首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, principal component analysis (PCA) is applied to the FTIR-ATR and the (1)H NMR spectra of 50 beers differing in label and type (ale, lager, alcohol-free), to identify the spectral parameters that may provide rapid information about factors affecting beer production. PCA of FTIR data resulted in the separation of beers mainly according to their alcoholic content, providing little information on components other than ethanol contributing to the variability within the samples. PCA of (1)H NMR spectra, performed on the region where major beer components resonate (3.0-6.0 ppm), resulted in the separation of samples into four groups: two groups characterized by the predominance of dextrins, one group of alcohol-free beers characterized by the predominance of maltose, and one group where glucose was found to predominate. By performing PCA on aliphatic and aromatic regions, the contribution of minor components was highlighted. In particular, most ales, lagers, and alcohol-free samples could be distinguished based on their aromatic composition, thus reflecting the high sensitivity of the low-field NMR region toward different types of beer fermentation.  相似文献   

2.
Fresh and decomposed spruce and pine litter and the Klason lignin fraction of spruce needles at different stages of decomposition were studied by CPMAS 13C NMR and IR spectroscopy as well as by chemical methods. It was shown that decomposition of needles is accompanied by an increase in aliphatic substances and carboxyl group content; the amount of polysaccharides is reduced. It is assumed that stable aliphatic compounds like cutin and lipids of microbial origin will accumulate during litter decomposition and humification. Aromaticity is low and does not alter drastically. The NMR spectra of the Klason lignin fraction show pronounced peaks at 30, 55, 115, 130, 150 and 175 ppm. Obviously, this fraction contains appreciable amounts of aliphatic and carboxyl carbon besides the typical aromatic units of lignin. During decomposition aromaticity decreases whereas the relative amounts of aliphatic substances and carboxyl groups increase. This is probably due to splitting of aromatic ring structures and side chains. The findings agree with the results from chemical analyses.  相似文献   

3.
Abstract

Differences were studied in humic (HA) and fulvic acid (FA) extracted from soils and streams in South Georgia by the Amberlite XAD‐8 resin and conventional NaOH method. Characterization analysis was performed by liquid 13C NMR, infrared (IR) spectroscopy, scanning electron microscopy (SEM), and chemical analysis. The NMR spectra indicated that the resin method yielded black water HA and FA with spectroscopic, chemical and elemental characteristics different from those isolated by the conventional NaOH method. Humic acids from both the resin and conventional NaOH methods were composed of aliphatic, aromatics and carboxyl groups, but the “resin”; HA contained more aliphatic groups. These differences were also noticed between the FA fractions obtained by the two methods. The differences corresponded to differences in IR spectra. The IR spectrum of “resin”; FA exhibited only a weak shoulder at 1625/cm for the COO”; stretching vibration, in contrast to that of FA isolated by the conventional NaOH procedure. Apparently, the high aliphatic‐CH3 group content has blocked the vibration above, as evidenced by methylation of HA. Fulvic acid extracted by the resin method was also higher in total acidity, but considerably lower in N content than FA obtained by the conventional NaOH method. Both methods yielded black water FA which was less aromatic in nature than black water HA, or soil FA.  相似文献   

4.
The sorption of hydrophobic organic compounds by natural organic matter is mainly regulated by its aromatic and aliphatic fractions, but it is not clear which fraction is more dominant. In this study, six types of Chinese tea leaves (three varieties of tender and three corresponding mature leaves) and their respective brewed ones were analyzed by elemental analysis, 13C NMR, and Fourier transform infrared attenuated total reflectance. Their sorption of phenanthrene was examined using a batch equilibration technique. The aromatic carbon content of tea leaves reduced while the aliphatic carbon content increased with increasing maturity and brewing. Sorption isotherms by all of the 12 tea sorbents were practically linear, showing a partition type sorption. The phenanthrene KOC (organic carbon-normalized sorption capacity) of the 12 sorbents ranged from 6960 to 32,900 mL/g, which increased with increasing aliphatic carbons and decreasing aromatic carbons in the tea leaves. The dissolved organic matter was released into solution from the sorbents during the sorption process, which could bind phenanthrene in the solution, and thereafter leading to underestimation of sorption capacity of the sorbents, but this did not change the correlation trends between KOC and functional carbon group content. Aliphatic fractions rather than aromatic moieties regulated the phenanthrene sorption of the tea leaf powders used in this study.  相似文献   

5.
In this paper,the nitrogen forms in newly-formed humic substances,including humic acid (HA),fulvic acid (FA) and humic acid in humin (HAI),were studied by using the ^15N CP-MAS NMR technique in combination with chemical approaches.Results show that the majority of nitrogen in HA,FA and HAI was in the amide form with some presented as aliphatic and/ or aromatic amines and some as pyrrole type nitrogen,although the contents of nonhydrolyzable nitrogen in them differed greatly from each other (15-55%).  相似文献   

6.
A high-field NMR technique was used to analyze aqueous and organic extracts of truffles (Tuber aestivum vittadini) to characterize their chemical composition. Water-soluble metabolites belonging to different classes such as sugars, polyols, amino acids, and organic acids were almost completely assigned by means of one- and two-dimensional experiments (1H-1H COSY, TOCSY, 1H-13C HSQC, 1H-13C HMBC, and 1H-31P HMBC). The 1H spectral assignment of the cell membrane components such as lipids, sterols, and fatty acids extracted in organic solvents was also performed.  相似文献   

7.
In this study were successfully observed the one- (1H, 13C) and two-dimensional (1H-13C, 1H-15N, 1H-31P) NMR spectra of milk directly without any pretreatment. The signals of each NMR spectrum were assigned, and their existing states were also analyzed. Lactose existed in a free state in milk. The signals due to the butyric acid chain can be assigned among the other fatty acid chains. Monounsaturated fatty acid (oleic acid chains) and polyunsaturated fatty acid chains (linoleic and linolenic acid) were assigned by their characteristic signals. The signals from citrate, N-acetylcarbohydrates, and lecithin could be observed directly in the 1H-13C HSQC NMR spectra; the assignment of their signals was made through the 1H-13C, 1H-15N, and 1H-31P HMBC spectra of extracted milk. Signals from creatine and N-acetylcarbohydrates were detected for the first time.  相似文献   

8.
Nitrogen forms of humic substances from a subalpine meadow soil,a lateritic red soil and a weathered cola and the effect of acid hydrolysis on N structures of soil humic substances were studied by using ^15N cross-polarization magic angle spinning nuclear magnetic resonance(CPMAS NMR) spectroscopy,Of the detectable ^15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups ,10%-18% to aromatic/aliphatic amines and 6%-11% to indole-and pyrrole-like N.Whereas in the spectrum of the fulvic acid from weathered coal 46%,at least,of the total ^15N-signal intensity might be assigned to pyrrole-like N,14% to aromatic/aliphatic amines,and the reamining intensities could not be assigned with certainty,Data on nonhydrolyzable reside of protein-sugar mixture and a ^15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis.  相似文献   

9.
Phenolic polymers synthesized by reactions by reactions of p-benzoquinone with 15N-labelled protein or (15NH4)2SO4 were studied by using 15N CP-MAS NMR technique in combination with chemical approaches.Results showed that more than 80% of nitrogen in quinone-protein polymers was in the form of amide with some present as aromatic and /or aliphatic amine and less than 10% of nitrogen occurred as heterocyclic N.The nitrogen distribution in the non-hydrolyzable residue of the quinone-protein polymers was basically similar to that of soil humic acid reported in literature with the exception that a higher proportion of N as heterocyclic N and aromatic amine and a lower proportion of N as amide and aliphatic amine were found in the former than in the latter,More than 70% of total nitrogen in quinone-(NH4)2OS4 polymer was acid resistant ,of which about 53% occurred as pyrrole,nitrile and imion type N.The possible roles of the reactions of phenols or quinones with proteins in the formation of humic acid.especially the non-hydrolyzable nitrogen in humicacid,are discussed.  相似文献   

10.
The fate of organic matter during composting is poorly understood. Therefore, we analysed composts of sewage sludges and green wastes (44 samples representative of 11 stages of biodegradation) by conventional chemical methods: pH, humic (HA) and fulvic acid (FA) content, C, N and organic matter (OM) content, and by 13C CPMAS NMR to assess the decomposition process of the organic matter. Chemical changes clearly occurred in two phases: first, decomposition of OM during the first 2 months was characterized by decreased C/N ratios, OM content and increased pH; and second, a humification process with increased HA/FA ratios. NMR spectrum changes confirmed this pattern, with an increase in aromaticity and a decrease in alkyl C. A decrease of syringyl to guaiacyl ratio (S/G), a sign of lignin transformation, also indicated humification during composting. NMR spectroscopic properties of composts were also studied by means of principal components analysis (PCA) and revealed changes according to the degree of compost maturation. The factorial map presents a chronological distribution of composts on the two first principal components. The influences of eight chemical factors on the PCA ordination of composts as monitored by their evolution by NMR were also studied by multivariate analyses. PCA clearly indicated two phases: the rapid decomposition of organic matter followed by the formation of humic‐like substances. The first phase, that is ‘new’ composts, was strongly correlated with OM contents, pH and C/N ratios whereas the second phase, corresponding to ‘old’ compost, was correlated with pH, HA content and HA/FA ratio. These results confirm that knowledge of the formation of humic substances is indispensable to suitable monitoring of the composting process.  相似文献   

11.
Fulvic and humic acids fractionated by gel chromatography on Sephadex G-50 have been investigated by 1H NMR and i.r. spectroscopic techniques. Fulvic acid gives rise to only one significant fraction (FA-I) whose spectrum does not substantially differ from that of the unfractionated sample. The HA sample is separated into a high (HA-I, nominal mol. wt > 10,000) and a low molecular weight fraction (HA-II, nominal mol. wt 500–10,000). The two fractions show worthwhile differences in the 1H NMR spectra. Signals belonging to protons of long-chain aliphatic hydrocarbons or acids are present only in the HA-I fraction, which also displays a lower content of aromatic protons than the HA-II fraction. The pattern of the broad and intense absorption in the range 2.9 and 5.0 ppm of the two spectra is different. On the basis of the i.r. spectra, it has been suggested that this might be due to a different distribution of structures as polysaccharides. It seems likely that the non-humic substances are trapped in the voids of the high molecular wight polymer. The results obtained indicate that humic fractions narrower than the original material still show a high degree of polydispersity. The overall percentage distribution of chemical structures in humic fractions with varying molecular weights is different.  相似文献   

12.
G. Ogner 《Geoderma》1985,35(4):343-353
Crust, felty, greasy and granular raw humus were analysed by wet chemical methods and by 13C NMR. The amounts of amino acids, monosaccharides and aliphatic dicarboxylic acids were determined and the yields compared with the 13C NMR spectra. Protein carbon constitutes 9–13%, polysaccharide carbon 8–19% dicarboxylic acids 1–2% and free carboxylic acid groups 2–4% of the total sample carbon. Degradation of greasy raw humus yields half the amount of monosaccharides and twice the amount of aliphatic dicarboxylic acids found in the other raw humus types. This result is confirmed by 13C NMR. Forty to fifty percent of the soil carbon is unaccounted for among the degradation products identified. Based on estimates of 13C NMR data, the unknown part consists of aliphatic carbon, where the C:O ratio ranges between 1 1.1:1 and 1.8:1. All data indicate great similarity between crust and felty raw humus, whereas greasy raw humus differs clearly from those two. Granular raw humus gives approximately the same amount of degradation products as crust and felty raw humus but differs in its 13C NMR spectrum. The relative proportions of all compounds identified, including aliphatic dicarboxylic acids, are approximately constant, indicating a difference in degree rather than kind of the four raw humus types.  相似文献   

13.
NMR-based metabolic analysis of foods has been widely applied in food science. In this study, we performed discrimination of five different mango cultivars, Awin, Carabao, Keitt, Kent, and Nam Dok Mai, using metabolic analysis with band-selective excitation NMR spectra. A combination of unsupervised principal component analysis (PCA) with low-field region (1)H NMR spectra obtained by band-selective excitation provided a good discriminant model of the five mango cultivars. Using F(2)-selective 2D NMR spectra, we also identified various minor components in the mango juice. Signal assignment of the minor components facilitated the interpretation of the loading plot, and it was found that arginine, histidine, phenylalanine, glutamine, shikimic acid, and trigonelline were important for classification of the five mango cultivars.  相似文献   

14.
Comparison of quantitative NMR spectroscopy (QNMR) with chromatographic methods such as gas chromatography (GC) or high-pressure liquid chromatography (HPLC) for the determination of the purity of and impurities in technical grade agrochemicals, 2,4-dichlorophenoxyacetic acid (2,4-D), 1, and Dalapon sodium (sodium 2,2-dichloropropionate), 10, has revealed that QNMR is more precise and accurate than the chromatographic methods. Quantitative impurity profiling of technical grade 1 is rapid and accurate using 600 MHz (1)H NMR. Extra dispersion at the relatively high frequency allowed full assignment of the NMR spectrum of 1 and its related organic impurities in technical samples. The percentage purity of 1 was measured by the difference QNMR method, which involves summing the amounts of impurities and subtracting from 100%. Results are superior in consistency to those obtained by chromatographic methods. The percentage purity of Dalapon sodium, 10, in technical grade batches is readily obtained by (1)H QNMR, using either the difference method or the internal standard method, using dimethyl sulfone (DMSO2) internally as a reference material, that is chemically unrelated to the analyte. The latter method also allows the simultaneous identification and quantification of impurities, many of which are either not accessible to or detectable by the chromatographic methods. Uncertainty budgets for the QNMR method are presented and demonstrate that the major contributors to uncertainty lie in the weighing of the chemicals and in purity of the standard reference material prior to the QNMR experiment.  相似文献   

15.
Fractionation of an extract of Pteridium caudatum L. Maxon. (syn P. aquilinum L. Kuhn var. caudatum) which had earlier yielded the illudane-type sesquiterpene glucosides, ptaquiloside (1a), isoptaquiloside (1b), and caudatoside (1c) afforded a mixture containing 1a and two minor components. Preparative HPLC afforded ptaquiloside Z (1d) and a new pteroside glucoside (pteroside A2) (3e), which was identified using a combination of mass spectral and one- and two-dimensional NMR analyses. The (1)H and (13)C NMR and mass spectrometric characterization of caudatodienone (2b), an unstable dienone derived from the degradation of caudatoside (1c) in pyridine solution, and the GC-MS characterization of some pterosin-type degradation products produced by reacting this solution with cosolvents is also reported.  相似文献   

16.
Coffee was characterized by proton and carbon nuclear magnetic resonance (NMR) spectroscopy. To identify the coffee components, a detailed and approximately 90% signal assignment was carried out using various two-dimensional NMR spectra and a spiking method, in which authentic compounds were added to the roasted coffee bean extract (RCBE) sample. A total of 24 coffee components, including 5 polysaccharide units, 3 stereoisomers of chlorogenic acids, and 2 stereoisomers of quinic acids, were identified with the NMR spectra of RCBE. On the basis of the signal assignment, state analyses were further launched for the metal ion-citrate complexes and caffeine-chlorogenate complexes. On the basis of the signal integration, the coffee components were successfully quantified. This NMR methodology yielded detailed information on RCBE using only a single observation and provides a systemic approach for the analysis of other complex mixtures.  相似文献   

17.
IR, 1H and 13C NMR spectroscopic studies of dioxane soluble substances in coniferous litter Litter of mixed spruce and larch stands was extracted with dioxane. The extracts were studied by IR, 1H NMR and 13C NMR spectroscopy. The NMR spectra revealed the dominance of aliphatic hydrocarbons. NMR peaks attributed to aromatic structures intensified after pressure extraction of the litter with dioxane. There is no conformity of the spectra of our dioxane soluble substances with spectra of lignin. Results of FTIR spectroscopic studies are in agreement with the NMR results.  相似文献   

18.
Milled wood lignin (MWL) and dioxane lignin (DL) from different morphological regions (nodes and internodes) of Arundo donax reed were subjected to a comprehensive structural characterization by (13)C, (1)H NMR, FTIR, and UV spectroscopies and functional analysis. The permanganate and nitrobenzene oxidation methods were also applied to the in situ lignins. Both node and internode lignins are HGS-type lignins, with a significant amount of H units (including p-coumaric acid type structures). The S/G ratio (1.13-1.32), the weight-average molecular weight (20,400-24,500), the methoxyl group content (0.90-0.98), the phenolic hydroxyl group content (0.23-0.27), and the aliphatic hydroxyl group content (1.00-1.09) are not very different in the lignins from nodes and internodes. However, some structural differences between node and internode lignins were observed. The former has much more phenolic acids (p-coumaric and ferulic), 8.8% in node versus 1.2% in internode and less beta-O-4 (0. 32 and 0.49 per aromatic unit in node and internode, respectively). In situ node lignin is more condensed than internode lignin.  相似文献   

19.
Glomalin is described in the literature as a N-linked glycoprotein and the putative gene product of arbuscular mycorrhizal fungi (AMF). Since the link between glomalin and various protein fractions in soil is not yet clearly defined, glomalin-related soil protein (GRSP) more appropriately describes glomalin's existence in natural organic matter (NOM). The objective of this study was to examine the chemical characteristics of GRSP present in several mineral and organic soils of varying organic carbon content. GRSP was isolated using high temperature sodium citrate extraction followed by either trichloroacetic acid (TCA) or hydrochloric acid (HCl) precipitation. GRSP was characterized by quantitative solid-state 13C DPMAS NMR, infrared (IR) spectroscopy, elemental analysis, and the Bradford assay for protein content. GRSP accounted for 25% and 52% of total C in the mineral soils and organic soil, respectively. Molar C/N and H/C ratios reveal that GRSP has less nitrogen than bovine serum albumin (BSA), and that GRSP extracted from the Pahokee peat soil possessed a more unsaturated, and thus aromatic character relative to the mineral soil GRSP, respectively. GRSP's high aromatic (42-49%) and carboxyl (24-30%) carbon contents and low aliphatic (4-11%) and carbohydrate-type carbon contents (4-16%) suggests that GRSP does not resemble a typical glycoprotein. In fact, the NMR spectra of GRSP closely resemble that of humic acid. GRSP extracted from mineral and organic soils possessed the same NMR fingerprint regardless of the precipitation method used (i.e., either TCA or HCl). It is likely that the current GRSP extraction methods, because of their similarity to the method used to extract humic acid, are coextracting both materials.  相似文献   

20.
A combination of solid‐state CPMAS‐13C‐NMR and TMAH thermochemolysis‐GC/MS was applied to investigate the molecular composition of particulate organic matter (POM) separated from a Chinese paddy soil, from the Tai Lake region, under a long‐term field experiment with different fertilizer treatments. The treatments were: (i) no fertilizer application (NF), (ii) chemical fertilizers only (CF), (iii) chemical fertilizer plus pig manure (CFM) and (iv) chemical fertilizer plus crop straw (CFS). CPMAS‐13C‐NMR spectra showed that POM from all treated plots was rich in O‐alkyl‐C compounds, followed by alkyl‐C and aromatic‐C compounds. However, as compared with a control (NF), POM under CFM and CFS treatments exhibited a smaller relative O‐alkyl‐C content and a larger contribution of aromatic‐C and alkyl‐C, thus increasing both aromaticity and hydrophobicity and, hence, recalcitrance of POM samples. Thermochemolysis of POM from all treatments demonstrated a dominance of aliphatic and lignin‐derived compounds. However, the distribution of lignin monomers (p‐hydroxyphenyl, P, guaiacyl, G, and syringyl, S) revealed significant differences among the treatments. The relative distribution of lignin P, G and S monomers in NF, CF and CFS indicated a preferential contribution of annual crops and maize straw, as compared with that found for CFM. Concomitantly, a larger content of aliphatic thermochemolysis derivatives was found for CFS and CFM. The relative increase of aliphatic molecules in CFS was attributed to hydrophobic polyesters from higher plants. In the CF and CFM systems, the presence of aliphatic components of microbial origin suggested a greater microbial activity in comparison with NF and CFS. The combined application of solid state CPMAS‐13C‐NMR and TMAH thermochemolysis‐GC/MS can be used to assess effectively the accumulation of recalcitrant organic compounds in soil POM under long‐term fertilizer application with organic biomass. It is thus inferred that soil organic matter stabilization by molecular recalcitrance contributes to carbon sequestration in Chinese paddy soils under long‐term managements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号