首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Species effects on earthworm density in tropical tree plantations in Hawaii   总被引:6,自引:0,他引:6  
Summary Tree species differ in the quantity and quality of litter produced, and these differences may significantly affect ecosystem structure and function. I examined the importance of tree species in determining earthworm densities in replicated stands of Eucalyptus saligna Sm. and Albizia falcataria (L.) Fosberg, and in mixed stands (25% albizia and 75% eucalyptus). Mean earthworm densities ranged from 92 m-2 in the pure eucalyptus, to 281 m-2 in the mixture, and a maximum of 469 m-2 in the pure albizia stands. Only two earthworm species were present, Pontoscolex corethrurus and Amynthas gracilis. Leaf biomass on the forest floor was highest in the pure eucalyptus and lowest in the pure albizia stands, whereas the annual fine litterfall production was lowest in the pure eucalyptus and highest in the albizia stands. The N content of fine litterfall was correlated positively with earthworm density, and the fine litterfall biomass: N ratio was correlated negatively with earthworm density. Greater leaf biomass on the forest floor under eucalyptus stands despite lower rates of litterfall suggests that litter quality, rather than litter quantity, was primarily responsible for the greater earthworm density in the albizia stands. Some biogeochemical effects of tree species in the tropics may be mediated through effects on earthworm populations.  相似文献   

2.
Summary The changes in size and age-composition of an earthworm population were studied in a Western Australian pasture developed since 1912. The population size in the surface 10 cm was estimated by handsorting during the cool wet season (19 weeks from May to September). Two species, both exotic, were found, Aporrectodea tranpezoides (Lumbricidae) and Microscolex dubius (Acanthodrilidae). Of the 615 individual speciemens collected, 99.7% were A. trapezoides. The abundance of A. trapezoides increased from 58 m-2 at the time of the opening rains to 170 m-2 (88.6 g live weight m-2) after 10.5 weeks. Near the end of the wet season (in October) the density was 37 m-2. At the time of the opening rains the population consisted of juvenile and semimature individuals. Clitellate earthworms were found 1 month later and predominated from August (10.5 weeks) to the end of the season. Egg capsules were found from August through October. Egg capsules incubated in the laboratory at 16°C hatched on average after 42 days and produced two juveniles. Juvenile and immature earthworms collected from a quiescent state at the end of summer matured within 1 month when reared in moist soil in the laboratory.  相似文献   

3.
Ecological studies on earthworms were conducted in a Kumaun Himalayan pasture soil. The C:N ratio in the soil declined with increasing depth. A combination of hand-sorting and formalin application was used to sample the earthworms. Three species, Amynthas alexandri, A. diffringens (Megascolecidae), and Eisenia fetida (Lumbricidae) were found. Of the 13310 individuals collected, 99.9% were A. alexandri. The maximum density (138.8 m-2) and biomass (25.2 g m-2) were recorded in the wet season. More than 60% of the total earthworm numbers and biomass were recorded at 0–10 cm in depth. The mean yearly ratio of clitellate to aclitellate worms was 1:7.3.  相似文献   

4.
Vermicomposting is an efficient and environmentally friendly technology to dispose of agricultural organic residues. The efficiency of organic residue decomposition during vermicomposting is directly affected by the biomass and population structure of earthworms. In this study, we investigated how the earthworm biomass and population structure responded to changes in the physicochemical properties of six types of organic residue (cattle dung, herbal waste, rice straw, soybean straw, garden waste, and tea residues) during vermicomposting. Each type of organic residues was placed in a pot with earthworms Eisenia fetida, and the physicochemical properties of the organic residues and earthworm growth dynamics were recorded at 0, 30, 60, and 90 d of vermicomposting. The biomass and population structure of earthworms were stable or increased in rice straw, garden waste, and cattle dung within 60 d of vermicomposting, whereas in tea residues and herb waste, very little earthworm activity (3 adults and 2 cocoons) was recorded on day 30. Among the physicochemical parameters, the substrate C/N ratio was negatively correlated with earthworm growth dynamics. Decomposing organic residues showed higher NH4+-N and NH3--N concentrations but a lower total organic carbon content, which negatively affected earthworm growth and reproduction. We recommend that chemical properties of vermicomposting systems should be monitored regularly. At the threshold levels of decomposing organic residue NH4+-N and NH3--N concentrations, earthworms should be removed and the vermicompost can be harvested. Small- and large-scale farmers thus need to monitor the physicochemical properties of vermicompost to sustain active earthworm populations.  相似文献   

5.
Fungi,bacteria and protozoa in soil from four arable cropping systems   总被引:2,自引:0,他引:2  
Summary The effects of four cropping systems on soil microorganisms were investigated during 3 years. The cropping systems were B0, barley without nitrogen fertilizers; B120, barley with 120 kg N ha–1 year–1; GL, grass ley receiving 200 kg N ha–1 year–1; and LL, lucerne ley without nitrogen fertilizer additions. At samplings in September during three consecutive years no differences were found between treatments. Total fungal lengths ranged between 0.7 and 2.0 × 103 m and bacterial numbers between 3.5 and 7.2 × 109 g–1 dry wt. soil.Twenty samplings over 3 years in B120 and in GL indicated higher numbers of bacteria and protozoa during the growing season, except for periods with moisture stress. No clear seasonal trends were found for the fungi. When comparing mean values for the 20 samplings, the grass ley contained significantly (P < 0.05) higher numbers of amoebae. Means of the bacterial numbers and biomass, total and FDA-active hyphal lengths were also higher or equal (FDA-active hyphae) but not significantly so.Seventy-nine per cent of the bacterial biomass and 73% of the total fungal lengths were found in the top soil, where also 85% of the oxygen was consumed.  相似文献   

6.
The objective of this study was to determine whether differences in canopy structure and litter composition affect soil characteristics and microbial activity in oak versus mixed fir-beech stands. Mean litter biomass was greater in mixed fir-beech stands (51.9t ha−1) compared to oak stands (15.7t ha−1). Canopy leaf area was also significantly larger in mixed stands (1.96m2 m−2) than in oak stands (1.73m2 m−2). Soil organic carbon (C org) and moisture were greater in mixed fir-beech stands, probably as a result of increased cover. Soil microbial biomass carbon (C mic), nitrogen (N mic), and total soil nitrogen (N tot) increased slightly in the mixed stand, although this difference was not significant. Overall, mixed stands showed a higher mean C org/N tot ratio (22.73) compared to oak stands (16.39), indicating relatively low rate of carbon mineralization. In addition, the percentage of organic C present as C mic in the surface soil decreased from 3.17% in the oak stand to 2.26% in the mixed stand, suggesting that fir-beech litter may be less suitable as a microbial substrate than oak litter.  相似文献   

7.
The influence of the earthworm Aporrectodea caliginosa on the biomass and the proportion of active and dormant soil microorganisms after the addition of cut perennial ryegrass (Lolium perenne) to upper soil from agricultural field was studied in a microcosm experiment. During a 2-month period, soil samples were taken 1, 8, 22, 36, 50, and 64 days after cut grass addition. A substrate-induced respiration (SIR) method was used to analyse the samples for total microbial biomass and the distribution of active and dormant microbial biomass. It was found that the addition of grass increased the microbial biomass (SIR) because of an increase in the active microbial biomass. After the initially high values, the active microbial biomass decreased slowly, and at day 64, it was still higher in the grass-amended soils than in the control treatment without grass addition. After 1 day, the active microbial biomass was higher in the soil with A. caliginosa than without the earthworm. At the subsequent samplings, there were no differences in microbial biomass or the proportion of dormant vs active microorganisms between the grass-amended soils. The average from all sampling occasions of SIR was higher in earthworm-treated soil.  相似文献   

8.
Common agricultural practices, e.g. soil tillage and organic amendment, may affect field earthworm communities considerably. However, there is little data to show how long the changes persist after a certain action. The effect of peat, commonly used in Finland to improve the horticultural soil structure, on key soil organisms is also largely unknown. Earthworm abundance and microbial biomass were studied in a strawberry field experiment (soil type silty clay) with a history of different crops (strawberry, timothy, caraway, rye, turnip rape, fiddleneck, onion and buckwheat) and peat treatments. Sampling was carried out after three years of perennial cropping of strawberry. Half of the area was peat-amended twice three years apart. The earthworm community consisted mainly of Aporrectodea caliginosa and Lumbricus terrestris. Soil peat amendment almost doubled the number of endogeic A. caliginosa, but had no effect on the anecic L. terrestris. The effect of cropping history on earthworms diminished after three years of strawberry cropping. Only the positive effect of caraway on juvenile Lumbricus spp. was detectable three years after its cropping had been finished. However, some crops had secondary effects on the earthworm distribution without significant influence on their numbers while they were grown, e.g. high numbers of A. caliginosa were recorded from soil with a history of timothy ley. The effect of strawberry cropping was contradictory: six years of continuous strawberry cropping decreased the number of the anecic L. terrestris, but during the last three years on strawberry, the proportion of L. terrestris increased from 6% to 40% in the experimental area with a concomitant great drop in the number of A. caliginosa. The role of different agricultural practices (no tillage, mulching, inter-row grass cover and pesticides) is discussed. The crop-induced changes persisted in the microbial biomass for three years (onion cropping reduced microbial biomass C), but soil amendment had no effect on microbes. The abundance of A. caliginosa was associated with soil organic C, but not with soil microbial biomass.  相似文献   

9.
设施蔬菜栽培长期施用过量化肥,往往导致土壤质量退化及作物产量降低等问题。因此,采用生态友好的农业生产方式已成为农业可持续发展的趋势。本研究在野外调控试验的第3年采集作物和土壤,研究了施用不同有机物料条件下,接种赤子爱胜蚓(Eisenia foetida)对设施菜地土壤性质和作物生长的影响。结果表明,在不同有机物料施用下接种赤子爱胜蚓均显著地提高了黄瓜和菠菜的产量,其中在施用腐熟牛粪+食用菌渣条件下接种赤子爱胜蚓效果最显著。此外,在腐熟牛粪和腐熟牛粪+食用菌渣施用条件下,接种赤子爱胜蚓显著地提高土壤的硝态氮(NO3–-N)、团聚体平均重量直径(MWD)、微生物生物量碳(MBC)、微生物生物量氮(MBN)和代谢熵(q CO2),而在施用商品有机肥的处理中,接种赤子爱胜蚓仅显著地提高了土壤NO3–-N和q CO2。本研究促进了对蚯蚓在设施农业生态系统中服务功能的理解,并为设施农业生产提供了理论基础。  相似文献   

10.
Many soil properties influence earthworm populations and activity. To determine which properties are of significance, a broad collection of soils was investigated. Samples from these different soils were kept bare at one site in large plots (3 Mg soil per plot) to liminate crop and weather interference and to isolate the dominating mechanisms of earthworm effects. Earthworm density, biomass, and tunnelling activity were assessed after 5 years of bare fallow. All earthworm parameters varied strongly. Earthworms increased soil respiration by their tunnelling activity, and in turn increased microbial activity and propagated the loss of organic C. Earthworm abundance ranged from 12 to 274 m-2 and was about 10 times greater than on cropped soils. The range in abundance was mainly caused by variations in the numbers of juveniles. The average soil moisture content was the only soil property among the many properties investigated that was consistently correlated with earthworm abundance and biomass. Even after 5 years of bare fallow with almost no addition of fresh plant biomass and with little water loss by plant transpiration, the earthworm population was controlled by water stress and not by food stress. We therefore conclude that high water consumption by productive crops may degrade the habitat for geophagous earthworms.  相似文献   

11.
Large sized biopores (diameter >2 mm) in the subsoil can be created by tap roots, which leave voids after their decay, or by the burrowing activity of anecic earthworms which may benefit from the temporary lack in tillage in perennial cropping systems. However, the interactions between root growth and earthworm activity in the process of biopore formation during perennial ley cropping are not well understood. The aim of this field study was to quantify the development of the abundance of the anecic earthworm Lumbricus terrestris and the biopore density during the cultivation of lucerne (Medicago sativa L.), chicory (Cichorium intybus L.) and tall fescue (Festuca arundinacea Schreb.) grown for either one, two or three years. An increased abundance of L. terrestris was already recorded after two years of continuous ley when compared with one year cultivation. The ley crop species had only minor influence on the abundance of L. terrestris. Biopore densities of both diameter classes under study (2–5 mm and >5 mm) were not significantly affected by the duration of ley cropping. In contrast, biopore densities were influenced by ley crop species. More biopores of diameter class 2–5 mm were recorded after chicory than after fescue. Lucerne cropping resulted in intermediate biopore density. Additionally, in an incubation experiment under field conditions, we quantified whether L. terrestris preferentially created new biopores or colonized abandoned, previously existing ones. After three weeks of incubation, one third of the adult individuals incubated in the experimental area created new biopores at 0.4 m soil depth. A similar percentage of individuals colonized previously existing biopores, partially widening the lumen of smaller sized biopores. The remaining individuals remained in the topsoil. Sub-adult individuals rarely formed new pores. Half of the introduced sub-adults remained in the topsoil. We conclude that in crop rotations new biopores can be generated during perennial ley cropping by taproot systems of ley crops, but that a two to three- year period without tillage is not sufficient for populations of anecic earthworms to make a marked contribution to biopore density in the subsoil. The relevance of anecic earthworms for altering physical and chemical properties of biopores during ley cropping still needs further investigation.  相似文献   

12.
甘肃秦王川灌区种植豆禾混播牧草的农田生态保育效应   总被引:2,自引:1,他引:1  
以裸地(CK)、种植小麦(Triticum aestivum)和苜蓿/无芒雀麦(Medicago sativa/Bromus inermis)豆禾混播牧草地为研究对象,通过测定地表植被特征指标、土壤风蚀量及理化性质等指标,探究秦王川灌区农田风蚀规律及种植春小麦和牧草对土壤及养分流失的影响。结果表明:农田表土损失呈秋末冬初流失较多,冬季较少,春季又明显增强的"U"形曲线模式,从9月至翌年6月,出现2个风蚀高峰期(9—11月和3—5月);耕地裸露造成表土年均流失1.7 kg/m~2,即每年被风吹蚀1.3 mm厚表土,土壤有机质损失236.2 kg/hm~2,而种植小麦和牧草后在地表植被(根茬)覆盖作用下表土流失减少20.1%和52.3%,有机质损失减少12.2%和50.7%;由于风蚀季牧草植被(根茬)的盖度、高度和地表生物量均较小麦大,使得牧草地的地表粗糙度和湿度及表土(0—5 cm)含水率较小麦地高,从而造成土壤和有机质流失较小麦地少;相关和回归分析显示,地表植被特征指标与地表粗糙度和土壤含水率间呈显著正相关,而与地表土壤和有机质流失量呈极显著负相关;植被盖度每提高1%,将使表土和有机质流失减少4.1 g/m~2和59.3 mg/m~2,地表生物量每提高1 g/m~2,将使表土和有机质流失减少2.3 g/m~2和34.0 mg/m~2;春季春播小麦地的表土流失量与裸地相同,而种植多年生豆禾混播牧草可显著减少表土流失和有机质损失。综合以上,甘肃灌区农田春季播种农作物易引起土壤退化,而种植多年生豆禾混播牧草可实现农田生态保育,从而提高耕地质量和区域环境质量。  相似文献   

13.
Summary The development of a number of components was analysed in an agro-ecosystem study with four cropping regimens, barley without and with N fertilization, grass ley, and lucerne. A great variation in N inputs (1–39 g N m-2 year-1) and cropping systems produced a variation in primary production (260–790 g C m-2 year-1) and input of organic material to the soil (150–270 g C m-2 year-1). This was reflected in variations of total soil animal biomass (1.6–5.1 g C m-2) and in variations in the abundance of various animal groups, nematodes (5.6–9.8×106m-2), micro- (2.6–4.8×10-4 m-2), and macroarthropods (0.9–4.2×103 m-2). In contrast, total bacteria, fungi, flagellates, and amoebae varied quite independently of the organic matter input. Mineralization processes covaried more with C and N inputs and total animal biomass than with microbial biomass. it is suggested that the rather constant microbial biomass was a result of an adjustment in the grazing pressure of microbial-feeding animals to the level of microbial production.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

14.
Summary The connection between faunal composition and soil factors is discussed in this study on vertical distribution of soil nematodes under grass and barley. The investigation was undertaken on the field site of a Swedish integrated research project Ecology of Arable Land. The Role of Organisms in Nitrogen Cycling. Higher nematode number (7.6 × 106 m–2) and biomass (340 mg dry wt. m–2) were found under a 4-year-old grass ley than under barley (5.0 × 106 m–2; biomass, 136 mg dry wt. m–2). Plant feeders dominated under the grass ley (3.2 × 106 m–2 whereas under barley the bacterial feeders (2.4 × 106 m–2) were the most abundant feeding group. Number, biomass, mean individual size and various community parameters indicated a much better nutritive situation for the nematodes under grass than under barley. The vertical changes in the various parameters, including proportion of egg-carrying females, indicated an increasing food shortage for the nematode populations towards greater depths. In the top soil, predation could be an important factor in regulating nematode number.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

15.
Effects of earthworms on nitrogen mineralization   总被引:13,自引:0,他引:13  
The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH 4 + , NO 3 , and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH 4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH 4 + were observed. However, when earthworms were present, the concentration of NO 3 increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha–1 year–1, at the density used in this experiment.  相似文献   

16.
We investigated the effects of N fertiliser and pesticide applications on the population dynamics of benthic molluscs in a tropical wetland rice field. Populations were monitored for two consecutive dry seasons in selected treatments during a study on the effects of agricultural practices on the floodwater ecology of tropical rice fields. The most abundant species recorded in the ricefields were the snailsMelanoides tuberculata andMelanoides granifera. Population densities and biomass values in planted plots ranged between 0 and 1530 individuals m-2 and 0 and 1060 kg ha-1, respectively. Snails were more abundant in unplanted than planted plots (1991: 170–2040 versus 0–1040 individuals m-2, respectively). Populations in planted plots declined as the crop season progressed. Snail populations were significantly reduced by the broadcast application of mineral N fertiliser at 110 kg N ha-1. There was little evidence that snails were affected by carbofuran or butachlor applications.  相似文献   

17.
A microcosm was used to study the effect of the endogeic earthworm Aporrectodea caliginosa (Savigny) on the use of C by microorganisms in a calcareous beech forest soil and its dependence on temperature (5–25%C). Inclusion of 14C-labelled beech leaf litter made it possible to differentiate between C use by litter-colonizing microflora and by autochthonous soil microflora. The effect of temperature on the soil microbial biomass 12C was confined to a significant increase at 15 and 20°C. The size of the 14C-labelled microbial biomass, in contrast, was positively correlated with temperature. The 12C mineralization increased exponentially with temperature. The relationship between 14C mineralization and temperature, in contrast, followed a logistic curve. Significant main effects of A. caliginosa were confined to 12C mineralization, reflecting an increase in 12CO2–C production in the earthworm treatments. The earthworm effects on 12CO2–C production and on 14C incorporation of the microflora were not linear. The effect of A. caliginosa on 12CO2–C production was most pronouned at intermediate temperatures. It is concluded that temperature alterations affect the microbial use of different C sources in different ways and that the temperature effects can be significantly modified by endogeic earthworms.  相似文献   

18.
The earthworm population in a winter cereal field in Ireland was studied over a 3-year-period and its effects on soil and N turnover were assessed. The mean annual population density was 346–471 individuals m-2 and the mean biomass was 56.9–61.2 g m-2. Twelve species were recorded, the most abundant being Allolobophora chlorotica followed by Aporrectodea caliginosa, and 242 mg at 5°C to 713 mg at 10°C in the case of juvenile Lumbricus terrestris. Gut contents (dry mass of soil) comprised 6.7–15.5% of the A. caliginosa live mass, and 9.7–14.7% of the Lumbricus terrestris mass. Annual soil egestion by the field population was estimated as 18–22 kg m-2. Tissue production ranged from 81.7 to 218.5 g m-2, while N turnover resulting from mortality was calculated as 1.5–3.9 g m-2 depending on the year and the method of calculation. Earthworms were estimated to contribute an additional 3.4–4.1 g mineral N to the soil through excretion, mucus production, and soil ingestion. Independent estimates of N output via mucus and excretion derived from 15N laboratory studies with Lumbricus terrestris were 2.9–3.6 g m-2 year-1.  相似文献   

19.
Field and laboratory experiments were carried out to describe the effects of Aporrectodea nocturna on soil characteristics in a pre-alpine meadow and to support the development of a model of cast production. In the prealpine meadow, increased cast production, first observed about 20 years ago around a newly planted hedge, was recorded to a distance of maximal 170 m from the hedge. Numbers of A. nocturna between 130 and 165 m from the hedge decreased from 164 to 16 individuals m-2. In the same area cast production steadily decreased from about 1.5 kg m-2 week-1 to nil, the plant community structure changed and the microbial biomass decreased, but the root biomass and the moisture content did not change. Laboratory experiments demonstrated that high cast production was not a specific feature of the A. nocturna population nor of the soil in the meadow. Diapause of A. nocturna was terminated in the laboratory during September. A model of cast production potential by the earthworm A. nocturna was established using laboratory determinations of the relationships with body weight, temperature, and water potential. The model was shown to predict cast production in the field given the assumption that the water potential was 0 MPa. According to the model, 81% of surface cast production was by juveniles, and 19% by adults of A. nocturna.  相似文献   

20.
Allolobophora carpathica is an earthworm species found in the Eastern Carpathian mountain region, but little information is available on its ecology. Field sampling in beech woodland of the Bieszczady National Park, SE Poland, found this species in soils with a pH of less than 5.0 and C:N ratios of 12 to 13. From sampling over 2 years, at 4 sites with differing sub-vegetation, a mean density of A. carpathica of 6.75 individuals m-2 with a biomass of 8.65 g.m-2 was recorded. The largest mature adults were in excess of 14.0 g but there were significant differences (p < 0.01) between sampling sites. Seasonal patterns of abundance were observed.To obtain more data on the growth and breeding biology of this species, specimens were collected from the field, taken to laboratories and maintained in mesocosms under controlled environmental conditions. Cocoon production was 0.88 cocoons per earthworm per month at 15oC, but under fluctuating temperature conditions (16 - 24oC) no cocoon production occurred. The mean cocoon biomass was 83 mg  (n = 104) and incubation took 178 days at 15oC (n = 14), although hatchability was low (22%) under these conditions. Growth from the hatchling stage, (mean mass 86 mg; n = 18), to maturity (c. 8.5 g) took 8 - 12 months at 12oC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号