首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
设计了一种基于PLC的播量控制装置,通过建立拖拉机行进速度与步进电机转速之间的随动模型,实现了利用拖拉机的行进速度控制步进电机的转速,进而达到控制播种机播量的目的。分析了控制系统的构成,通过软件编写实现了对播种机的播量、拖拉机行进速度、步进电机的转速和播种机行进距离等参数设定和实时显示。试验结果表明,该系统运行时各排种管之间的变异系数不超过2.93%,播量总体误差率不超过3%,较好地实现相对于传统播种方式的精量播种控制。  相似文献   

2.
李增权 《农机化研究》2022,44(1):151-155
为了实现精准播种,进行播种间距和播种量参数化设计,并基于嵌入式单片机技术,设计了高精度玉米播种机,包括播种控制系统和监测系统.首先,探究播种量、播种机前进速度和排种轴转速之间的关系,建立播种模型;其次,采用PID方法对排种轴进行调速.实验结果表明:控制系统调速精度下限为92.8%.建立播种监测系统,采用光电技术对播种间...  相似文献   

3.
设计一款基于卫星测速并随速控制播种量的电驱式精量播种施肥机,以卫星接收模块单机接收地表速度数据,并调控排种排肥电机转速,驱动采用步进电机,从而实现精确的前进速度测量及随速度变化进行精确的排种控制;设计4种前进速度,以实测排种排肥量与计算值进行对比;试验结果表明:卫星测速控制和闭环步进电机驱动排种排肥时,排种实测值与计算值比较误差未超5%,可以保证不同前进速度时播种均匀,并且在前进速度提高时有着更高的播种精度,可以适用于高速播种。  相似文献   

4.
李乐 《农机化研究》2024,(2):216-220
首先,介绍了变量播种施肥控制系统整体结构和播种量与施肥量的计算方法,给出了变量播种施肥作业流程,并将PID模糊控制算法和财务会计精细化应用在直流电机的转速控制上,设计了变量播种施肥控制系统。在实际播种试验中,测得的播种转轴电机的转速和理论值误差在1%~3%之间,精度较高,达到了变量播种的目的,证实了系统的可行性。  相似文献   

5.
为提高玉米播种时的排种精度,设计制造一种基于PLC的玉米精量播种装置,代替传统的机械式地轮驱动播种。利用旋转编码器作为播种机的速度检测机构,将检测信号以脉冲形式传送到PLC, PLC处理后将信号输出到步进电机,实现排种器精准排种。采取步进电机驱动排种器的方式,避免了地轮驱动引起打滑造成的重播现象,同时设计了防滑编码器测速驱动轮,提高了测速精度和工作性能。试验结果表明:播种精度在95%以上,重播率最大值为2.5%,漏播率最大值为4.4%,满足现代播种农艺要求,提高了工作效率。  相似文献   

6.
马铃薯是我国重要的粮食和经济作物,在西南丘陵山区受限于地势条件,现有马铃薯播种机在作业时均不同程度的存在株距误差大、漏播及重播率高、土壤条件适应性差的问题。为此,设计了以AT89S51单片机为运算核心的播补薯一体机,主要由漏播监测、播补薯、株距控制模块组成。其中,漏播监测模块主要由红外线发生和接收装置组成,播补薯模块主要由步进电机驱动的取种勺根据系统命令执行指定作业,株距控制模块则通过设定的株距指令控制电机的转速及修正;同时,以步进电机作为动力取代了传统的地轮驱动以减小株距误差,步进电机驱动的单链取种勺集成播补薯功能于一体。试验表明:机具作业行走速度在0.6~1m/s时,补薯成功率为73%~81%,总播种成功率为97%~98%,播种株距误差为2.52%~4.83%,整体播种性能完全满足马铃薯播种农艺要求。  相似文献   

7.
由于传统玉米播种机作业过程中存在的地轮打滑问题,严重影响玉米播种均匀性和玉米的产量。为此,开发了以单片机为控制中心、开关型霍尔传感器为测速元件、步进电机为动力源,利用触摸屏输入种子粒距以实现播种参数的显示,采用信息无线传输技术,通过实时控制步进电机的转速来带动排种器按需排种的玉米精量播种机智能化株距控制系统。  相似文献   

8.
基于PLC监测系统和远程控制的玉米播种机设计   总被引:1,自引:0,他引:1  
为了提高玉米播种机的自动化水平和播种精度,设计了一种新型的基于PLC监测系统的远程控制玉米播种机,并对玉米播种机的开沟机械装置和播种机械装置进行了改进,结合PLC监测和控制技术,实现了播深、排种精度和播种机行驶方向的实时监测和控制。为了实现播深和排种精度的自动化调节,使用PLC对开沟器和排种轮进行实时监测,并利用四连杆结构和直流驱动电机对其进行控制,采用灰色预测模型对排种器的排种轮转速进行预测,可以有效地提高播深和播种精度控制的自动化水平。最后,对播种机的性能进行了测试,通过测试发现:基于PLC监测系统的远程控制播种机可以有效地对排种轮转速、播种机行驶速度、行驶方向进行实时监测,播种机的漏播率和重播率都较低,满足高精度播种机的设计需求,为现代化播种机的设计提供了较有价值的参考。  相似文献   

9.
基于PLC的苔麸播种机设计与试验   总被引:2,自引:0,他引:2  
设计了一种基于PLC的苔麸施肥播种机。该播种机主要由排种器、开沟器和PLC控制器等关键部件组成,通过转速传感器测量播种速度,建立播种速度和伺服电动机转速之间的对应关系,通过控制伺服电动机转速实现不同播种速度下单位面积播种量一致。在播种量4、5、6kg/hm2,播种速度3、4、5km/h条件下,进行了排种器性能测试,播种量5kg/hm2条件下,得到各行排种量一致性变异系数5.02%,总排种量稳定性变系数0.89%,种子破损率0.1%,试验零水平时排种均匀性变异系数18.9%,满足标准要求;田间试验结果表明播种均匀性变异系数20.4%,满足苔麸农艺要求。  相似文献   

10.
补偿式玉米精密播种机的研究   总被引:1,自引:0,他引:1  
为了提高玉米精密播种的工作质量,把窝眼式玉米播种机与自动检验补偿控制系统相结合,设计了一台补偿式精密播种机。该播种机采用窝眼式排种器,镇压轮驱动排种机构,利用光电传感器对排种情况进行监测,采用可编程并行接口8155与AT89C52相连的键盘接口电路实现播种作业质量的监测,并驱动步进电机对检测漏播的情况进行补播。最后镇压轮完成覆土与镇压过程,实现了玉米精密播种。  相似文献   

11.
播种是小麦生产的早期环节,而播种量是反映播种质量的重要参数,合适的播种量可以在获得高产的同时尽可能地降低种植成本。为了实现播种量检测技术在小麦播种机上的应用,开发了一个以PLC为核心的小麦播种量控制系统。系统以电容法检测实时播种量,PLC根据与设定值的比较结果调节外槽轮转速,从而控制播种量。试验结果表明:系统对小麦播种量具有较高的控制精度,在作业过程中出现故障时能够及时、准确地报警,可以提高小麦播种机的智能化水平。  相似文献   

12.
随着玉米种植规模的扩大,玉米播种机的工作性能直接决定了玉米产量的高低。传统玉米播种机采用的是机械式作业方式,播种过程中存在漏播、播种株距不均匀等诸多问题,严重影响了玉米的生产质量和产量。为解决这一难题,将单片机技术、传感器技术等先进技术应用在玉米播种机上,在深入研究分析单体玉米播种机结构和工作原理的基础上,完成了玉米播种机全自动控制系统的总体方案设计,并对控制系统的硬件部分进行了模块选型,完成了单片机、测速传感器、步进电机等关键部件的电路原理图的设计及软件运行流程进行优化设计。播种株距检测试验结果表明:优化后的玉米播种机全自动控制系统具有较高的播种精度,播种株距均匀,无漏播现象,具有较大的推广价值。  相似文献   

13.
播种过程中排种器的驱动方式对播种质量有很大影响。地轮驱动的排种器虽然控制简单,但因地轮滑移常造成排种器漏播;而以步进电机取代地轮来驱动排种器,可以精确控制播种株距,减少漏播现象的发生,提高播种质量。为此,以三菱FX3U系列PLC为控制器,分析控制步进电机的硬件电路和梯形图,通过数字编码器检测拖拉机行进速度,根据拖拉机行进速度和株距计算出步进电机所需脉冲的频率,并输出控制步进电机的速度。为操作方便,系统采用触摸屏进行参数设定和工作状态显示。研究结果对提高排种器的排种质量具有重要的应用价值。  相似文献   

14.
针对播种作业均匀性差的问题,设计基于STM32单片机的小麦机械化匀播控制系统,通过轮式机器人变速作业,并依据轮式行驶机器人实时行驶速度,控制排种电机转速,实现变速匀播。采用多级控制直流电机转速,一级控制参数为轮式行驶机器人实时行驶速度信号,采用PID控制;二级控制参数为排种器电机实时电流和转速,采用模糊PID控制。控制算法仿真结果表明,该控制算法响应时间短,超调量小,控制效果良好。播种试验结果表明,轮式行驶机器人恒速状态下的播量控制精度达96.8%,变速状态下的播量控制精度达95.1%。  相似文献   

15.
任玲  曹卫彬  马锐  王宁 《农机化研究》2019,(6):88-92,103
对移栽机苗盘输送控制系统进行了研究,分析了位移误差的产生和修正方法。由于取苗机构位置固定,采用1台三菱PLC控制两台电机的控制方案实现苗盘的横向和纵向输送功能。利用GX Developer仿真软件完成PLC的控制程序设计,控制器通过发出带方向信号的脉冲指令操控两台步进电机带动苗盘横移、纵移,使苗盘的运动与取苗机构有效配合,实现了自动化取苗。同时,采用PLC软件与触摸屏软件联合仿真,实现了运行参数的实时显示。  相似文献   

16.
提出了将PLC控制步进电机应用到立体仓库单元X轴、Y轴两个运动方向的控制,由于步进电机控制精度高,可实现精确定位,使立体仓库单元能够精确地将工件搬运到指定的仓位中,其工作效率和质量得到了提高,并满足了现代化工艺发展的要求。构建了PLC、步进电机控制系统,将PLC控制步进电机实际应用到了立体仓库单元控制中。  相似文献   

17.
设计了一种水稻直播机播种自动控制系统,用红外光敏管检测播种信号,霍尔元件检测距离信号,采用单片机和步进电机实现播种量自动调节,实现了水稻直播机的均匀播种和智能控制,为提高播种质量和水稻产量创造了条件.  相似文献   

18.
论文提出了一种基于单片机的步进电机控制系统及接口电路,设计了控制系统硬件,并给出了部分控制程序。步进电机控制系统由89C51单片机、步进电机控制器ST-2HB02X(驱动器)和两相步进电机42GYBH107组成。分析了细分驱动技术并利用具有细分控制的控制器与单片机接口,实现对步进电机有效控制,用汇编语言编写程序实验了步进电机的驱动、启停和转速调整等。  相似文献   

19.
基于姿态实时监测的多路精准排肥播种控制系统研究   总被引:1,自引:0,他引:1  
针对现有精准排肥播种控制系统缺少对机具姿态进行监测判别的现状,在现有精准排肥播种控制系统架构基础上,增加了机具作业姿态实时监测模块,使系统可以根据机具的实时前进速度和作业姿态自动控制排肥量和播种量,减少人员对系统的操作。该系统主要由车载控制终端、PID控制器、多路集成比例阀、光电转速测试码盘、机具姿态解析模块、机具位置与速度解析模块、液压马达等组成,其中机具姿态解析模块采用MPU6050芯片实时测量下拉杆与机架的俯仰角,应用STM32F103MCU芯片实时获取MPU6050芯片的输出数据,并反馈到车载控制终端,封装后的机具姿态解析模块安装在拖拉机三点悬挂的下拉杆中部,对下拉杆与水平面的夹角数据进行实时记录和反馈,判别机具的作业姿态是否处于工作状态。将该控制系统安装在小麦基肥精准分层施肥播种机上,在北京市昌平区小汤山国家精准农业研究示范基地,对该控制系统进行静态标定和动态试验,以检测可靠性和稳定性。静态标定试验结果显示,马达转速与系统的排肥排种量存在一元线性关系,此时浅层肥料、深层肥料和种子的单圈排量分别为16.97、29.31、11.2g;姿态标定结果表明,设置临界角为5.3°时,系统的机具姿态提示信息正确,能够满足姿态监测的要求;动态试验表明,机具工作状态下,浅层肥料、深层肥料和种子排量变异系数分别为3.5%、3.8%和3%,3路的排量偏差都控制在5%以内,机具抬升状态下,排肥排种轴处于静止状态,说明该系统的运行过程总体比较稳定,能够满足小麦基肥分层施肥播种机具的精量排肥排种的作业要求,同时能够减少人为操作流程。  相似文献   

20.
目前,不少播种机虽然已将耕作、播种、填土等工作集于一体,但其控制系统多采用机械机构,尤其多采用齿轮副,通过不完全齿轮、槽轮机构或者棘轮机构等实现各装置的间歇运动。这种控制方法控制效率较低,故障率较高,如果采用PLC控制系统不仅提高播种机的自动化控制速度,还可提高整个电气化系统的运行效率,且通过闭环反馈调节,提高了播种机的播种质量。为此,将PLC控制器引入到了播种机电气自动化控制系统中,并对其播种效率和播种性能进行验证。验证结果表明:采用PLC控制后可以明显地提高播种效率和播种质量,对提高播种机电气自动化水平具有重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号