首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
塑料温室生态环境调控技术的研究   总被引:3,自引:0,他引:3  
研究了塑料温室温度,湿度的变化规律有其与光照强度的相互关系,结果表明人工合理调控温室温度,湿度和光照条件,可改善温室生态环境,促进冬季和早春蔬菜的生长发育,抑制病虫害发生和蔓延。  相似文献   

2.
在正常生产管理条件下,利用温室智能监控系统,自动监测记录冬、春两季日光温室内外空气温度、光照强度,温室内空气湿度、土壤温度,研究冬、春两季日光温室环境因子日变化差异及环境因子间的相互关系差异。结果表明,土壤温度与温室内外光照及温室内湿度的相关性,春季显著大于冬季;温室内湿度与温室内、外光照强度、温室内外温度以及温室外温度与温室的相关性,春季显著小于冬季。土壤温度与温室内、外温度的关联程度,春季温室内温度强于温室外温度,冬季温室外温度强于温室内温度。温室外温度与温室内、外光照、土壤温度的关联程度,春季温室内、外光照强于土壤温度,而冬季土壤温度强于温室内、外光照。冬季温室内湿度显著高于春季,日变化幅度显著小于春季。春季最低温室内要高于冬季最低温度10 ℃以上,日变化幅度明显小于冬季;春季温室内、外最大光照强度是冬季的2倍,且春季光照时间长。春季室外温度平均高于冬季12 ℃以上,春季温室内土壤温度始终要高于冬季10 ℃以上。  相似文献   

3.
为对江淮地区现代化温室内梅雨季节的小气候进行模拟与分析,在建立相应的BP神经网络模拟模型的基础上,进一步研究了外部温度、湿度、风速、太阳总辐射和天窗开度5个因素对温室内温度、湿度、风速的影响。研究发现可以使用BP神经网络对梅雨季节的小气候进行模拟,模型具有较高的精度,是对物理模型的有益补充;梅雨季节室内湿度受室外湿度的强烈影响,在5个输入因素中所占比重为51.7%;室内风速主要受室外风速和天窗开度的共同影响,受室外温度的影响较小,所占比重仅为10%;室内温度主要受室外温度和太阳辐射的影响,二者所占比重分别为46.2%和27.9%。  相似文献   

4.
智能型温室环境控制器的研究开发   总被引:4,自引:0,他引:4  
为了精确地控制温室环境,研究了温室的主要参数温度、湿度和光照度的关系及秧苗的水分需求情况,给出了建立数学模型的方法,提供了硬件结构。  相似文献   

5.
为了精确地控制温室环境,研究了温室的主要参数温度、湿度和光照度的关系及秧苗的水分需求情况,给出了建立数学模型的方法,提供了硬件结构。  相似文献   

6.
Venlo型温室外遮阳和屋顶喷淋系统夏季降温效果   总被引:11,自引:4,他引:11  
该文对荷兰Venlo型连栋温室夏季采用自然通风并结合遮阳网、室外屋顶喷淋的降温效果进行了实验研究。实验中对温室内空气温、湿度,太阳辐照度进行了测试,以比较外遮阳和屋顶喷淋的降温效果。结果表明:Venlo型温室夏季采用自然通风结合外遮阳和屋顶喷淋的降温措施后能够有效降低室内温度。不同于其它蒸发降温系统,屋顶喷淋没有造成温室内湿度的显著增加,室内的温度和湿度分布比较均匀。这种降温措施的能耗小,可以达到温室降温和降低温室夏季生产成本的双重目的  相似文献   

7.
温室大棚计算机测控控制系统的研制   总被引:3,自引:0,他引:3  
本文介绍了一种基于计算机测控技术及传感器技术的温室大棚测控系统,该系统可完成温室内的温度、湿度、土壤含水率、光照及CO2等参量的采集,并可根据上述参数实现温度调节、光度调节、节水灌溉及二氧化碳等参数的自动调节,实现了温室大棚自动控制功能,为温室大棚的工厂化育秧、工厂化种植打下了坚实的基础。  相似文献   

8.
基于蔬菜种植试验温室内温度、相对湿度和光照强度的实测数据,根据ARIMA模型和RBF神经网络对线性和非线性问题的预测能力差异,构建ARIMA-RBF神经网络权重组合的温湿度预测模型,对温室内温度和湿度的动态变化进行预测,并比较各模型预测精度。结果表明:温室内温湿度分别具有更明显的线性和非线性变化特征,对应预测性能较好的单一模型分别为ARIMA模型和RBF模型。相较单一模型,ARIMA-RBF神经网络权重组合模型的预测精度更高、稳定性更好。最佳温度组合模型的MAE、MAPE和RMSE分别为1.04℃、2.95%和1.21℃;最佳湿度组合模型的MAE、MAPE和RMSE分别为0.35个百分点、0.36%和0.55个百分点。权重组合模型通过适当的加权策略充分发挥了单一模型对数据不同特征的处理能力,能较好地评估温室内温湿度状态,可为建立更具普适性的温室环境因子模型提供参考。  相似文献   

9.
利用人工神经网络建立植物电信号与环境因子关系   总被引:8,自引:2,他引:8  
利用人工神经网络建立植物电信号与环境因子(光、温度、湿度)的关系,表明对植物电信号与环境因子定量研究是可能的;进而将植物电信号作为生理反馈信息,建立了植物电位与环境光、温度、湿度等因子的定量关系,建立与输出温度设置的关系,为温室环境调控提供一种方法。  相似文献   

10.
以重庆市南山植物园展览温室为例,在测量温室温度、湿度及光照的基础上,分析展览温室各区引种植物对环境的要求及其适应性。  相似文献   

11.
2020年11月1日-2021年2月28日,在河南郑州地区对冬春季双膜双被装配式日光温室内外温度、光照和湿度小气候进行测定,以探明其温光性能。在温室内外分别布置环境自动记录仪,每台记录仪均连接温湿度传感器和光照传感器,实现数据的自动监测与传输。结果表明:观测期内,温室内旬平均气温为11.4~21.4℃,旬平均最低气温为9.4~16.7℃;温室内0.1m深处旬平均土壤温度为15.4~22.9℃,旬平均最低土壤温度为15.0~22.1℃,温室内外最大气温差和土温差分别为17.0℃和15.6℃。全年最冷时段(1月上旬)温室外旬平均最低气温为−7.9℃,0.1m处土壤温度旬平均最低值为2.2℃,而此时段温室内旬平均最低气温和0.1m处土壤温度旬平均最低值分别达到9.9℃和15.8℃。11月−翌年2月,温室内光照度逐渐增大,晴天光照度在2000~22000lx,11月、12月、1月和2月晴天日平均透光率分别为42%、52%、49%和45%,12月透光率最高,不同月份透光率存在明显差异;阴天温室光照度在300~4000lx,各月阴天日平均透光率分别为34%、35%、36%和33%,透光率差异不明显。11月下旬−1月下旬,温室内夜间湿度为95.4%~99.0%,夜间叶片沾湿时长占比为89.1%~99.5%,温室内湿度大。观测结果说明双膜双被结构日光温室在黄淮地区冬春季具有较好的保温性能,有利于进行喜温果菜类的越冬生产,具有一定的推广应用价值,但是存在温室透光率偏低、光照弱等问题。  相似文献   

12.
在传统温室自动化监控系统的基础上,针对目前温室大棚面积不断增大、温室内传感器种类及数量不断增多,且不易连栋管理的现状,设计了基于ARM CORTEX-M3核的以STM32单片机为核心的智能温室控制系统。系统采用CAN总线技术对连栋大棚的主要环境因子,如温度、湿度及光照度等进行智能控制,通过串行通信实现上位机控制,增强了温室大棚的智能化和实用性。  相似文献   

13.
水墙封闭温室夏季降温特性   总被引:3,自引:3,他引:0  
封闭温室(closed greenhouse)是一种建筑结构全封闭式的透光型温室,能够实现节能减排、室内蒸散水回收利用、维持高水平CO_2浓度以及隔绝气传病菌孢子等。但在夏季,封闭温室内高温环境难以有效控制,或需消耗巨大电能,无法投入生产。为降低夏季封闭温室内环境温度,从低碳节能的角度出发,设计并建造了一栋水墙封闭温室。2015年7月26日至9月10日,对水墙封闭温室夏季降温特性进行试验测试,结果表明:正午前后(10:00-16:00),室内平均气温为29.4~34.3℃,比室外低0.8~6.8℃,降温效果明显;且太阳辐射越强烈、环境温度越高,则水墙封闭温室的降温幅度越大(P0.01)。白天作物进行光合生产期间(06:00-18:00),封闭温室内气温有94.6%的时间被控制在35℃以内,可有效避免高温胁迫。夜间(18:00-06:00)室内湿度被控制在80%以下,平均湿度为54.7%~73.7%,比室外低7.2%~17.5%,降湿效果明显;且室内外湿度差与室内外温度差呈线性负相关(P0.01)。白天室内水平方向平均太阳辐射量为31.5~67.4 W/m~2,约为室外的11.9%~17.8%。太阳辐射由室外进入水墙封闭温室内,远红光占比由41.9%降低至9.2%,透过率仅为6.0%,有利于抑制室内高温。在室内太阳光谱中红、蓝光占比最大,分别为23.9%和27.1%,较之室外均有提升;其透过率分别为32.4%和37.5%,远高于紫外光和远红光。可见,水墙封闭温室可以有选择性的透过太阳光谱,抑制室内高温的同时保证充足的光合有效辐射。此外,墙体水温及室内气温分布、日变化均呈现一定规律。综上,水墙封闭温室能在夏季通过自身结构达到理想的降温效果,并获得适宜的湿度、光照等条件,是一种可行的、低碳节能的封闭温室型式,可为封闭温室的应用发展提供参考与技术支持。  相似文献   

14.
基于物联网的温室大棚环境监控系统设计方法   总被引:13,自引:5,他引:8  
廖建尚 《农业工程学报》2016,32(11):233-243
目前农业物联网通信协议尚不统一。为了更好地封装和传输农业信息,提出一种适用于农业物联网的通信协议AGCP(agricultural greenhouses communication protocol)。利用AGCP协议结合物联网架构完成了基于物联网架构的农业大棚监控系统的设计,重点完成了感知层中协调器和节点终端的信息采集以及设备控制的软硬件设计,并详细设计了光照控制模块、温度控制模块和灌溉控制模块,最后进行了系统测试和分析。试验表明,该系统能有效监测温室大棚的空气温度、湿度、二氧化碳以及土壤湿度等农业环境信息,并能进行相应设备的自动控制,验证了AGCP协议在农业物联网的有效性以及构建系统的可行性。  相似文献   

15.
混合架构智能温室信息管理系统的设计   总被引:4,自引:3,他引:1  
针对物联网型智能温室的信息管理要求,基于客户端/服务器(C/S)和服务器/客户端(B/S)混合架构设计了智能温室信息管理系统。系统由现场管理、数据库和远程管理等3个子系统组成。采用分布图法检测了温室传感器网络离异数据。结合铁皮石斛的耐湿特性,通过Mamdani推理实现了温室空气温度、湿度和光照强度等环境参数的模糊决策。基于异步JavaScript和XML(AJAX)技术构建了Web数据异步交互框架。运用服务器推技术实现了温室机构动作状态的实时同步。系统在江苏农博园现代农业馆智能温室部署运行,成功实现了温室信息局域网的采集、处理、存储、显示和决策,以及广域网的高效远程访问与管理。  相似文献   

16.
基于短信息的温室生态健康呼叫系统   总被引:14,自引:3,他引:14  
为解决温室监测“低端化”的问题,IPMIST实验室开发了由W78E58B单片机及WMOD2B GSM模块构成的基于短信息的温室生态健康呼叫系统。该系统由RS232串行接口电路及数据采集系统组成,具有在温室的温度和湿度超出作物适宜生长的阈值范围时自动以发手机短信的形式向用户报警,以及用户可以根据需要向模块发送手机短信来随意设置手机号与温湿度范围等功能,方便用户对温室环境进行及时控制。该系统具有结构简单、工作可靠、安装方便等特点,同时该系统的成功研制证明了短信息应用于温室监测是可行的。  相似文献   

17.
对自行研制的智能温室环境控制系统的测试表明,温度、湿度、光照、营养液和二氧化碳等各个环境因子控制的技术效果良好,基本达到预期的目的,并明确了各环境参数的合理控制范围。运用该套设施系统和调控指标,采用配套的栽培技术措施,可以实现作物周年高产、优质、高效栽培的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号