首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of continuous or 2-cycle high hydrostatic pressure (HHP) treatments (200 and 600 MPa) on the microstructure and digestibility of rice starches were investigated. The morphological and structural changes were characterized using polarized light microscopy, scanning electron microscopy, atomic force microscopy, X-ray scattering and 13C CP/MAS NMR, and the starch digestibility was examined by in vitro hydrolysis. Results showed that HHP at 600 MPa significantly alters the microstructure and lowers the resistant starch (RS) compared with HHP at 200 MPa. Under the same pressure level, the two 15-min cycle treatment induced more structural disruption, gelatinization, disappearance of surface protrusion, and lower RS of rice starches than that of the continuous HHP treatment (30 min). Based on the results on RS, the two 15-min cycle HHP treatment at 200 MPa could be beneficial for improving the functionality of the rice starch.  相似文献   

2.
Aqueous mixtures of defatted corn starch and palmitic acid were heated and high pressure homogenized in order to form amylose inclusion complexes. The effects of homogenization pressure (0–120 MPa) and palmitic acid concentration (0.5–8% based on starch content) on starch-palmitic acid complex formation as well as on complex index, X-ray diffraction, thermal properties, viscosity and particle size were investigated. Complex index increased with an increase in the amount of palmitic acid and homogenization pressure, and reached a maximum value (about 60%) when the fatty acid content was 4% and the homogenization pressure was 100 MPa. X-ray diffraction patterns indicated the formation of V-helical complexes between starch and palmitic acid. This technology could prospectively be used in prepared starch-lipid complexes.  相似文献   

3.
Waterborne polyurethane (WPU) prepolymer was synthesized using polypropylene carbonate polyol as the soft segment, dimethylolpropionic acid as a hydrophilic chain extender and isophorone diisocyanate. The prepolymer was modified with aminoethyl aminopropyl dimethicon (AEAPS) to prepare a series of WPU emulsions and films. The structures and the films properties of the WPUs were characterized by Fourier transform infrared spectrometry, gel permeation chromatography, atomic force microscopy, X-ray diffraction, thermogravimetric analysis, dynamic thermomechanical analysis, X-ray photoelectron spectroscopy, water contact angles and water absorption. It was found that pure polypropylene carbonate WPU had a wide molecular weight distribution and its microphase separation was not apparent between its hard and soft segments. The WPU also had a high glass transition temperature (24.5 °C) and its film had a high damping property (tan δ>0.40) from 12 °C to 42 °C. Modification with polysiloxane had enlarged the molecular weight, narrowed the molecular weight distribution and resulted in the microphase separation between the hard and soft segments of WPUs, and this amplified the damping temperature of the WPU films. Along with the increasing utilization of polysiloxane the thermolysis, water resistance and water contact angles of WPU films were improved while the orientation of their structure regularity declined.  相似文献   

4.
The gelatinization phenomena and crystalline structure of maize starch gelatinized in pure glycerol were investigated using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Starch granules were firstly treated in water system, CLSM and SEM micrographs displayed that they were completely broken and the characteristic birefringence of the starch granules disappeared at 70 °C. As for pure glycerol system, the starch granules swelled but maintained granular shape with the increasing of temperature. The crystalline structure of starch granules was partially destroyed at 130 °C and completely destroyed at 140 °C. The DSC thermogram showed that the gelatinization temperature of starch in glycerol started at 123.7 °C, peaked at 128.4 °C, and concluded at 135.2 °C. The X-ray diffractograms indicated that the crystalline structure of maize starch was partially destroyed at 130 °C and completely destroyed at 140 °C. Thus, glycerol served an alternative solvent to destroy crystalline structure of maize starch, which may be helpful for hydrolysis of starch granules by amylase in food industry.  相似文献   

5.
Resistant starch (RS), producedin vitroby hydrolysis of retrograded pea starch gels and amylose gels by porcine pancreaticalpha-amylase, was characterised by X-ray diffraction, size exclusion chromatography and methylation analysis. These techniques showed that RSin vitroconsisted of semi-crystalline, mostly linear material that was present in two main molecular size subfractions (DPn>100 andDPn20–30) with a third, minor subfraction (DPn≤5). The extent of retrogradation of amylose was found to be of primary importance in determining the RS content of starch. Analysis ofin vivoRS, recovered during an ileostomy study, produced results that were similar to those obtained from RSin vitro. Anin vitromodel for the structure of resistant starch is proposed.  相似文献   

6.
Resistant starch (RS), producedin vitroby hydrolysis of retrograded pea starch gels and amylose gels by porcine pancreaticalpha-amylase, was characterised by X-ray diffraction, size exclusion chromatography and methylation analysis. These techniques showed that RSin vitroconsisted of semi-crystalline, mostly linear material that was present in two main molecular size subfractions (DPn>100 andDPn20–30) with a third, minor subfraction (DPn≤5). The extent of retrogradation of amylose was found to be of primary importance in determining the RS content of starch. Analysis ofin vivoRS, recovered during an ileostomy study, produced results that were similar to those obtained from RSin vitro. Anin vitromodel for the structure of resistant starch is proposed.  相似文献   

7.
The molecular structure of two commercially available high-amylose maize starches, HYLON® V starch and HYLON® VII starch, and of a newly developed low-amylopectin starch (LAPS) was examined. These high-amylose starches give three apparent fractions as determined by gel-permeation chromatography: a high-molecular weight (mol.wt) amylopectin fraction, a low-mol.wt amylose fraction, and an intermediate-mol.wt fraction which contains both linear and branched components. The low-mol.wt amylose fraction increases from 9·4% in HYLON V starch to 17·7% in HYLON VII starch and 26·5% in LAPS, whereas the high-mol.wt amylopectin fraction decreases from 31·1% in HYLON V starch to 13·8% in HYLON VII starch and 2·5% in LAPS. The percentage of linear components in HYLON V starch, HYLON VII starch, and LAPS are 42, 54, and 80%, respectively. High-amylose starches have a large proportion of long chains in their branched fractions compared to waxy-maize and normal-maize starch. Both HYLON VII starch and the LAPS give B plus V-type X-ray diffraction patterns, but the LAPS has even a higher gelatinization temperature, lower swelling power in hot water, and is more resistant to acid digestion. With the lack of amylopectin, amylose accounts for at least part of the double helical structure in the LAPS granules.  相似文献   

8.
In this study, we evaluated the effects of amylopectin/amylose ratio and non-solvent type on starch nanoparticle formation including the average particle size, polydispersity index, size distribution, and nanoparticle morphology using dynamic light scattering (DLS) and scanning electron microscopy (SEM). The most uniform particles were obtained from normal corn starch with ethanol. The average particle size was 98.8 ± 1.8 nm using DLS while combination of size distribution study and SEM images showed that particle size ranged between 60 and 90 nm. A bimodal distribution was observed with two defined groups of nanoparticles when waxy corn starch (Amioca) was nanoparticulated with ethanol. SEM images of freeze dried samples and DLS size distribution curves of fresh samples showed that high amylose starch including Hylon V and Hylon VII gave uniform, spherical and small nanoparticles in the size range of 20–60 and 15–50 nm, respectively. The smallest nanoparticles were fabricated by precipitation with methanol, followed by ethanol and the largest nanoparticles were formed using acetone. Re-dispersion of nanoparticles was good when nanoparticles were fabricated using ethanol and acetone especially for Amioca, whereas redispersion of samples in aqueous PBS solution, precipitated using methanol was difficult especially in the case of Hylon VII. Stability of curcumin in the presence of 1 mg/ml native starch nanoparticles was much higher (83.7 ± 3.1%) than curcumin in phosphate buffered saline at pH 7.0 (5.5 ± 1.5%) over 10 days at ambient temperature. Interaction between iodine-potassium iodide solution and starch nanoparticles showed that the helical structures of amylose and amylopectin molecules remain in the nanoparticles and curcumin may interact with these helical structures giving it the stability which is not observed in water.  相似文献   

9.
High resolution imaging of the surfaces of starch granules from two different botanical sources has been performed using two complementary techniques: low voltage scanning electron microscopy (LVSEM) and atomic force microscopy (AFM). LVSEM provided superior images ofuncoatedgranules than possible by conventional scanning electron microscopy, and these images were used to validate the features revealed at higher resolution by AFM. The AFM images demonstrated that, although intra-sample variation exists, the surfaces of wheat and potato starch granules possess substantially different topographies. Potato starch had many protrusions (50–300 nm in diameter), above a flatter surface, which contained structures in the order of 10–50 nm. Wheat starch had far fewer protrusions and generally had a smoother surface made up of 10–50 nm structures. The 10 to 300 nm structures are believed to be carbohydrate in nature and correspond to ‘blocklet’ structures, comprising groups of amylopectin side-chain clusters presenting at the granule surface. We conclude therefore that near-molecular resolution topography of the starch granule surface has been revealed, which has allowed further insight into starch granule structure and molecular organisation.  相似文献   

10.
The particle size of waxy (amylose-reduced) wheat (Triticum aestivum L.) starch was determined at isothermal temperatures by laser diffraction analysis. Flour samples were suspended in deionized water at temperatures ranging from 30 to 90 °C for 20–60 min. At 30 °C, all of the flour particles exhibited trimodal size distributions, i.e., the particles in the first, second, and third modes were <10 μm, 10–50 μm, and 51–300 μm, respectively. Control experiments with isolated starch indicated that the first and second modes were associated mainly with starch granules, whereas the third mode may have been related to gluten and gluten adhesion. The particle size distributions of waxy segregant wheat flours were temperature dependent. At 60 °C, there were significant changes in the particle size and distribution of waxy flours, which indicated the swelling of starch granules in response to elevated temperature. As the temperature increased, the peak particle size of waxy segregant wheat flours increased in different ways. The results suggest that variations in the swelling properties of selected waxy genotype flours may be due to the strength of starch–protein interaction and the capacity for starch granule gelatinization.  相似文献   

11.
A selection of commercially available poly(ethylene terephthalate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.  相似文献   

12.
A selection of commercially available poly(ethylene terephthalate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.  相似文献   

13.
Chitosan film has potential applications in agriculture, food, and pharmacy. However, films made only from chitosan lack water resistance and have poor mechanical properties. Forming miscible, biodegradable composite film from chitosan with other hydrophilic biopolymers is an alternative. The objective of this study was to prepare chitosan/starch composite films by combining chitosan (deacetylated degree, 90%) solution and two thermally gelatinized cornstarches (waxy starch and regular starch with 25% amylose). The film’s tensile strength (TS), elongation-at-break (E), and water vapor transmission rate (WVTR) were investigated. The possible interactions between the two major components were evaluated by X-ray diffraction and Fourier-transform infrared spectroscopy (FTIR). Regardless of starch type, both the TS and E of the composite films first increased and then decreased with starch addition. Composite film made with regular starch showed higher TS and E than those with waxy starch. The addition of starch decreased WVTRs of the composite films. The introduction of gelatinized starch suppressed the crystalline peaks of chitosan film. The amino group band of chitosan molecule in the FTIR spectrum shifted from 1578 cm−1 in the chitosan film to 1584 cm−1 in composite films. These results indicated that there was a molecular miscibility between these two components.  相似文献   

14.
Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to investigate degradation patterns of native starch granules from wheat (Triticum aestivum L.) by different starch-degrading enzymes. The starches examined were from a waxy wheat and four varieties with slightly elevated amylose content, but with different functional properties. Differences in the digestion patterns after partial α-amylolysis of starch granules were noted between the starches. The waxy starch seemed to be degraded by endocorrosion, whereas the amylose-rich starches followed a slower mode of hydrolysis starting from the granular surface. X-ray diffractograms of the amylose-rich starches were not significantly altered by 2 h of α-amylolysis, whereas partial hydrolysis of the waxy starch decreased scattering intensity at higher 2θ angles, consistent with a different mode of attack by α-amylase in the initial digestion stages of granules of waxy and amylose-rich starches. We propose these differences are due to the combined effects of the change in packing density and partial preference for hydrolysis of amorphous material. The native starch granules were also attacked by beta-amylase, isoamylase and amyloglucosidase, which indicates that α-amylase is not the only starch-degrading enzyme that is able to initiate starch hydrolysis of native granules.  相似文献   

15.
The Acacia mangium tree contains 10% bark (v/v), of which about 20% are extractives. Extraction of this bark using a combination of water and sulfite medium can produce between 15% and 25% tannin materials (dry weight). In this work, several extraction conditions such as bark size, plantation site, extraction time and extraction medium were studied. The results showed that by using either hot water or a sulfite medium, a reasonable amount of tannin yield can be obtained. Bark size of less than 1-mm mesh size gave relatively high tannin yield irrespectively of the extraction medium used. Using a 600:100:2:0.5 (w/w) ratio of water:bark:sodium sulfite:sodium carbonate, and reacted at 75 °C for 3 h improved the tannin yield by at least 30%. The extracts were reasonably reactive towards formaldehyde as shown by their high Stiasny number; water extract, 60–70% and aqueous sulfite–carbonate extracts, 85–90%. The gluing results showed that the shear strength of the plywood can meet the requirements of the European Standards EN 314-1 and EN 314-2:1993. Incorporation of low molecular weight PF resin (10 parts) and PF (10 parts) improved the shear strength from 0.96 MPa to 1.43 MPa after a 72 h boiling test. This study showed that A. mangium tannin blended with commercial plywood phenol–formaldehyde resin, low molecular weight PF and paraformaldehyde as a cross-linker can be used to bond Kedondong (Canarium spp.) wood veneers suitable for both interior and exterior grade plywood.  相似文献   

16.
Secondary field emission scanning electron microscopy (FE SEM), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to investigate native near-isogenic soft and hard wheat kernels and their roller milled flours. FE SEM images of flat-polished interior endosperm indicated distinct differences between soft and hard wheats with less internal continuity in the soft wheat, whereas individual starch granules were much less evident in the hard kernel due to a more continuous matrix. AFM images revealed two different microstructures. The interior of the hard kernel had a granular texture with distinct individual spheroid features of 10–50 nm while the images obtained for the soft kernel revealed less distinct small grains and more larger features, possibly micro-structural features of starch granules. Raman spectra resolved identical distinct frequencies for both kernel types with slightly different intensities between types. Finally, the chemical surface compositions of flour for these two types of kernels obtained by XPS provided subtle insight into the differences between soft and hard wheat kernels. These combined advanced microscopic and spectroscopic analyses provide additional insight into the differences between the soft and hard wheat kernels.  相似文献   

17.
Ungerminated brown rice (UGBR) and pre-germinated brown rice (PGBR) obtained from different pre-germination durations were studied to investigate the changes in total starch contents of flour, amylopectin molecular structures, crystallinity, and thermal properties of starches as affected by pre-germination. Each paddy of three rice cultivars with different amylose contents (RD6, waxy; KDML105, low amylose; and RD31, high amylose) was soaked in water at 30°C for 12 h and incubated over different periods until the three stages of embryonic growth length (EGL) were achieved. The total starch contents of three-stage PGBR flour from all rice cultivars decreased when pre-germination durations were increased. The three-stage PGBR starches from the three rice cultivars had lower weight-average molecular weight (Mw) and number-average molecular weight (Mn) than UGBR starches. All starches from the three rice cultivars displayed an A-type X-ray diffraction pattern (XRD). Isolated UGBR starch from RD6 had the highest (31.33%) relative crystallinity (RC), while RD31 showed the lowest RC (26.79%). The slight increases in the RC of three-stage PGBR starches from three rice cultivars were found after pre-germination. Isolated PGBR starches from the three rice cultivars had higher gelatinization temperatures and enthalpy, but lower retrogradation enthalpy and %retrogradation than UGBR starches.  相似文献   

18.
The use of grains alternative to wheat or rye is a challenging task for cereal technologists, and currently new technologies are under investigation as tools to improve the performances of these alternative grains. In this work the effects of high Hydrostatic Pressure (HP) on oat batters were investigated. Oat batters were treated for 10 min at 200, 300, 350, 400 or 500 MPa. Scanning electron microscopy and bright field microscopy showed that high HP significantly affected oat batter microstructure, and both starch and proteins were affected. Treatment at high HP significantly improved batter viscosity and elasticity. At pressures ≤300 MPa the increase in the viscous component was higher than the increase in the elastic component. On the contrary, at pressures ≥350 MPa the elastic component was predominant. Differential scanning calorimetry revealed that high HP induced starch gelatinisation, which started at 300 MPa and was almost complete after treatment at 500 MPa. High HP also affected water- and salt-soluble as well as urea-soluble oat proteins. Analysis of proteins soluble in different buffers revealed that pressures ≥300 MPa induced the formation of urea-insoluble complexes and/or disulfide bonds. Overall, the extent of starch gelatinisation and protein modification was dependent on the applied pressure, but the results collected so far clearly show that high HP can be used to improve the functionality of oat batters.  相似文献   

19.
A comparison study of the phase transition and structure of waxy cornstarch in DMSO and AMIMCl systems was conducted using a differential scanning calorimeter, an optical microscope, a scanning electron microscope, X-ray diffraction and thermogravimetric analysis. A full disruption and dissolution of starch granules was completed in 10 h at room temperature in pure DMSO, which was faster and more effective than that in ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl). When dispersed in DMSO/water and AMIMCl/water at various ratios, respectively, different phase transitions were clearly exhibited, and the appearance and crystal structure of starch granules were significantly damaged with an increase in the concentration. Basing on the study of the decomposition temperature change through TGA measurements, a decreased temperature was observed in both DMSO and AMIMCl system, meaning starch degradation occurred with different levels. The huge temperature change from 357 to 328 °C were found in AMIMCl system, which most likely induced the distinct exothermic phenomenon in the DSC observation due to a significant depolymerization of starch.  相似文献   

20.
Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 °C. When adding LCP, water absorption decreased within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 °C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号