首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Increasing nutrient inputs into terrestrial ecosystems affect not only plant communities but also associated soil microbial communities. Studies carried out in predominantly unmanaged ecosystems have found that increasing nitrogen (N) inputs generally decrease soil microbial biomass; less is known about long-term impacts in managed systems such as agroecosystems. The objective of this paper was to analyze the responses of soil microorganisms to mineral fertilizer using data from long-term fertilization trials in cropping systems. A meta-analysis based on 107 datasets from 64 long-term trials from around the world revealed that mineral fertilizer application led to a 15.1% increase in the microbial biomass (Cmic) above levels in unfertilized control treatments. Mineral fertilization also increased soil organic carbon (Corg) content and our results suggest that Corg is a major factor contributing to the overall increase in Cmic with mineral fertilization. The magnitude of the effect of fertilization on Cmic was pH dependent. While fertilization tended to reduce Cmic in soils with a pH below 5 in the fertilized treatment, it had a significantly positive effect at higher soil pH values. Duration of the trial also affected the response of Cmic to fertilization, with increases in Cmic most pronounced in studies with a duration of at least 20 years. The input of N per se does not seem to negatively affect Cmic in cropping systems. The application of urea and ammonia fertilizers, however, can temporarily increase pH, osmotic potential and ammonia concentrations to levels inhibitory to microbial communities. Even though impacts of fertilizers are spatially limited, they may strongly affect soil microbial biomass and community composition in the short term. Long-term repeated mineral N applications may alter microbial community composition even when pH changes are small. How specific microbial groups respond to repeated applications of mineral fertilizers, however, varies considerably and seems to depend on environmental and crop management related factors.  相似文献   

2.
长期施用化肥对塿土微生物多样性的影响   总被引:3,自引:2,他引:1  
【目的】土壤微生物在土壤有机质分解、营养循环、植物生长等方面都发挥着重要作用,研究长期施用化肥对其产生的影响可为农田合理施用化肥、培肥土壤和高产高效可持续性农业生产提供理论依据。【方法】以陕西杨凌"国家黄土肥力与肥料效益监测基地"的长期定位试验为基础,利用BIOLOG分析并结合常规分析研究了6种长期不同化肥施用方式不施肥(CK)、单施氮肥(N)、氮钾配施(NK)、磷钾配施(PK)、氮磷配施(NP)和氮磷钾配施(NPK)对土土壤微生物量和微生物功能多样性的影响。【结果】与不施肥CK相比,长期单施氮肥(N)的SMBC、SMBN没有显著变化,但明显降低了土壤微生物商和土壤微生物对氮素的利用;NP和NPK配施能够显著增加土SMBC和SMBN含量,明显提高了土壤微生物商,使土壤微生物种群结构发生了明显变化但土壤微生物对氮素的利用没有显著提高;长期偏施肥处理(NK、PK)的SMBC、SMBN和微生物商虽轻微增加,但土壤微生物种群结构没有显著改变。BIOLOG分析结果显示施磷处理(PK、NP和NPK)对微生物代谢活性的促进作用较大且在培养初期代谢活性较不施磷处理(CK、N和NK)增加显著。长期单施氮肥(N)对于提高土壤微生物多样性没有显著作用而其他化肥施用处理可以提高土土壤微生物群落的碳源利用能力、物种的丰富度和优势度,其中NP和NPK处理配施效果最好。化肥施用对土土壤微生物群落的均匀度没有显著影响。主成分分析的结果表明不同处理的土壤微生物对碳源利用表现出显著差异,氮磷养分的差异是产生分异的主要原因。【结论】土区小麦玉米轮作下,平衡施肥(NP或NPK配施)对于改善农田土壤微生物特性具有良好作用。  相似文献   

3.
Two complementary studies were performed to examine (1) the effect of 18 years of nitrogen (N) fertilization, and (2) the effects of N fertilization during one growing season on soil microbial community composition and soil resource availability in a grassland ecosystem. N was added at three different rates: 0, 5.44, and 27.2 g N m−2 y−1. In both studies, Schizachyrium scoparium was the dominant plant species before N treatments were applied. Soil microbial communities from each experiment were characterized using fatty acid methyl ester (FAME) analysis. Discriminant analysis of the FAMEs separated the three N fertilizer treatments in both experiments, indicating shifts in the composition of the microbial communities. In general, plots that received N fertilizer at low or high application rates for 18 years showed increased proportions of bacterial FAMEs and decreased fungal FAMEs. In particular, control plots contained a significantly higher proportion of fungal FAMEs C18:1(cis9) and C18:2(cis9,12) and of the arbuscular mycorrhizal fungal (AMF) FAME, C16:1(cis11), than both of the N addition treatment plots. A significant negative effect of N fertilization on the AMF FAME, C16:1(cis11), was measured in the short-term experiment. Our results indicate that high rates of anthropogenic N deposition can lead to significant changes in the composition of soil microbial communities over short periods and can even disrupt the relationship between AMF and plants.  相似文献   

4.
Organic C inputs and their rate of stabilization influence C sequestration and nutrient cycling in soils. This study was undertaken to explore the influence of the combined application of different quality organic resources (ORs) with N fertilizers on the link between aggregate dynamics and soil organic C (SOC) and soil N. A mesocosm experiment was conducted in Embu, central Kenya where 4 Mg C ha−1 of Tithonia diversifolia (high quality), Calliandra calothyrsus (intermediate quality) and Zea mays (maize; low quality) were applied to soil compared to a no-input control. Each treatment was fertilized with 120 kg N ha−1 as urea [(NH2)2CO] or not fertilized. The soils used in the mesocosms were obtained from a three-year old-field experiment in which the same treatments as in the mesocosm were applied annually. No crops were grown in both the mesocosms and the thee-year field experiment. Soil samples were collected at zero, two, five and eight months after installation of the mesocosms and separated into four aggregate size fractions by wet sieving. Macroaggregates were further fractionated to isolate the microaggregates-within-macroaggregates; all soils and fractions were analyzed for SOC and N. The addition of ORs increased soil aggregation and whole SOC and soil N compared to the control and sole N fertilizer treatments. There were no differences among different OR qualities for whole SOC or soil N, but maize alone resulted in greater mean weight diameter (MWD), macroaggregate SOC and N than sole added Calliandra. The addition of N fertilizer only influenced SOC and soil N dynamics in combination with maize where SOC, soil N and aggregation were lower with the addition of N fertilizer, indicating an increased decomposition and loss of SOC and soil N due to a faster aggregate turnover after addition of N fertilizer. In conclusion, compared to high quality ORs, low quality ORs result in greater aggregate stability and a short-term accumulation of macroaggregate SOC and N. However, the addition of N fertilizers negates these effects of low quality ORs.  相似文献   

5.
施用预处理稻秆的土壤供氮特征及对冬小麦氮吸收的影响   总被引:8,自引:2,他引:8  
采用盆栽试验方法,研究了经过预处理的水稻秸秆(预处理稻秆)施入土壤后对土壤的供氮特征及小麦氮营养的影响。研究结果表明,稻秆经过预处理后,纤维素、半纤维素以及二氧化硅比原始稻秆都有所降低,而可溶性物质增加;施用时配施无机氮肥,小麦全生育期内土壤微生物量N和矿质态N平均分别比对照(纯土壤)提高232.3%和66.0%,小麦干物重和吸收总氮量分别比对照高56.3%和124.3%,并优于未经处理的原始秸秆及单施尿素处理。可见处理秸秆配施尿素能够显著改善土壤的供氮状况,促进小麦对氮素的吸收,增加小麦产量,提高化学肥料氮的利用率。  相似文献   

6.
We studied the effects of 15N-labelled ammonium nitrate and urea on the yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L., cv. Mexi-Pak-65) in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 33.6–51.5 and 30.5–40.9% of the N from ammonium nitrate and urea, respectively. Splitting the fertilizer N application had a significant effect on the uptake of fertilizer N by the wheat. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the two N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied according to the fertilizer N split; six split applications gave the highest added N interaction compared to a single application or two split applications for both fertilizers. Ammonium nitrate gave 90.5, 33.5, and 48.5% more added N interaction than urea with one, two, and six split N applications. A values were not significantly correlated with the added N interaction (r=0.557). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N replaced unlabelled soil N.  相似文献   

7.
在温室盆栽条件下,采用Biolog微平板法和氯仿熏蒸浸提法,研究了玉米施用等养分量的无机肥、有机无机复混肥和生物复混肥后土壤微生物群落功能多样性及土壤微生物量的变化。结果表明:生物复混肥处理的土壤微生物平均颜色变化率(AWCD)、微生物群落Shannon指数(H)和微生物群落丰富度指数(S)均最高;施用生物复混肥可明显提高土壤微生物对碳源的利用率,尤其是多酚化合物类和糖类;不同处理土壤微生物碳源利用特征有一定差异,生物复混肥在第1主成分上的得分值为正值,其他各处理在第1主成分上的得分值基本上为负值,起分异作用的主要碳源是糖类和羧酸类。在玉米生长期间各处理土壤微生物量大致呈先升高后逐渐平稳的趋势,且土壤微生物量碳、氮、磷的含量均以生物复混肥处理最高,最高值分别为333.21mg.kg 1、53.02 mg.kg 1和22.20 mg.kg 1。研究表明,生物复混肥的施用比等养分量的有机无机复混肥处理能显著提高土壤微生物群落碳源利用率、微生物群落丰富度和功能多样性,显著增加土壤微生物量碳、氮、磷的含量,有利于维持良好的土壤微生态环境。  相似文献   

8.
This experiment was conducted in maize field plots to study the effects of controlled release and application depth of urea on soil microbial biomass and activities at two depths of surface soil of a Japanese Andisol from June to September, 2001. Three N amendment treatments and a Control were included in this experiment: deep application (8 cm) of controlled release urea; deep application (8 cm) of conventional urea; surface application of conventional urea; Control, without N application. Prior to this experiment, the field plots received the same N fertilizer treatments for two consecutive years under maize/barley rotation. Soil microbial biomass, dehydrogenase and nitrification activities exhibited great vertical and temporal variations during the maize growth season, and the microbial biomass was significantly correlated to soil water-filled pore space (p<0.01). N fertilization did not significantly affect the microbial biomass, but greatly increased the dehydrogenase and nitrification activities. The increase in the microbial activities following N fertilization was not attributed to the increase in microbial biomass but to the increase in intrinsic microbial activities. Controlled release urea was found to continuously affect the dehydrogenase activity over a shorter distance, while conventional urea could greatly increase the enzyme activity for a shorter period of time. Both controlled release and deep application of urea had potentials to reduce the nitrification activity and suggested that the nitrate production might be decreased in 0–10 cm surface soil. Deep application of urea increased aboveground N uptake by maize and then the recovery rate of N fertilizer, whereas controlled release of urea greatly increased grain yield and N uptake by grain.  相似文献   

9.
The aims of this study were to: (i) assess the impact of hay and fertilizer application on organic matter (OM) fractions (dissolved organic matter (DOM), light fraction organic matter (LFOM, <1.0 g cm−3), heavy fraction OM (HFOM, <1.7 g cm−3)), carbon (C) and nitrogen (N) cycling processes and microbial community size and structure, and (ii) quantify the role of OM fractions to C and N cycling. Soil was collected in 2001 from a field experiment to which grass hay (1996) and/or fertilizer (1995 and 1999) had previously been applied. DOM-C (P<0.05) and DOM-N (P=0.07) were significantly higher in control and fertilized soil than hay and hay+fertilized soil. LFOM and HFOM C and N contents and C/N ratios were significantly (P<0.05) higher in hay+fertilized and hay amended soil than in control and fertilized soil. Potentially mineralizable-N (PMN), microbial biomass-C (MB-C), microbial biomass-N (MB-N) and microbial respiration (CO2) were not affected by fertilizer and/or hay application. Gross N mineralization (Gross Min) and gross nitrification (Gross Nit) rates were significantly (P<0.05) higher in fertilized, hay, hay+fertilized soil than control soil. However, there was no significant difference between treatments in gross N immobilization rates. Results reported here highlight the importance of a labile fraction of the DOM pool to N and C cycling as its removal significantly (P<0.05) reduced PMN, MB-N, Gross Min and Gross Nit compared with whole soil in most or all treatments. In soil where DOM+LFOM were removed PMN was significantly (P<0.05) lower, but MB-C, Gross Min and Gross Nit was significantly (P<0.05) higher than in DOM removed soil. This suggests that LFOM plays an important role as a sink for mineral-N. Total soil phospholipid fatty acid (PLFA) concentration was significantly (P<0.05) higher in hay amended than control, fertilized and hay+fertilized soil. Principal components analysis was able to clearly discriminate between control, fertilized, hay+fertilized and hay amended soil. Soil amended with hay or fertilizer had a microbial community structure which differed from that of the control or hay+fertilized soils. Redundancy analysis with Monte Carlo permutation tests revealed that PLFA profiles were strongly correlated to differences in Gross Min, Gross Nit, MB-N, MB-C, MB-C/N ratio, total soil C and total soil C/N ratio. The results of this research suggest that changes in microbial structure are related to aspects of soil C and N pools and cycling.  相似文献   

10.
Soil microbial biomass carbon (SMBC) and nitrogen (SMBN), soil microbial community structure, and crop yields were studied in a long-term (1982–2004) fertilization experiment carried out in Suining, Sichuan province of PR China. Eight treatments included three chemical fertilizer (CF) treatments (N, NP, NPK), three CF + farmyard manure (M) treatments (NM, NPM, NPKM), M alone and no fertilizer (CK) as control. The results showed that the soil microbial biomass was higher in soil treated with CFM than in soil treated with CF alone, and that NPKM gave the highest rice and wheat yields. The SMBC and SMBN were higher after rice than those after wheat cropping. SMBC correlated closely with soil organic matter. Average yields of wheat and rice for 22 years were higher and more stable in the fertilized plots than in control plots. Bacterial community structure was analyzed by PCR-DGGE targeting eubacterial 16S rRNA genes. A higher diversity of the soil bacterial community was found in soil amended with CFM than in other fertilizer treatments. Some specific band emerged in the soil amended with M. The highest diversity of bacterial communities was found in the NPKM treated soil. The bacterial community structures differed in rice and wheat plots. Sequencing of PCR products separated in DGGE showed that some of the common and dominant bands were closely related to Aquicella lusitana and to Acidobacteria. This study demonstrated that mixed application of N, P, and K with additional M amendment increased soil microbial biomass, diversified the bacterial communities and maintained the crop production in the Calcareous Purplish Paddy soil.  相似文献   

11.
  【目的】  探究氮肥减量配施氮肥抑制剂和鸡粪的情况下土壤及肥料氮素供应和利用状况,及其对土壤肥力和水稻产量的影响,为我国东北地区水稻生产中提高氮肥利用效率、实现节肥增效提供理论基础。  【方法】  采用15N同位素示踪技术,盆栽试验设不施氮肥处理 (CK)、常规氮肥 (15N示踪尿素) 处理 (N)、80%尿素氮+20%鸡粪氮处理 (NM)、80%尿素氮+抑制剂处理 (NI)、80%尿素氮+抑制剂+20%鸡粪氮处理 (NIM)。测定不同生长时期来自于土壤及肥料中的铵态氮、微生物量氮含量及植株含氮量,收获时测定水稻产量。  【结果】  1) NI处理在土壤及肥料来源的铵态氮供应能力方面与N处理相当,抑制剂添加对氮肥减施有一定的补偿作用。在分蘖期和灌浆期,NM处理供氮能力优于无机氮肥处理。NIM处理在铵态氮和硝态氮供应能力方面效果最好。与N处理相比,NIM处理在水稻返青期、分蘖期和灌浆期土壤铵态氮含量分别提高了19.2%、66.3%和36.5%,硝态氮含量分别提高了13.9%、12.7%和17.3%,15NH4+-N含量在分蘖期增加了14.59 mg/kg。2) 无机氮肥处理 (N、NI) 对土壤微生物量碳含量无显著影响,但添加鸡粪处理 (NM、NIM) 显著提高了返青期和灌浆期土壤微生物量氮含量 (P < 0.05)。与N处理相比,NIM处理在水稻返青期、分蘖期、灌浆期和成熟期土壤微生物量碳含量分别提高了32.61%、29.23%、53.46%和2.85%,微生物量氮含量分别提高了147.98%、22.97%、133.33%和24.63%,15N-微生物量氮含量在分蘖期增加了约22.56 mg/kg。3) 抑制剂及鸡粪添加均提高了水稻产量和生物量,NIM处理的水稻生物量、产量和吸氮量较N处理分别提高了83.59%、124.18%和46.66% (P < 0.05),土壤中肥料氮的残留量显著增加了56.48%,肥料氮的损失减少了约78.7%。NIM处理的氮素吸收利用率、氮肥农学效率等显著高于其他处理,抑制剂与鸡粪在提高肥料氮素利用率方面存在显著交互作用。  【结论】  在我国北方棕壤水稻土上,在尿素中添加抑制剂 (1%PPD+1%NBPT+2%DMPP) 或者用鸡粪替代20%的尿素均能改善土壤氮素供应,氮肥减量20%配施抑制剂和鸡粪不仅不会减产,还会在提高水稻产量的同时提高肥料利用率。从肥料氮释放及水稻吸收利用的角度综合考量,减少20%尿素投入,添加氮肥抑制剂,以及添加氮肥抑制剂的同时,用鸡粪替代20%的尿素的效果较好。  相似文献   

12.
【目的】探讨长期不同施肥条件下设施菜地土壤的酶活性与微生物碳源利用特征,旨在为推进耕地建设与健康质量保护提供理论依据和数据支持。 【方法】供试土壤采自沈阳农业大学番茄28年定位施肥设施菜地,选取其中6个处理:N0、N1、N2、MN0、MN1、MN2进行分析,其中M表示施腐熟马粪75000 kg/hm2,N0为不施肥,N1、N2尿素施用量为652、1304 kg/hm2。采用Biolog-ECO法解析了土壤酶活性与微生物碳源利用特征的变化。 【结果】施用有机肥可以显著提高土壤有机质、速效磷、速效钾等养分含量,长期单施氮肥可增加土壤铵态氮和硝态氮含量,但有机质、速效磷和速效钾含量较对照下降。增施有机肥可以不同程度地提高土壤酶活性,而单施氮肥导致酶活性降低。增施有机肥可有效提高土壤微生物对碳源的利用能力,提高微生物群落功能多样性,单施氮肥作用相反。具体表现为:菜田微生物对六类碳源利用能力由高到低依次为氨基酸类、糖类、羧酸类、聚合物类、胺类、酚酸类;其中对L-丝氨酸、N-乙酰基-D-葡萄胺、L-天冬酰胺酸、L-精氨酸、丙酮酸甲脂、吐温80、D-纤维二糖、D-半乳糖醛酸、D-甘露醇利用率较高,而对α-环式糊精、2-羟苯甲酸、γ-羟基丁酸基本不利用;31种碳源对PC1和PC2贡献较大的分别有12种和6种(|r|>0.5)。综合比较,以有机肥配施一倍量氮肥(MN1)处理效果最佳,长期施用可以为设施菜地微生物创造最适宜的生存环境,使其保持较高的群落功能多样性。 【结论】长期不同施肥使得土壤微生物群落形成了不同的碳代谢方式,这是土壤微生物适应环境变化的结果,也是土壤生态系统中“植物-土壤-微生物”互作的结果。  相似文献   

13.
We analyzed soil prokaryotic and fungal community composition in soils with varying histories of cattle manure application. The manure treatments were (i) annual application for 43 years (MF), (ii) annual application for 14 years followed by 29 years without application (MF14), and (iii) annual application for 30 years followed by 13 years without application (MF30). An annual application of chemical nitrogen (N) fertilizer (CNF) and a non-amended control (Con) were also included. Soil prokaryotic evenness and diversity significantly decreased in MF relative to other treatments in fall, but were similar to the other fertilizer treatments in spring and summer. Distinct prokaryotic and fungal community composition was observed in MF compared to other treatments across fall, spring, and summer seasons. The MF treatment significantly increased the relative abundance of Firmicutes, Gammaproteobacteria, and Gemmatimonadetes, but significantly decreased the relative abundance of Acidobacteria. In fall, the soil prokaryotic and fungal community composition with MF30 was significantly different than the other fertilization treatments. Overall, the study showed that annual manure application (MF) led to a different microbial community composition than the other fertilizer treatments. Soil without manure application for 13 years (MF30) had a significantly different microbial community composition from other fertilizer treatments in fall, while the soil without manure application for 29 years (MF14) resembled a microbial community that had never received manure.  相似文献   

14.
The effects of incorporating or topdressing with cottonseed (Gossypium hirsutum L.) meal with or without soapstock, canola (Brassica rapa L.) meal, urea, or no amendment (control) were investigated using plants of marigold (Tagetes erecta L. ‘Inca II Gold’ or ‘Inca II Yellow’) and redbud (Cercis canadensis L.) in a Norge loam (fine-silty, mixed, thermic Udic Paleustolls) at Stillwater, OK in 2008 and 2009. Fertilizers were applied in May at 4.9 g?m?2 N based on soil test results prior to the study and nitrogen (N) recommendations for turfgrass. Soil nitrate-nitrogen (NO3-N) and phosphorus (P) increased from 2008 to 2009 in marigold plots into which cottonseed meal with soapstock was incorporated, and boron (B) increased in all marigold plots regardless of treatment. In 2009, marigolds grown in plots into which cottonseed meal was incorporated were taller than plants in other treatments except the untreated control. Marigolds in plots in which cottonseed meal was topdressed, cottonseed meal with soapstock was incorporated, or urea was topdressed grew less in height than plants in plots with cottonseed meal incorporated or control plots. Shoot dry weights of marigold plants in plots topdressed with cottonseed meal with or without soapstock, urea, or control plots were lower than those of plants in other treatments. Visual ratings of marigold plants receiving a topdress of urea or no treatment were lower than visual ratings of plants in any other treatment in July, but similar in August to those of marigold plants in plots in which cottonseed meal was topdressed. Some differences within fertilizer treatments occurred between 2008 and 2009 in redbud soil concentration of NO3-N, calcium (Ca), magnesium (Mg), sulfate-sulfur (SO4-S), iron (Fe), B, and copper (Cu). Leaf P concentration differed among fertilizer treatments in 2009. Leaf and total dry weight of redbuds grown in soil incorporated with urea was greater than that of plants in any other treatment. Results indicate that cottonseed and canola meals provide N and other nutrients for growth of landscape plants. Soil incorporated cottonseed meal encouraged more growth of marigold than soil incorporated urea but less growth of redbud.  相似文献   

15.
Urea is a common fertilizer in delayed‐flood rice production in the United States, and its use worldwide has increased dramatically in recent decades. This study aimed to directly quantify urea‐N persistence in floodwater and soil used for rice production. We conducted a set of three laboratory experiments to investigate urea‐N presence in the floodwater and soil. Untreated urea was applied to dry or wet soil and flooded immediately or urea treated with the urease inhibitor N‐(n‐butyl)‐thiophosphoric triamide (NBPT), or untreated urea was applied to dry soil and flooded after a 5‐day delay. Urea‐N was analysed colorimetrically (using the microplate‐adapted, diacetyl monoxime method) in the floodwater, and at 2‐cm intervals in soil after 10‐cm long, silt‐loam soil columns were flooded for 12, 24, 48 and 96 h. The only management practice that led to insignificant urea‐N concentrations in floodwaters was the application of urea followed by a 5‐day delay before flooding. Urea‐N can persist in floodwaters for an estimated 98 and 120 h after immediately flooding dry‐soil‐applied or wet‐soil‐applied untreated urea, respectively. Urea‐N concentrations in floodwaters were up to 33 times less when dry‐soil‐applied than wet‐soil‐applied. Average NBPT‐treated urea‐N concentrations in soil ranged up to 63 mg/kg after 24 h of flooding and were <1 mg/kg after 96 h of flooding. The 5‐day delay resulted in ≤1 mg urea‐N/kg soil when untreated urea was applied. Generally, the threat of N entering adjacent waterways in the form of urea is likely to be limited because of its short‐term persistence (≤120 h) in rice floodwater.  相似文献   

16.
【目的】 研究河套灌区土壤不同盐渍化程度下土壤微生物对氮肥的响应机理,为河套灌区盐渍化土壤中确立适宜的氮肥施用量提供理论依据。 【方法】 2015—2016年在内蒙古磴口县坝楞示范基地进行了两年田间试验,供试土壤为粉沙壤土,供试作物为玉米。设置轻度 (0.77~1.24 mS/cm) 和中度 (1.24~1.77 mS/cm) 盐渍化土壤为主区,副区为施氮水平,共设4个施氮水平为N 0、135、270、405 kg/hm2,研究轻、中度盐渍化土壤下不同施氮水平对土壤微生物的影响,探寻土壤盐渍化和氮肥对微生物的交互作用。 【结果】 土壤盐分随着施氮量的增加而增加;细菌、真菌、放线菌数量和微生物量碳、氮含量均随着施氮量的增加呈现出先增加后降低的趋势,在N 270 kg/hm2处理微生物数量和生物量均达到最高值。回归分析表明,土壤微生物与氮、土壤盐分之间呈现出极显著的二元二次非线性回归关系,由回归方程各系数可知,在盐渍化土壤中,单独施用氮肥均可以增加土壤微生物,而土壤盐分增加,土壤微生物减少;在轻度盐渍化土壤中,土壤盐分和施用氮肥对微生物具有正效应,即共同促进了土壤微生物的增加,而在中度盐渍化土壤中,土壤盐分和施用氮肥对微生物具有负效应,即抑制土壤微生物的增加。 【结论】 土壤盐渍化程度越高,土壤中微生物数量和生物量越少,施氮量为N 270 kg/hm2时微生物数量和生物量均达到最大值;土壤微生物与氮、土壤盐分之间呈现出极显著的二元二次非线性回归关系,在轻度盐渍化土壤中,土壤盐分和施用氮肥共同促进土壤微生物的增加,而在中度盐渍化土壤中,土壤盐分和施用氮肥抑制了土壤微生物的生长和繁殖。   相似文献   

17.
利用长期施肥定位试验开展土壤-作物系统的可持续性评价,可为农田合理施肥和管理提供理论支撑。在黄土丘陵区栗褐土农田进行了26年长期肥料定位试验,设置8个处理,分别是不施肥(CK)、单施氮肥[120.0 kg(N)·hm~(-2),N]、氮[120.0 kg(N)·hm~(-2)]和磷[75 kg(P_2O_5)·hm~(-2)]肥配施(NP)、单施低量有机肥(22 500 kg·hm~(-2),M1)、低量有机肥与氮肥配合施用(M1N)、低量有机肥与氮磷肥配合施用(M1NP)、高量有机肥(45 000 kg·hm~(-2))与氮肥配合施用(M2N)和高量有机肥与氮磷肥配合施用(M2NP)。测定了19项指标,根据三角性面积法计算了土壤养分指数、土壤微生物指数、作物指数和可持续性指数,分析讨论了长期施肥对栗褐土区土壤-作物系统可持续性的影响。结果表明:1)N、M1处理的可持续性指数较CK分别提高27.1%、141.7%,但较临界值(1.30)低53.1%和10.8%;NP处理的可持续性指数虽然较N处理提高62.3%,但仍比临界值(1.30)低23.8%。说明长期单施氮肥、低量有机肥和氮磷配施下土壤-作物系统均不可持续。2)施用无机肥处理(N和NP)的土壤养分指数、土壤微生物指数和作物指数较CK提高7.1%和46.4%、-6.0%和25.4%、40.0%和60.0%;单施低量有机肥(M1)的土壤养分指数、土壤微生物指数和作物指数较CK提高98.2%、41.8%和31.7%。说明施用无机肥有利于作物指数的提升,而施用有机肥有利于土壤养分指数和土壤微生物指数的提升。3)M1N处理的土壤养分指数(1.06)、土壤微生物指数(1.04)、作物指数(1.00)和可持续性指数(1.38)均超过或等于临界值,使土壤-作物系统具有较好的可持续性。4)M1NP、M2N、M2NP处理的土壤养分指数较M1N处理分别提高21.7%、37.7%和72.6%,土壤微生物指数较M1N处理分别提高15.4%、7.7%和18.3%,作物指数与M1N处理相比差异很小,可持续性指数较M1N处理分别提高28.3%、32.6%和68.1%。说明在M1N基础上再增施磷肥或有机肥,可持续性指数可进一步提升是由于土壤养分指数和土壤微生物指数提高的缘故,同时也增加了潜在的环境风险。适量有机肥与无机氮配合施用(M1N)是实现栗褐土区土壤-作物系统可持续生产的较佳施肥模式。  相似文献   

18.
To improve yield and quality in tea orchards, a large amount of nitrogen (N) fertilizer is usually applied. Our objective was to evaluate the effect of N application on microbial community and activity in tea orchard soils and assess the relative importance of fertilizer application versus land use in structuring the soil microbial community. Urea application caused significant decreases in soil microbial biomass and enzyme activities in the three tea orchards. For the wasteland and forest, soil microbial biomass and enzyme activities significantly increased as a result of N fertilizer application. Urea application caused significant decreases in microbial functional and genetic diversity indices of the three tea orchards. Moreover, the bacterial and fungal phospholipid fatty acids were found to be changed with urea application. Multivariate analyses consistently showed that land use had a greater effect on soil microbial community diversity than urea application.  相似文献   

19.
A pot experiment with a loam soil and spring wheat as test crop showed that an application of dicyandiamide (DCD), and especially its combination with hydroquinone (HQ), gave a much larger recovery of soil urea-15N than treatments based on the application of urea alone or urea plus HQ. Most of the urea-15N applied to soil was present as organic plus chemically fixed 15N in the DCD and DCD plus HQ treatments. These two treatments showed the smallest accumulation of urea-derived (NO3-+NO2-)-15N. Under well-drained conditions, there was a synergistic effect of the nitrification inhibitor DCD and the urease inhibitor HQ on urea-15N transformations and the recovery of fertilizer 15N in soil after the application of urea.  相似文献   

20.
长期秸秆还田与施氮后土壤活性碳、氮的变化   总被引:7,自引:3,他引:4  
通过长期定位试验,研究了秸秆还田和施氮后小麦生育期内土壤微生物量碳、氮(MBC、MBN)及可溶性有机碳(DOC)的变化,以期为关中麦玉轮作区土壤肥力的提升以及农业的可持续发展提供科学依据。采用裂区设计,主处理为玉米秸秆全量还田(S+N)和秸秆不还田(N),副处理为3个不同施氮水平(0,168,252kg/hm~2)共6个处理。结果表明:土壤MBC从小麦分蘖期至越冬期降低,此后至拔节期升高且达到峰值,拔节期至成熟期降低。各处理土壤DOC从分蘖期至拔节期增加,拔节期达到峰值,此后至成熟期降低;而土壤MBN的动态变化在整个生育期呈现降低的趋势。秸秆还田处理的土壤MBC和DOC显著高于秸秆不还田处理,平均分别提高6.7%和9.3%;秸秆还田后土壤MBN均高于秸秆不还田处理,且在越冬期、拔节期和成熟期达显著水平;各处理的土壤MBC和MBN随着施氮量的增加而显著降低,还田处理的土壤DOC随施氮量的增加而显著增加,平均增加11.8%;而秸秆不还田各处理中土壤DOC含量表现出先增高后降低的趋势。可见,秸秆还田有提高土壤活性有机碳氮的作用,而过量施用氮肥对活性碳氮的提高有抑制作用。因此,关中平原麦玉轮作区实行秸秆还田配合施用适量氮肥是提高土壤肥力水平、实现农业可持续发展的有效措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号