首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1991, field experiments on loess (with winter wheat) and sandy soils (with summer barley) were conducted to study N dynamics in the microbial biomass and non-exchangeable NH inf4 sup+ . The measurements showed a mass change in microbial N, with a maximum increase of 100 kg N ha-1 30 cm-1 from March to July in the loess soil, and a change for only 1 month (May) in the sandy soil. Plots treated with conventional levels of N fertilizer (213 kg N ha-1 on a loess soil to winter wheat and 130 kg ha-1 on the sandy soil to summer barley), reduced levels of N (83% and 62% of the conventional N application), or no N showed no consistent fertilizer N effect on microbial biomass N. From March to July, non-exchangeable NH inf4 sup+ in loess soils under winter wheat decreased by 110 kg N ha-1 30 cm-1 in conventionally fertilized plots and by 200 kg N ha-1 30 cm-1 in a plot with no N fertilizer. After harvest, the pool of non-exchangeable NH inf4 sup+ increased due to increasing mineral N concentrations in the soil.  相似文献   

2.
To estimate the availability of nonexchangeable NH inf4 sup+ –N for soil microorganisms four incubation experiments were conducted under controlled conditions. The following results were obtained: Incorporating glucose as a source of readily oxidizable organic material favored the release of nonexchangeable NH inf4 sup+ –N. Mobilization of NH inf4 sup+ from the interlayers of the clay minerals was decreased by the application of K++, while Ca2+, which is supposed to expand the lattice of the clay minerals, had no influence on the release of NH inf4 sup+ . Soil temperature had no effect on microbiological mobilization of NH inf4 sup+ . It is assumed that, generally, the influence of nitrifying bacteria on the mobilization of nonexchangeable NH inf4 sup+ –N is negligible. However, in soils with abundant amounts of available carbon promoting the activity of heterotrophic soil microorganisms, the release of NH inf4 sup+ from clay minerals is favored under fallow conditions.  相似文献   

3.
A laboratory incubation experiment was conducted to compare the effects of NH inf4 sup+ and NO inf3 sup- on mineralization of N from 15N-labelled vetch (Vicia villosa Rotn) in an Illinois Mollisol, and to determine the effect of a nitrification inhibitor (nitrapyrin) on mineralization of vetch N when used with NH inf4 sup+ . The addition of either NH inf4 sup+ or NO inf3 sup- (100 and 200 mg N kg-1 soil) significantly increased mineralization of vetch N during incubation for 40 days. The effect was greater with NH inf4 sup+ than with NO inf3 sup- , and a further increase occurred in the presence of nitrapyrin (10 mg kg-1 soil). The addition of NO inf3 sup- retarded the nitrification of NH inf4 sup+ -N derived from vetch.  相似文献   

4.
Summary Mineral N concentrations ranged from 133.1 to 167.8 g g-1 dry soil in fresh casts of the endogeic earthworm Pontoscolex corethrurus fed on an Amazonian Ultisol; this was approximately five times the concentration in non-ingested soil. Most of this N was in the form of NH inf4 sup+ . N also accumulated in microbial biomass, which increased from a control value of 10.5–11.3 to 67.5–74.1 g g-1 in fresh casts. During a 16-day incubation, part of the NH inf4 sup+ -N was nitrified and/or transferred to the microbial biomass. Total labile N (i.e., mineral+biomas N) decreased sharply at first (ca. 50% in the first 12 h), and then more slowly. The exact fate of this N (microbial metabolites, denitrification, or volatilization) is not known. After 16 days, the overall N content of the casts was still 28% higher than that of the control soil. Incubation of the soil before ingestion by the earthworms significantly increased the production of NH inf4 sup+ in casts. We calculate that in a humid tropical pasture, 50–100 kg mineral N may be produced annually in earthworm casts. Part of this N may be conserved in the compact structure of the cast where the cast is not in close contact with plant roots.  相似文献   

5.
Summary The turnover of interlayer NH inf4 sup+ in a loess-derived agricultural soil from the Shaanxi Province in China was studied. The concentration of 15N-labeled interlayer NH inf4 sup+ and total interlayer NH inf4 sup+ (labeled + unlabeled) in a soil grown with winter wheat was significantly higher at the beginning of the season (March) than when the crop was mature (June). In a further experiment with winter wheat it was shown that under field conditions the concentration of interlayer NH inf4 sup+ decreased significantly in the two upper soil layers (0–20 and 20–55 cm) during March and in the deeper soil layer (55–75 cm) during April. When the heading stage of wheat was reached, about 200 kg N ha-1 of interlayer NH inf4 sup+ had been released. During the following growth period (heading until flowering of wheat) the concentration of interlayer NH inf4 sup+ increased significantly in the upper soil layers. Fertilizer application in the form of 70 kg N ha-1 as urea led to a considerable increase in the nitrate concentration in the upper soil layer but had no influence on the level of interlayer NH inf4 sup+ concentration. It is concluded that interlayer NH inf4 sup+ takes part in the N cycle of the soil and that it contributes to the N nutrition of the crop. NH inf4 sup+ originating from the mineralization of soil organic N may be rapidly incorporated into the interlayer of clay minerals and later released, when the N demand of the crop is high.  相似文献   

6.
Streptomycin and cycloheximide were added (3 and 2 mg g-1 dry soil, respectively) single and in combination to a forest soil to follow their possible degradation and their effects on soil mineralization-immobilization processes. After 0, 1, 2, 4, 7, and 10 days of incubation at 25°C and 60% water-holding capacity, measurements were taken of microbial biomass C and N, the evolution of CO2, exchangeable NH inf4 sup+ , 0.5M K2SO4-extractable organic C, and total N in both unfumigated and CHCl3-fumigated soil. The results indicated that during the first 2 days of incubation, soil microorganisms were killed by the antibiotics and/or by CHCl3 and used subsequently as a substrate by the survivors. Thereafter, surviving microorganisms probably also started to use biocidal molecules as an energy and nutrient source. The ratios of biomass C to biomass N and of CO2 evolved to net NH inf4 sup+ produced indicated that both biocides had non-target effects for most of the incubation. Thus, streptomycin and cycloheximide are not suitable in determining the relative contribution from fungi and bacteria to mineralization-immobilization processes in soils.  相似文献   

7.
Changes in the structure and function of a soil decomposer community and growth of birch (Betula pendula) due to chemical contamination were studied in laboratory microcosms. Sodium pentachlorophenate (PCP) was added to the humus layer of a simulated forest soil at three nominal concentrations (0, 50 and 500 mg kg-1 dry mass). After two growing periods (48 weeks), there were more small soft-bodied mites, but less collembolans and microbial biomass, in the higher PCP concentration treatment than in the other treatments. Number of enchytraeids were significantly reduced and fungal-feeding nematodes became extinct in the soil with the higher PCP concentration. Soil respiration did not change due to PCP contamination. Diversity of soil fauna tended to decrease with increasing PCP concentration. Number of faunal taxa were not influenced by PCP. Mainly due to reduction of enchytraeids, total animal biomass was significantly lower in the higher PCP concentration treatment than in the other treatments. At week 8, leaching of nutrients was greatest in the higher PCP concentration treatment. At the end of the experiment no significant changes in soil pH and NH inf4 sup+ -N content of the soil were found. Birch growth and N concentration of the leaves were reduced with the higher PCP concentration. We assume that direct toxicity of PCP at the beginning of the experiment and changes in the decomposer community structure (mainly reduction of enchytracids and changes in microflora) due to PCP were responsible for the lowered primary production in the systems.  相似文献   

8.
Summary Three Illinois Mollisols were incubated for 2 weeks at 25°C after treatment with different amounts of glucose and/or 15N-labelled (NH4)2SO4 or 15N-labelled KNO3. The objectives were: (1) to compare the immobilization and interaction of NH inf4 sup+ –N and NO inf3 sup- –N with the native soil N, and (2) to study the relationship between immobilization of applied N and the added N interaction. As determined, immobilized N refers to forms not extractable with 2 MKCl (immobilized 15N+clay-fixed 15NH inf4 sup+ ). In all cases, both NH inf4 sup+ –N and NO inf3 sup- –N were actively immobilized and transformed into organic forms in the presence of glucose. In the absence of glucose, a higher proportion of NH inf4 sup+ than NO inf3 sup- was recovered in organic forms. Although the three soils differed considerably in the amounts of applied N immobilized, similar trends in N immobilization were observed. A positive added N interaction occurred with all soils, the magnitude increasing with the rate of N addition. In the absence of glucose, higher added N interactions were obtained for NH inf4 sup+ than NO inf3 sup- , whereas there was very little difference between NH inf4 sup+ and NO inf3 sup- in the presence of glucose. The results indicate that under conditions of rapid immobilization (e.g., in the presence of glucose), NH inf4 sup+ and NO inf3 sup- will show comparable interaction with the native soil N, whereas in unamended soil, the extent of this interaction will be greater with NH inf4 sup+ than with NO inf3 sup- . Significant correlations were observed between applied N immobilized and the added N interaction only in one soil having a high initial mineral N content.  相似文献   

9.
Summary The functional roles of the fungivorous collembolan Tomocerus minor and the detritivorous isopod Philoscia muscorum during the decomposition of Pinus nigra needles were studied in mesocosms filled with two different types of F1 litter, obtained from two different forest soils. The effects of the animals on the availability of K+, Ca2+, NO inf3 sup- , NH inf4 sup+ , and PO inf4 sup3- and on the respiration, dehydrogenase, and cellulase activity of microorganisms were measured over one growing season. The animals were introduced into the F1 litter in three densities. The most important animal effect was a buffering effect, in that addition of the animals increased nutrient availability and microbial activity where the corresponding values in control mesocosms without animals were low, and decreased the nutrient availability and microbial activity where control values were high. This effect occurred for both species and was most evident in the substrate with the highest temporal fluctuations. The effects on nutrient availability are attributed to an animal effect on the activity of and successional stage reached the microbial community, with NH inf4 sup+ availability seen as the most important factor. The concept of functional groups in relation to these animal effects is discussed.  相似文献   

10.
Near-infrared spectroscopy and soil physicochemical determinations (pHH2O, organic matter content, total C content, NH inf4 sup+ , total N content, cation-exchange capacity, and base saturation) were used to characterize fire-or wood ash-treated humus samples. The spectroscopic and the soil physicochemical analysis data from the humus samples were used separately to explain observed variations in soil respiration and microbial biomass C by partial least-square regression. The first regression component obtained from the physicochemical and spectroscopic characterization explained 10–12% and 60–80% of the biological variation, respectively. This suggests that information on organic material collected from near-infrared spectra is very useful for explaining biological variations in forest humus.  相似文献   

11.
Summary A pot experiment in the greenhouse was conducted to compare the contribution of N derived from the atmosphere or from biological N2 fixation by Sesbania rostrata inoculated with Azorhizobium caulinodans, applied either to roots or to roots and stems (single or multiple stem inoculation). Two subsequent crops were grown for 50 days under flooded conditions. N derived from air was estimated by 15N dilution using 15N enrichment of soil NH inf4 sup+ -N and of Echinochloa crusgalli as the non-N2-fixing reference datum and compared with estimates obtained by the N-difference method. The first crop was grown to stabilize the 15N into the soil organic N fraction. The 15N enrichment of soil NH inf4 sup+ -N in the second crop declined slowly. The extractability ratio (15N enrichment of extractable soil N to 15N enrichment of total soil N) decreased from 4.8 to 4.1 50 days after planting. The enrichment of soil NH inf4 sup+ -N was comparable to that of E. crus-galli, resulting in similar estimates of N derived from air when either soil NH inf4 sup+ -N or enrichment of E. crus-galli was used as a non-fixing reference. The N-difference method did not always provide reliable estimates of N derived from air; percentages ranged from 75 to more than 80 by 50 days after planting in both crops and did not differ among treatments. The study demonstrates the potential of using 15N enrichment of soil NH inf4 sup+ -N as a non-N2-fixing reference for reliable BNF estimates of crops in lowland puddled soil.  相似文献   

12.
We studied the turnover of interlayer NH inf4 sup+ in three soils cropped with sugar beet. The three soils chosen for this study (Carpi, Cadriano, and Ozzano) are typical of the soils in the Po Valley where sugar beet is grown. The variation in interlayer NH inf4 sup+ content during the growing season was significant and very similar for the Carpi and Cadriano soils, while there was no significant variation in the NH inf4 sup+ content in the Ozzano soil during the same period. The turnover of interlayer NH inf4 sup+ in the Carpi and Cadriano soils was high, and appeared to cover a substantial amount of the N requirement of the crop. The turnover in these two soils showed a significant decrease during the initial phase followed by a period during which the pool of interlayer NH inf4 sup+ was replenished and reached the initial levels again. The spatial distribution of the root system, the pattern of N uptake by the sugar beet crop, and the processes of immobilization-mineralization of organic N all have an influence on the mechanisms of adsorption and release of interlayer NH inf4 sup+ . The release of interlayer NH inf4 sup+ , and thus its availability for plant uptake, was greater at the beginning of the growing season. The physicochemical characteristics of the soils, the K concentration, and the types of clay minerals present were found to be important in determining the dynamics of interlayer NH inf4 sup+ turnover of soils.  相似文献   

13.
This paper describes a field study to assess the effect of increasing the frequency of split applications of N fertiliser on the pattern of plant uptake, soil N availability, and microbial biomass C and N. Measurements were taken during the growing season in different positions relative to young trees (Prunus avium L.) in an upland silvopastoral system in its first year after establishment. At fertiliser rates of 72 and 144 kg ha-1 N applied as NH4NO3, increasing the number of split applications increased N uptake by the pasture. Mineral forms of soil N measured 2 weeks after application indicated that residual NH inf4 sup+ -N and total mineral N were also greater in this treatment on certain dates. Soil NO inf3 sup- -N was positively correlated with the soil moisture content, and nitrification reached a maximum in early May and declined rapidly thereafter except within the herbicide-treated areas around the trees where soil moisture had been conserved. Results of the study suggest that high NO inf3 sup- -N in herbicide-treated areas was probably caused by mineralisation of grass residues and low uptake by the tree rather than by preferential urine excretion by sheep sheltering beside the trees. Mean microbial biomass C and N values of 894 and 213 kg ha-1, respectively, were obtained. Microbial C was slightly increased by the higher frequency of split applications at 144 kg ha-1 N and was probably related to the greater herbage production with this treatment. Microbial N was not significantly affected by the N treatments. Both microbial biomass C and N increased during the growing season, resulting in the net immobilisation of at least 45 kg ha-1 N which was later released during the autumn.  相似文献   

14.
Summary Forest floor litter, duff, and underlying soils were assembled in laboratory microcosms representing pinyon, juniper, and interspace field conditions. Burning removed more than 95% of both N and C from the litter, with losses from the duff dependent on soil moisture conditions. No significant changes in total N or C were noted in the soil. Immediate increases were observed in soil NH inf4 sup+ , decreasing with depth and related to soil heating. The greatest increases were noted in both the pinyon and juniper soils that were dry at the time of the burn, with interspace soils exhibiting the least changes. Soil NH inf4 sup+ closely approximated the controls on day 90 after the burns in all treatments. Ninety days after the burn microbial biomass N was highest in the controls, followed by the wet and then the dry-burned soils, in both the pinyon and juniper microcosms. This was inversely related to the levels of accumulated NO inf3 sup- . Nitrifying bacteria populations were indirectly correlated to soil temperatures during the burn. Population levels 90 days after the burn showed increases in both the wet- and the dry-burn treatments, with those in the pinyon treatments exceeding those found in the nitial controls of pinyon soils.The use of trade and company names in this paper is for the benefit of the reader; such use does not constitute an official endorsement or approval of any service or product by the U.S. Department of Agriculture to the exclusion of others that may be suitable  相似文献   

15.
Summary Recent developments in biotechnology industries produce increasing amounts of byproducts with potential uses in agriculture. The present research focused on the nitrification of NH inf4 sup+ -N in biotechnology byproducts added to soils, and on the effects of 29 naturally occurring organic acids (19 aliphatic and 10 aromatic) on nitrification in soils. A 10-g soil sample was incubated for 10 days at 30°C with 2.0 mg NH inf4 sup+ -N in a byproduct or with 10 or 50 mol organic acid and 2.0 mg reagent-grade NH inf4 sup+ -N. In condensed molasses-fermentation solubles, produced during the microbial fermentation of sugar derived from corn (Zea mays L.) and molasses derived from beets (Beta sp.), in the production of lysine as a supplement in animal food, the nitrification of NH inf4 sup+ -N was similar to that of byproduct or reagent-grade (NH4)2SO4. Nitrite accumulated when either of these materials was added to a calcareous Canisteo soil. The NH inf4 sup+ -N in slops (produced during microbial fermentation processes occurring in the production of citric acid) was not nitrified in soils. Some organic acids inhibited, whereas others activated, nitrification in soils. Formic, acetic, and fumaric acids enhanced the production of NO inf2 sup- -N in a calcareous Canisteo soil, whereas all other aliphatic and aromatic acids studied decreased the accumulation of NO inf2 sup- -N. It is concluded that the addition or production of organic acids in soils affects the microbial dynamics, leading to significant changes in rates of nitrification and possibly in other N-transformation processes in soils.  相似文献   

16.
Effects of vegetation and nutrient availability on potentail denitrification rates were studied in two volcanic, alluvial-terrace soils in lowland Costa Rica that differ greatly in weathering stage and thus in availability of P and base cations. Potential denitrification rates were significantly higher in plots where vegetation had been left undisturbed than in plots where all vegetation had been removed continuously, and were higher on the less fertile of the two soils. The potential denitrification rates were correlated strongly with respiration rates, levels of mineralizable N, microbial biomass, and moisture content, and moderately well with concentrations of extractable NH inf4 sup+ , Kjeldahl N, and total C. In all plots, denitrification rates were stimulated by the removal of O2 and by the addition of glucose but not by the addition of water or NO inf3 sup- .This is Paper 2772 of the Forest Research Laboratory, Oregon State University  相似文献   

17.
We studied the effects of fast- and slow-release organic N fertilizers (urea and urea-formaldehyde, Nitroform) on mineralization, nitrification, and N leaching in an acid, poor forest soil. We also studied the effects of a nitrification inhibitor (dicyandiamide) applied together with urea. Net nitrification, mineralization of N and C were determined by aerobic laboratory incubation of soil samples taken one and three growing seasons after N application. Numbers of autotrophic nitrifiers were estimated by a most probable number method three growing seasons after the treatment. Urea increased the CO2 production immediately after application, but after three growing seasons, CO2 production was the lowest in the urea-treated soils. In the nitroform-treated soils, the concentration of exchangeable NH inf4 sup+ after the first and third growing seasons was of the same magnitude, in contrast to the urea-treated soils, where hydrolysis took place immediately. Three growing seasons after application, the highest amount of NH inf4 sup+ accumulated during the laboratory incubation was in the nitro-form-treated soils. Unlike urea, nitroform did not increase the production of NO inf3 sup- or the number of NH inf4 sup+ oxidizers. In the urea+dicyandiamide-treated soils there was less NO inf3 sup- and a lower number of nitrifiers than in the urea-treated soils. The results showed that a slow-release N fertilizer, such as nitroform, increases the availability of mineral N in acid forest soils without increasing nitrification and hence the risk of NO inf3 sup- leaching.  相似文献   

18.
We observed that soil cores collected in the field containing relatively high NH inf4 sup+ and C substrate levels produced relatively large quantities of N2O. A series of laboratory experiments confirmed that the addition of NH inf4 sup+ and glucose to soil increase N2O production under aerobic conditions. Denitrifying enzyme activity was also increased by the addition of NH inf4 sup+ and glucose. Furthermore, NH inf4 sup+ and glocose additions increased the production of N2O in the presence of C2H2. Therefore, we concluded that denitrification was the most likely source of N2O production. Denitrification was not, however, directly affected by NH inf4 sup+ in anaerobic soil slurries, although the use of C substrate increased. In the presence of a high substrate C concentration, N2O production by denitrifiers may be affected by NO inf3 sup- supplied from NH inf4 sup+ through nitrification. Alternatively, N2O may be produced during mixotrophic and heterotrophic growth of nitrifiers. The results indicated that the NH inf4 sup+ concentration, in addition to NO inf3 sup- , C substrate, and O2 concentrations, is important for predicting N2O production and denitrification under field conditions.  相似文献   

19.
A pot experiment was conducted to compare the uptake and dry matter production potential of NH inf4 sup+ and NO inf3 sup- and to study the effect of Baythroid, a contact poison for several insect pests of agricultural crops, on growth and N uptake of maize (Zea mays L.). Nitrogen was applied as (15NH4)2SO4, K15NO3, or 15NH4NO3 and in one treatment Baythroid was combined with 15NH4NO3. Source of N had, in general, a nonsignificant effect on dry matter and N yield, but uptake of NO inf3 sup- was significantly higher than that of NH inf4 sup+ when both N sources were applied together. Substantial loss of N occurred from both the sources, with NH inf4 sup+ showing greater losses. Baythroid was found to have a significant positive effect on dry matter yield of both root and shoot; N yield also increased significantly. Uptake of N from both the applied and native sources increased significantly in the presence of Baythroid and a substantial added nitrogen interaction (ANI) was determined. The positive effect of Baythroid was attributed to: (1) a prolonged availability of NH inf4 sup+ due to inhibition of nitrification, (2) an increased availability of native soil N through enhanced mineralization, and (3) an enhanced root proliferation.  相似文献   

20.
Summary Transport of N by hyphae of a vesicular-arbuscular mycorrhizal fungus was studied under controlled experimental conditions. The N source was applied to the soil as 15NH inf4 sup+ or 15NO inf3 sup- . Cucumis sativus was grown for 25 days, either alone or in symbiosis with Glomus intraradices, in containers with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as 15NH inf4 sup+ or 15NO inf3 sup- at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root compartment at 7 and 12 days after labelling, and the concentration of mineral N in the samples was measured from 2 M KCl extracts. Mycorrhizal colonization did not affect plant dry weight. The recovery of 15N in mycorrhizal plants was 38 or 40%, respectively, when 15NH inf4 sup+ or 15NO inf3 sup- was applied. The corresponding values for non-mycorrhizal plants were 7 and 16%. The higher 15N recovery observed in mycorrhizal plants than in non-mycorrhizal plants suggests that hyphal transport of N from the applied 15N sources towards the host plant had occurred. The concentration of mineral N in the soil of hyphal compartments was considerably less in mycorrhizal treatments than in controls, indicating that the hyphae were able to deplete the soil for mineral N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号