SCAR) tended to favor regeneration of pioneer, shade-intolerant species. Except for black spruce (for which mortality was highest in DL), stem mortality was similar among harvesting treatments. From an ecosystem management perspective, this study suggests that gap harvesting can maintain, in the short term, forest stand composition and structure similar to unharvested forests, and could be used where management objectives include the maintenance of late successional forest conditions.  相似文献   

10.
Larix olgensis is one of the important commercial timber tree species in northeastern China, but it does not naturally regenerate in L. olgensis forests even after cutting. To identify the causes of the regeneration failure, the authors tested the effects of site preparation in a thinned stand and in a clearcut on the emergence and early establishment of L. olgensis seedlings. The results indicated that there was no correlation between cumulative emergence percentage (CEP) of L. olgensis seedlings and canopy openness, but the CEP was significantly affected by site preparation (< 0.001). The average seedling survival rates after treatments consisting of removing both litter cover and understory vegetation cover were significantly higher in the clearcut than in the thinned stand (< 0.001). Without site preparation, all seedlings in both the thinned stand and the clearcut disappeared within the first growing season, meaning that ground cover (understory vegetation cover and litter cover) was not beneficial to seedling survival. The average growth of seedlings exhibited significant differences between the thinned stand and the clearcut, and among the site preparations (< 0.001). Intensely thinned stands without ground cover improved seedling growth. These results imply that light and ground cover might be the main factors limiting the early establishment of L. olgensis seedlings in managed plantation forests  相似文献   

11.
林下植被抚育是桉树人工林经营中的关键环节。采用调查问卷的方式,在广西区直林场开展桉树林下植被抚育现状的调查,对林下草灌保留、除草方式、除草剂使用等情况进行汇总分析。结果显示,各林场通常采取人工和除草剂两种方式相结合进行桉树林下植被抚育;第一年抚育1~3次,第二年至第四年抚育0~1次,采伐前抚育1次;林下植被抚育时草灌保留高度在10~20 cm以下,部分林场林下灌木保留10%~30%;抚育成本675~1 275元/hm2;使用的除草剂主要是草甘膦、草舒、草乙疏等,均含有草甘膦成分,施用量为7.5~18.75 kg/hm2。采取多样化的桉树林下植被抚育方式,以平衡桉树生长和林下植被多样性的关系,促进桉树人工林可持续经营。  相似文献   

12.
We investigated the effects of line thinning on the abundance of Hymenoptera in two Japanese cedar plantations in northern Hyogo Prefecture, central Japan, in order to evaluate the effectiveness of this silvicultural treatment for ecosystem management. Line thinning is a silvicultural treatment practiced in Japan, where linear stand sections are cut (25%–35% of the total number of trees) retaining one to two rows of trees. We used Malaise traps to capture Hymenoptera from the line-thinned stand (treatment plot, including thinned and retained sections) and the unthinned stand (control plot). Overall, the total number of Hymenoptera was greater in the treatment plot than in the control plot. The treatment plot hosted more functional groups and families of Hymenoptera than the control plot in both plantations. In the Kuchiotani plantation (high-elevation site), the overall abundance of Hymenoptera and of many Hymenopteran functional groups were positively correlated with both species richness and biomass of understory plants. In the Sugi plantation (low-elevation site), understory vegetation was less developed and there was no correlation with abundance of Hymenoptera. Our study indicates that line thinning is an effective silvicultural treatment for future management of overstocked Japanese cedar plantations because it can fulfill biodiversity objectives, but the effectiveness may depend on silvicultural and landscape factors.  相似文献   

13.
This study reports 14th-year response of a boreal mixedwood stand to different harvest intensities (uncut, 50% partial cut with and without removal of residuals after 3 years, and clearcut), spot site preparation treatments (none and scalped), and chemical weeding frequencies (none, single, and multiple) in northeastern Ontario. The response variables include the survival and growth of planted white spruce (Picea glauca [Moench] Voss) and jack pine (Pinus banksiana Lamb.), height and density of natural regeneration and shrubs, and cover of shrubs and non-woody vegetation. Harvesting and weeding generally improved survival and growth of planted trees, although white spruce survival did not significantly differ among the three weeding frequencies. Harvesting tended to increase heights of hardwood (mostly trembling aspen (Populus tremuloides Michx.)) and conifer (largely balsam fir (Abies balsamea (L.) Mill.).) natural regeneration, cover and density of shrubs, and cover of herbs, lichens, and ferns. Chemical weeding reduced height, density and cover of shrubs, height and density of hardwood regeneration, and fern cover, but increased moss and lichen cover. Spot scalping did not significantly affect planted seedling, natural regeneration, or the vegetation.Maximum survival and growth of planted white spruce and jack pine were achieved using a combination of clearcutting and multiple weeding. However, partial cutting followed by a single weeding produced acceptable survival and reasonable growth of planted trees, particularly for white spruce. Partial canopy removal alone substantially reduced the amount of hardwood regeneration, relative to clearcutting, but did not adequately suppress understory shrubs. Significant improvement in seedling growth following multiple weedings was evident primarily in the complete canopy removal treatments: 50% partial cut with removal of residuals after 3 years and clearcut. While the effects of harvesting and weeding on planted crop trees found in the 5th-year assessments generally persisted at year 14, survival decreased, likely due to light competition from developing hardwood and shrubs.  相似文献   

14.
Shelterwood seed cutting in conjunction with herbicide site preparation has proven effective at regenerating Allegheny hardwood forests, but the long-term impact of this silvicultural system on herbaceous vegetation has not been determined. From 1994 to 2004, we studied the impacts of operational herbicide site preparation using glyphosate plus sulfometuron methyl herbicides in the context of a shelterwood seed cut. Our study took place on 10 partially cut sites on the Allegheny National Forest in northwestern Pennsylvania. Half of each site received herbicide and half did not in a split-plot design with repeated measures. Fences were erected after year six because deer impact had increased. Resilience of individual species and the community were determined using measures of percent cover by species or species groups and indices of diversity and similarity comparing post-treatment to pre-treatment conditions and controls. In the short term, abundance of all species was reduced and there were four fewer species on average in treated areas. No species was eliminated by herbicide across all sites in the long term. Graminoids were more abundant on treated plots after year six. Targeted ferns remained less abundant on treated than control plots after 10 years. Species richness recovered within 4 years following treatment. Shannon Diversity and Shannon Evenness were greater in treated than in control plots over the full study period, but the differences were not significant in any single year. The richness-based Jaccard index of similarity did not differ between control and treatment plots after year two, while relative abundance influenced indices showed significant differences through year eight. Results suggest that herbaceous layer vegetation is resilient to the disturbance created by herbicide-shelterwood treatments.  相似文献   

15.
In the boreal forest, conifer release treatments can leave a low quality hardwood component, which does not contribute to healthy, productive mixedwood forests. In this study, the growth and quality of trembling aspen (Populus tremuloides Michx.) regeneration were examined 5-7 years after spraying with glyphosate herbicide before and after harvesting. Results were compared to those from a partial cut and clearcut treatment without herbicide treatments. The preharvest spray treatment effectively reduced aspen density and height but did not lower regeneration quality—assessed by stem and crown deformation and stem stain—compared to the postharvest spray and clearcut treatments. Increased stem stain in the postharvest spray treatment was largely associated with the stem section that grew prior to herbicide application—post-herbicide growth was not affected. While the effect of stem stain may be restricted to growth that occurred before herbicide use, stem deformation from stem dieback may have longer term effects. In the partial cut treatments both density and stocking of aspen regeneration were lower, but aspen basal diameter growth, height growth, and quality were similar to those in the clearcut treatment. Thus, preharvest spray should promote conifer growth by reducing the density and growth of aspen regeneration without reducing the quality of aspen; this should be considered a preferred treatment to support for management objectives calling for productive and healthy mixtures of fast-growing aspen and slow-growing conifers.  相似文献   

16.
17.
18.
Seventy 1–28-year-old clearcuts were sampled to characterize post-harvest vegetation development and to determine the effect of mechanical site treatment and Picea glauca (Moench) Voss (white spruce) crop-seedling planting on regenerating boreal forest stands in the John D’Or—Wood Buffalo National Park area of northern Alberta in western Canada (58°35′N, 114°37′W). Natural Populus tremuloides/Rosa–Viburnum stands of wildfire origin (n = 25), widespread occurrence, and 52–91-year-old were sampled as a benchmark for comparison. Clearcut Populus-Picea and Picea stands reverted to early successional Populus tremuloides Michx. (trembling aspen)—dominated vegetation, with maximum sucker densities (mean 18 716, S.D. 13 239) within 4 years after stand initiation. Stem exclusion occurred most intensively 5–20 years after initiation, but was expected to continue until stands were >40–50-year-old. In untreated clearcuts, tree and understory shrub cover peaked near natural stand levels 18–20 years after harvesting, and graminoid cover remained constant (∼3%) but elevated compared to natural levels (<1%); whereas forb cover decreased linearly to natural stand levels by Year 28. The early composition of clearcuts was primarily composed of species that were common to the natural stands and also vegetatively reproduced. Mechanical site treatment and crop-seedling planting delayed attainment of maximum tree cover by 7 years, with total cover similar to natural stands. Site treatment reduced total shrub cover and prolonged the occurrence of elevated forb and graminoid cover values, probably in response to disruption of the pre-treatment ground vegetation. Calamagrostis canadensis L., a common crop-seedling competitor, was typically of minor importance on the sampled clearcuts compared to levels associated with more southerly boreal clearcuts. Detrended correspondence analysis ordinations based on species cover suggested untreated and treated clearcuts >13–16-year-old approximated the composition of natural stands. The data also suggested that silvicultural planting of P. glauca will accelerate stand development toward late-successional conifer-dominated vegetation relative to unplanted and natural stands.  相似文献   

19.
The boreal mixedwood forest type of the Canadian interior boreal is largely comprised of two dominant tree species: white spruce and trembling aspen (Picea glauca and Populus tremuloides). This forest type is expansive, providing important ecosystem services and economic production, yet such mixtures are difficult to establish after harvests. While aspen resprouts and grows vigorously following disturbance, spruce growth is relatively slow and is often limited by intense competition from associated vegetation, including aspen. To improve management, it is important to understand how environmental and vegetative conditions vary in relation to the competitive-facilitative relationship of spruce-aspen mixtures. In this study white spruce was planted across large canopy openings to determine whether survival and height growth is influenced by position within gap and by differing levels of competing vegetation control of aspen and understory plants. In addition, we addressed the issue of herbivory, which can pose a significant threat to planted spruce seedlings. Within each of four sites, linear gaps were created and five gap positions were recognized spanning the southern and northern forest understories, and southern, center and northern positions within each opening. Three different levels of vegetation management were implemented: a brush saw treatment in which all vegetation was cut to ground level, a mixing treatment in which all vegetation and rootstock was ground up, and a control with no vegetation management. The three herbivory treatments excluded large ungulates, small herbivores (rabbits, hares) or had no herbivore exclusion. Growth and survival of white spruce seedlings were measured for four years (1997-2000). Understory survival was significantly lower than within the gap, with the sheltered southern edge position providing the best initial environmental conditions and or ameliorative cover for spruce establishment. However, after four years the shelter effect starts to be inhibitive relative to center and northern gap positions, suggesting the removal of the canopy is necessary before spruce productivity declines. The optimal vegetation management treatment also changed over the study period. The most intensive treatment (mixing) initially showed a negative influence on survival and growth, but by year four, survival converged to approximately 75% for all treatments, and the mixing treatment produced the best height growth. The growth advantage became most evident in the center gap positions, which initially lagged the brushsaw and control treatments. Lastly, some growth losses from herbivory must be expected in boreal mixedwoods, although not enough to merit control. Results have implications for the timing and intensity of silvicultural treatments for harvesting and planting.  相似文献   

20.
Boreal forest carbon (C) storage and sequestration is a critical element for global C management and is largely disturbance driven. The disturbance regime can be natural or anthropogenic with varying intensity and frequency that differ temporally and spatially the boreal forest. The objective of this review was to synthesize the literature on C dynamics of North American boreal forests after most common disturbances, stand replacing wildfire and clearcut logging. Forest ecosystem C is stored in four major pools: live biomass, dead biomass, organic soil horizons, and mineral soil. Carbon cycling among these pools is inter-related and largely determined by disturbance type and time since disturbance. Following a stand replacing disturbance, (1) live biomass increases rapidly leading to the maximal biomass stage, then stabilizes or slightly declines at old-growth or gap dynamics stage at which late-successional tree species dominate the stand; (2) dead woody material carbon generally follows a U-shaped pattern during succession; (3) forest floor carbon increases throughout stand development; and (4) mineral soil carbon appears to be more or less stable throughout stand development. Wildfire and harvesting differ in many ways, fire being more of a chemical and harvesting a mechanical disturbance. Fire consumes forest floor and small live vegetation and foliage, whereas logging removes large stems. Overall, the effects of the two disturbances on C dynamics in boreal forest are poorly understood. There is also a scarcity of literature dealing with C dynamics of plant coarse and fine roots, understory vegetation, small-sized and buried dead material, forest floor, and mineral soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号