首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperate saltmarshes are a potential source of atmospheric methane. We have measured the concentration and emission of methane in typical saltmarsh soils (Salic Fluvisols) and humus-rich saltmarsh soils (Thionic Fluvisols) from the German North Sea coast. We also measured the methane production rates of the latter. The methane content of typical saltmarsh soils reached 12.0 μmol 1?1, although values of 1–4 μmol 1?1 were usual. The sulphate concentrations of the pore-water were about 10 mm , which means sulphate reduction is not limited and methanogenesis would be suppressed. Methane concentrations were generally largest in summer. Independent of the redox potential and the degree of soil development, methane concentrations were smallest in those soils poorest in humus. Methane emission rates were almost zero. In the humus-rich saltmarsh soils, methane concentrations were roughly a thousand times larger than those in typical saltmarsh soils, reaching values of 23 mmol 1?1 The sulphate concentrations of the pore-water were often less than 1 mM, indicating limited sulphate reduction. Methane production was up to 80 μg cm?3 day?1 and was not inhibited when we added sulphate. Methane emission rates reached up to 190 μg m?2 day?1 in summer, with values up to 20 μg m?2 day?1 at other times. The two kinds of saltmarsh soil behave quite differently: the typical saltmarsh soils act as a sink for methane; the humus-rich saltmarsh soils are a source.  相似文献   

2.
The effects of a low-external-input soil fertility enhancement solution – hereafter termed ‘nitrolimigation’ were examined, as a preferred technique of applying nitrogen and calcium in the “Acid Sands” soils of southern Nigeria. Two types of nitrogenous fertilizer sources [urea and liquid pig manure (LPM)] and two types of lime {limestone (CaCO3) and hydrated lime [Ca(OH)2]} were used both in greenhouse and in field experiments at varying levels: Urea [CO (NH2)2] 0, 40, 50, 80, 100, 120, and 150 kg ha?1; lime 0, 0.1, 0.3, 0.5, 1.0, 5.0, and 10.0 metric tonnes per hectare (t ha?1) and LPM 0, 30, 60, 90, and 120 t ha?1. The rates were arranged factorially and laid out in randomized complete block design (RCBD). The results indicated that combining lime at 9 t ha?1 and LPM at 90 t ha?1 in irrigation water had significant (P < 0.01) positive effects on the fertility status of the “Acid Sands” soils and growth of okra- Abelmoschus esculentus, the test crop. When urea was combined with hydrated lime, it reduced acidity and provided nutrient balance in the Acid Sands of Calabar. Total nitrogen was significantly (P < 0.01) boosted from 0.05 to 0.11%, base saturation (BS) from 46 to 62%, and exchange acidity was reduced from 2.93 to 1.35 cmol kg?1. Combining urea (46-0-0) at 80 kg ha?1 with lime (CaCO3) at 5 t ha?1 raised the soil pH from 4.4 to 7.1. Exchange acidity was reduced from 0.8 cmol kg?1 to a negligible value, but electrical conductivity was improved from 170.7 to 291.9 μS cm?1. When LPM and lime were combined, organic carbon was increased from 2.75 to 2.93%, BS was increased from 46.72 to 75.19%, and pH was raised from 6.0 to 6.73. Plant height was increased from 9.5 to 16.9 cm while mean number of leaves was also increased from 5.6 to 6.3 only with lower level of lime (3 t ha?1) and LPM at 90 t ha?1. Of the nitrogen and calcium sources, LPM and limestone were better at 120 t ha?1 and 9 t ha?1, respectively, to offset soil acidity, boost nutrient availability, and provide balanced nutrition to arable crops grown on the “Acid Sands” of southern Nigeria.  相似文献   

3.
The form of sulfur fertilizer can influence its behavior and crop response. A growth chamber study was conducted to evaluate five sulfur fertilizer forms (ammonium sulfate, ammonium thiosulfate, gypsum, potassium sulfate, and elemental sulfur) applied in seed row at 20 kg S ha?1 alone, and in combination with 20 kg phosphorus pentoxide (P2O5) ha?1, to three contrasting Saskatchewan soils. Wheat, canola, and pea were grown in each soil for 8 weeks and aboveground biomass yields determined. The fate of fertilizer was evaluated by measuring crop sulfur and phosphorus concentration and uptake, and supply rates and concentrations of available sulfate and phosphate in the seed row. Canola was most responsive in biomass yield to the sulfur fertilizers. Sulfate and thiosulfate forms were effective in enhancing soil-available sulfate supplies in the seed row, crop sulfur uptake, and yield compared to the elemental sulfur fertilizer. Combination of sulfur fertilizer with monoammonium phosphate may provide some enhancement of phosphate availability, but effects were often minor.  相似文献   

4.
Net mineralization of sulfur and nitrogen was studied in three Canadian Prairie soils using two commonly used incubation methods. In the open system technique, where the soils were leached periodically II.3–11.8 μ g SO2?4 -S g?1 soil was mineralized in 17 weeks. Little mineralization or a net immobilization of sulfur (from 1.4 to 1.3 μ g SO2?4-S g?1 soil) was observed in a closed system where the soils were left undisturbed throughout incubation. Changes in the specific activity of 35S-labelled soil solution sulfate during the closed incubation indicated that mineralization-immobilization processes were occurring simultaneously resulting in minimal net changes in CaCl2-extractable SO2?4 concentrations. The amounts of mineralized nitrogen (32.6–57.8 μg N g?1 soil) were found to be independent of the incubation method employed.  相似文献   

5.
Sulfur (S) deficiencies in grain and forage crops have been detected in many agricultural regions of the world, but soil tests are not commonly used as the basis for S fertilizer recommendation programs. Errors of measurements of soil sulfate were determined to assess whether the variation among and within soil-testing laboratories could be a factor that prevent the adoption of soil testing to assess soil sulfate availability. Subsamples of 10 selected soils (Mollisols) from the Pampas (Argentina) were sent in two batches to five soil-testing laboratories. Laboratories were unaware of the existence of subsamples and performed routine sulfate analysis as if these soils came from 60 different fields. Soil sulfate ranged from 3.3 to 20.6 mg kg?1. One laboratory reported sulfate values greater than the other ones, having a mean bias of 4.1 mg kg?1 S sulfate (SO4). The other four laboratories reported similar sulfate values when soils had low sulfate availability (less than 10 mg S kg?1), even when they used different extractants. Considering only these four laboratories, average interlaboratory coefficients of variations ranged from 6 to 24% for the 10 soils. Within-laboratory mean coefficients of variation (CVs) ranged from 12 to 22%. However, mean absolute errors of all laboratories were less than 1.2 mg kg?1 S-SO4. Two laboratories reported different sulfate values for the two batches of shipment (an average difference of 4.7 and 3.8 mg kg?1 of S-SO4). Laboratories using different extractants obtained similar results, suggesting that using the same extractant is not a prerequisite to standardize laboratory results in these soils. Differences between laboratories in our study were smaller than in other interlaboratory comparisons for soil sulfate. These differences could be easily detected and corrected if laboratories participate in an interlaboratory control system. The observed low mean absolute errors suggested that, in general, all laboratories achieve acceptable precision when evaluating within the same batch of determinations. Differences between batches of shipment (within laboratory error) stressed the importance of using reference material for internal quality control.  相似文献   

6.
A greenhouse experiment with soybean grown on sulfur (S) and boron (B) deficient calcareous soil was conducted for two years in northwest India to study the influence of increasing sulfur and boron levels on yield and its attributing characters at different growth stages (55 days, maturity). The treatments included four levels each of soil applied sulfur viz. 0, 6.5, 13.4, 20.1 mg S kg?1 and boron viz. 0, 0.22, 0.44, 0.88 mg B kg?1 at the time of sowing. The highest dry matter yield at 55 days after sowing, DAS (19.3 g pot?1) and maturity (straw yield ?25.2 g pot?1 and grain yield ?7.3 g pot?1) was recorded with B0.44 S13.4 treatment combination. The combined applications of sulfur and boron yielded highest oil content with B0.44S13.4 (21.7%) treatment level. Chlorophyll ‘a’ and ‘b’ increased significantly with successive levels of sulfur and boron addition at 55 DAS. The mean sulfur and boron uptake in straw and grains increased significantly with increasing levels of sulfur and boron up to 13.4 mg kg?1 and 0.44 mg kg?1 and decreased non-significantly thereafter. At both the growth stages, a synergistic interactive effect of combined application of sulfur and boron was observed with B0.44 S13.4 treatment level for sulfur and boron uptake in straw and grains.  相似文献   

7.
Temporal variations of physical soil properties in the “Static Fertilization Experiment” The objective of the present paper was to observe short-term changes in physical soil properties of a differently fertilized loess-Chernozem. Samples were taken weekly from the plots with 17.2 g Corg kg?1 (unfertilized) and 25.0 g Corg kg?1 (NPK + farmyard manure) of the “Static Fertilization Experiment”, Bad Lauchstädt, and their moisture contents (θ), bulk densities (?d) and particle densities (?s) were determined. The soil moisture contents showed very similar variations in the two treatments. Clear differences between the unfertilized (≈ 16 Vol.-%) and the NPK + farmyard manure treatment (≈ 10 Vol.-%) only occurred during summer (means 25th–29th week). The values for ?d were lower in the NPK + farmyard manure plot (mean: –0.10 g cm?3). Similar short-term changes in ?d were found in both treatments and correlated to both, organic matter contents and composition (Corg, Nt, C/N). These data, however, gave no indication of reasons for the short-term changes in particle densities up to 0.09 g cm?3.  相似文献   

8.
Abstract

A great deal of information on the efficiency of gypsum or phosphogypsum to ameliorate acidity in highly weathered soils is available, but only limited information is available on the efficiency in acid Andosols, which possess large amounts of active aluminum (Al). We examined the effectiveness of gypsum application to non-allophanic Andosols (one humus-rich A horizon and two B horizons poor in humus) using extractable soil Al analyses (batch and continuous extraction methods) and a cultivation test using burdock (Arctium lappa). With gypsum amendment, pH(H2O) values of the soil decreased from 4.5–4.7 to 4.2–4.4, whereas the treatment made almost no difference to the values of pH(KCl). Total active Al (acid oxalate-extractable Al) was hardly affected by gypsum for all samples. Potassium chloride-extractable Al definitely decreased with the addition of gypsum in all soils; however, the decrease was small (0.1–1.4 cmolc kg?1) and the values still exceeded “the threshold of 2 cmolc kg?1” for inducing Al toxicity in sensitive plants (4.4–8.6 cmolc Al kg?1). The change in Al solubility with gypsum application represented by Al release rates from soils using continuous extraction methods with a dilute acetate buffer solution (10?3 mol L?1, pH 3.5) differed greatly among the soil samples: The release rate of one of the B horizon samples decreased by 71%, certainly showing the insolubilization of Al compounds, whereas the release rates of the A horizon sample showed almost no change. These changes in Al solubility were well correlated with the plant root growth. Root growth was improved with gypsum in the B horizon sample, whereas improvement was not observed in the A horizon soil. The decrease in the rate of Al release of another B horizon soil with gypsum treatment was smaller (by 20–34%), possibly because of lower pH values after gypsum application (pH[H2O] of 4.2–4.3). In the B horizon soil, root growth improved only slightly. Thus, the effectiveness of gypsum application to acid Andosols appeared to be largely influenced by soil humus contents and slight differences in soil pH values, and corresponded to a decrease in Al release rates using the continuous extraction method.  相似文献   

9.
This study aimed at clarifying whether a notable group of soils of the Jæren region, SW Norway, with deep humus‐rich top soils support a man‐made genesis. Four sites were investigated. The soils are characterized by thick top soils of 45, 70, 80, and 90 cm, which are enriched in soil organic matter and often also in artifacts, like fragments of potter's clay, indicating an anthropogenic origin. Soil pH ranges from 5.4 to 6.2 (H2O) and 4.4 to 5.3 (CaCl2), respectively. Soil organic C (SOC) contents range from 6.4 to 51.6 g kg?1 and N contents vary between 0 and 2.9 g kg?1. Increased P contents of up to 2,924.3 mg kg?1 total P (Pt) and 1,166.4 mg kg?1 citric acid‐soluble phosphorus (Pc) in the humus‐rich top soils support the assumption of an anthropogenic influence. Although many characteristics indicate an anthropogenic genesis, one soil lacks the required depth of 50 cm of a plaggen horizon and cannot be classified as Plaggic Anthrosol (WRB) and Plagganthrept (US Soil Taxonomy). As the requirement is 40 cm in the German system, all soils can be classified as Plaggenesch. The formation of these soils is related to human activity aiming at increasing soil fertility and overcoming the need of bedding material, the basic aims of the plaggen management in Europe. Highest P contents ever found for this kind of soils and references from the literature indicate that the formation of the soils in Norway started at Viking time, hence, being older than most other Plaggic Anthrosols.  相似文献   

10.
Acid sulfate soils are normally not suitable for crop production unless they are appropriately ameliorated. An experiment was conducted in a glasshouse to enhance the growth of rice, variety MR219, planted on an acid sulfate soil using various soil amendments.The soil was collected from Semerak, Kelantan, Malaysia. Ground magnesium limestone(GML), bio-fertilizer, and basalt(each 4t ha^-1) were added either alone or in combinations into the soil in pots 15 d before transplanting. Nitrogen, P and potash were applied at 150, 30, and 60 kg ha^-1, respectively. Three seven-day-old rice seedlings were transplanted into each pot. The soil had a p H of 3.8 and contained organic C of 21 g kg^-1, N of 1.2 g kg^-1, available P of 192 mg kg^-1, exchangeable K of 0.05 cmolc kg^-1,and exchangeable Al of 4.30 cmol c kg^-1, with low amounts of exchangeable Ca and Mg(0.60 and 0.70 cmol c kg^-1). Bio-fertilizer treatment in combination with GML resulted in the highest p H of 5.4. The presence of high Al or Fe concentrations in the control soil without amendment severely affected the growth of rice. At 60 d of growth, higher plant heights, tiller numbers and leaf chlorophyll contents were obtained when the bio-fertilizer was applied individually or in combination with GML compared to the control. The presence of beneficial bacteria in bio-fertilizer might produce phytohormones and organic acids that could enhance plant growth and subsequently increase nutrient uptake by rice. Hence, it can be concluded that addition of bio-fertilizer and GML improved rice growth by increasing soil pH which consequently eliminated Al and/or Fe toxicity prevalent in the acid sulfate soil.  相似文献   

11.
Among factors controlling decomposition and retention of residue C in soil, effect of initial soil organic C (SOC) concentration remains unclear. We evaluated, under controlled conditions, short-term retention of corn residue C and total soil CO2 production in C-rich topsoil and C-poor subsoil samples of heavy clay. Topsoil (0–20 cm deep, 31.3 g SOC kg?1 soil) and subsoil (30–70 cm deep, 4.5 g SOC kg?1 soil) were mixed separately with 13C–15N-labeled corn (Zea mays L.) residue at rates of 0 to 40 g residue C kg?1 soil and incubated for 51 days. We measured soil CO2–C production and the retention of residue C in the whole soil and the fine particle-size fraction (<50 μm). Cumulative C mineralization was always greater in topsoil than subsoil. Whole-soil residue C retention was similar in topsoil and subsoil at rates up to 20 g residue C kg?1. There was more residue C retained in the fine fraction of topsoil than subsoil at low residue input levels (2.5 and 5 g residue C kg?1), but the trend was reversed with high residue inputs (20 and 40 g residue C kg?1). Initial SOC concentration affected residue C retention in the fine fraction but not in the whole soil. At low residue input levels, greater microbial activity in topsoil resulted in greater residue fragmentation and more residue C retained in the fine fraction, compared to the subsoil. At high residue input levels, less residue C accumulated in the fine fraction of topsoil than subsoil likely due to greater C saturation in the topsoil. We conclude that SOC-poor soils receiving high C inputs have greater potential to accumulate C in stable forms than SOC-rich soils.  相似文献   

12.
This column study evaluated the effects of irrigation with two water qualities (WW and FW) to produce bioenergy sorghum on SOC balance, nutrients availability and salt constituents in two soils (TX and NM) amended with gypsum & elemental sulfur (S) and un-amended. Study results indicated that SOC concentration was higher in freshwater irrigated columns (7.41 g kg?1) than wastewater irrigated soils (7.32 g kg?1) across growth year-soil type-amendments-depth. Soils amended with gypsum and sulfur registered significantly higher value of 7.52 and 7.41 g kg?1 compared to 7.30 and 7.23 g kg?1 in non-amended soils under fresh and wastewater irrigation, respectively. Lower SOC in WW irrigated columns could be due to the combined effects of increased salinity and priming effects. Although SOC content initially increased in gypsum and S amended soils to about 10g kg?1, at the end of the study SOC in all treatments decreased to levels significantly below the pre-study. WW irrigation added 2.00, 1.10 and 4.40 times the N, P and K added by fertilizers and was able to meet 65%, 87%, and 210% of bioenergy sorghum uptake of respective nutrients. Sulfates and chlorides of sodium and calcium were dominant salts, which significantly affected SOC and nutrients.

Abbreviations: FW: freshwater; WW: treated wastewater; G + S: gypsum and elemental sulfur; NA: no amendment, TX: Texas soil and NM: New Mexico soil  相似文献   


13.
The objective of this study was to assess the influence of land use on soil aggregate size distribution and the consequences for organic C, N, and S concentrations in bulk soil and macroaggregates. The properties of a loamy and a clayey Oxisol used for continuous cropping, pasture and reforestation were compared with those of the native savannah (“Cerrado”). We measured aggregate size fractionation, C, N, and S concentrations in bulk soil, small (0.25–2 mm, SMA), and large macroaggregates (2–8 mm, LMA), and carried out a mineralization experiment with intact and crushed LMA. The aggregate size distribution of pastures was not different from native Cerrado. Reforestation and plowing caused higher percentages of smaller aggregates which was more pronounced in the loamy than in the clayey soil. Total concentrations of C, N, and S were higher in the clayey (C: 21.5–23.3 g kg?1; N: 1.2–1.4 g kg?1; S: 178–213 mg kg?1) than in the loamy soil (C: 7.8–10.3 g kg?1; N 0.5–0.7 g kg?1; S: 87–132 mg kg?1). LMA of the loamy soil had higher C, N, and S concentrations than the bulk soil. SMA and both macroaggregate fractions of the clayey soil did not differ from the bulk soil. 71 % of potentially mineralizable N in LMA of the loamy soil were only mineralized after aggregate disruption. In contrast, there were only small differences between crushed and intact LMA of the clayey soil. Therefore, we considered conventional tillage suitable for clayey soils. The loamy soil would require a more soil conserving system like no-till or crop-pasture rotation to improve sustainability.  相似文献   

14.
Abstract: In recent years, sulfur (S) deficiencies in winter wheat (Triticum aestivum L.) have become more common, particularly on coarse‐textured soils. In Study I, field experiments were conducted in 2001/2002 through 2003/2004 on Mississippi River alluvial soils (Experiment I) and an upland, loessial silt loam (Experiment II) to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg ha?1 and a fall rate of 22.4 kg sulfate (SO4)‐S ha?1 on grain yield of three varieties. In Study II, field experiments were conducted in 2001/2002 and 2004/2005 on alluvial soils to evaluate the influence of spring S rates of 0, 5.6, 11.2, and 22.4 kg SO4‐S ha?1 in fields where S‐deficiency symptoms were present. Grain yield response to applied S occurred only on alluvial, coarse‐textured, very fine sandy loam soils (Study II) that had soil SO4‐S levels less than the critical level of 8 mg kg?1 and organic‐matter contents less than 1 g kg?1 in the 0‐ to 15‐, 15‐ to 30‐, and 30‐ to 45‐cm depths. Soil pH increased with soil depth. Optimum S rate was 11.2 kg SO4‐S ha?1 in 2001/2002 and 5.6 kg SO4‐S ha?1 in 2004/2005. On the upland, loessial silt loam soil, soil SO4‐S levels accumulated with depth, whereas organic‐matter content and pH decreased. In the loessial soils, average soil SO4‐S levels in the 15‐ to 30‐ and 30‐ to 45‐cm soil depths were 370% greater than SO4‐S in the surface horizon (0 to 15 cm).  相似文献   

15.
Modern agricultural techniques have been increasing the yield of soybean (Glycine max (L.) Merr.) while also causing increasing removal of sulfur (S) from the soil. Besides this, the use of concentrated fertilizers with this element and inadequate soil management, with consequent formation of organic matter with low S concentrations, has been causing frequent symptoms of deficiency in the plants. To assess the effect of S on soybean yield and to establish critical levels of sulfur sulfate (S-SO42-) available in the soil, two experiments were conducted over a 2-year period in the Paraná State, Brazil, in fields containing Typic Haplorthox and Typic Eutrorthox soils, located in the Ponta Grossa and Londrina Counties, respectively. The experimental design was randomized blocks with five S rates (0, 25, 50, 75, and 100 kg ha?1) and four replicates. The source used was elementary S with 98 percent purity. The maximum estimated yields on average for the 2 years were obtained with application of 49.9 and 63.0 kg ha?1 in the Typic Haplorthox and Typic Eutrorthox soils, for an overall average of 56.4 kg ha?1, with concentrations of available S-SO42- in the 0- to 20-cm depth of 16.9, 19.3m and 17.1 mg kg?1, respectively, values greater than the 10 mg kg?1 indicated as the adequate concentration for soybean plant. In turn, at the 21- to 40-cm depth, the S concentrations were 49.5, 74.2, and 56.4 kg ha?1. The efficiency of the fertilization diminished with increasing S rates, in both soil types, while the greatest yield efficiency was obtained in the plants grown in the Typic Haplorthox soil.  相似文献   

16.
Low soil fertility and soil acidity are among the major bottlenecks that limit agricultural productivity in the humid tropics. Soil management systems that enhance soil fertility and biological cycling of nutrients are crucial to sustain soil productivity. This study was, therefore, conducted to determine the effects of coffee‐husk biochar (0, 2.7, 5.4, and 16.2 g biochar kg?1 soil), rhizobium inoculation (with and without), and P fertilizer application (0 and 9 mg P kg?1 soil) on arbuscular mycorrhyzal fungi (AMF) root colonization, yield, P accumulation, and N2 fixation of soybean [Glycine max (L.) Merrill cv. Clark 63‐K] grown in a tropical Nitisol in Ethiopia. ANOVA showed that integrated application of biochar and P fertilizer significantly improved soil chemical properties, P accumulation, and seed yield. Compared to the seed yield of the control (without inoculation, P, and biochar), inoculation, together with 9 and 16.2 g biochar kg?1 soil gave more than two‐fold increment of seed yield and the highest total P accumulation (4.5 g plant?1). However, the highest AMF root colonization (80%) was obtained at 16.2 g biochar kg?1 soil without P and declined with application of 9 mg P kg?1 soil. The highest total N content (4.2 g plant?1) and N2 fixed (4.6 g plant?1) were obtained with inoculation, 9 mg P kg?1, and 16.2 g biochar kg?1 soil. However, the highest %N derived from the atmosphere (%Ndfa) (> 98%) did not significantly change between 5.4 and 16.2 g kg?1 soil biochar treatments at each level of inoculation and P addition. The improved soil chemical properties, seed yield, P accumulation and N2 fixation through combined use of biochar and P fertilizer suggest the importance of integrated use of biochar with P fertilizer to ensure that soybean crops are adequately supplied with P for nodulation and N2‐fixation in tropical acid soils for sustainable soybean production in the long term.  相似文献   

17.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

18.
In a wetland ecosystem such as lowland ricefields, the anaerobic mineralization of organic matter is a key mechanism for nutrient recycling (Jørgensen 1982; Freney et al. 1982). In the process which involves several bacterial groups, sulfate reducers (Watanabe and Furusaka 1980; Widdel 1988; Ouattara and Jacq 1992; Nozoe 1997), methanogens (Asakawa and Hayano 1995; Dianou et al. 1997), sulfur and ferric ion reducers (Jacq et al. 1991) become active when the soil becomes anoxic (Amstrong 1969). Sulfate reducers are common in flooded soils (Watanabe and Furusaka 1980; Widdel 1988; Furusaka et al. 1991). Reported densities in rice soils ranged from 103 to 105 g-1 dry soils in Asia (Watanabe and Furusaka 1980) and from 102 to 109 g-1 dry soil in Sénégal (Ouattara and Jacq 1992). Among the sulfate reducers, the “classical” Desulfovibrio species are known to oxidize typical fermentation products such as hydrogen, lactate, pyruvate, and dicarboxylic acids (Widdel 1988). So far, data on the isolation and characterization of sulfate-reducing bacterial (SRB) strains from African rice paddy field soils study have been very limited.  相似文献   

19.
A field experiment conducted on rapeseed (Brassica juncea L.) during 2005–2006 in a typical lateritic soil (Alfisol) of West Bengal, India revealed that sources of sulfur viz. gypsum and magnesium sulfate and levels of sulfur (0, 20, 40, 60 kg S ha?1) have significant influence on grain yield, total biological yield, sulfur concentration in grain and stover, total sulfur uptake, oil content and oil yield and chlorophyll content. The maximum grain yield (18.28 q ha?1) and oil yield (8.59 q ha?1) was obtained with magnesium sulfate followed by gypsum yielded the grain yield of 17.99 q ha?1 and oil yield of 8.22 q ha?1 at 40 kg S ha?1. Overall, the best performance was recorded when sulfur was applied at 40 kg S ha?1 either as magnesium sulfate or gypsum. Results revealed that magnesium sulfate may be considered as the better source of sulfur than gypsum to raise the mustard crop in sulfur deficient acidic red and lateritic soils of West Bengal and if farmers apply either magnesium sulfate or gypsum to soils, the possible deficiency of sulfur and magnesium/calcium in soils and plants can be avoided.  相似文献   

20.
The effects of zeolite application (0, 4, 8 and16 g kg?1) and saline water (0.5, 1.5, 3.0 and 5.0 dS m?1) on saturated hydraulic conductivity (K s) and sorptivity (S) in different soils were evaluated under laboratory conditions. Results showed that K s was increased at salinity levels of 0.5‐1.5 dS m?1 in clay loam and loam with 8 and 4 g zeolite kg?1 soil, respectively, and at salinity levels of 3.0–5.0 dS m?1 with 16 g zeolite kg?1 soil. K s was decreased by using low and high salinity levels in sandy loam with application of 8 and 16 g zeolite kg?1, respectively. In clay loam, salinity levels of 0.5–3.0 dS m?1 with application of 16 g kg?1 zeolite and 5.0 dS m?1 with application of 8 g zeolite kg?1 soil resulted in the lowest values of S. In loam, all salinity levels with application of 16 g zeolite kg?1 soil increased S compared with other zeolite application rates. In sandy loam, only a salinity level of 0.5 dS m?1 with application of 4 g zeolite kg?1 soil increased S. Other zeolite applications decreased S, whereas increasing the zeolite application to 16 g kg?1 soil resulted in the lowest value of S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号