首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
The Pacific white shrimp (Litopenaeus vannamei), as an economically important species, has been reared in low‐salinity water during the last decade. To investigate how juvenile L. vannamei shrimp fed with fructose‐enriched Artemia respond to acute low‐salinity stress, the shrimp were randomly divided into four treatment groups, three groups were fed with Artemia enriched with either 100, 200 and 300 mg L?1 of fructose and a control group fed with Artemia with no enrichment for 10 days. The results showed that the 300 mg L?1 fructose group demonstrated the maximum survival rate and glycogen content. Additionally, the 300 mg L?1 fructose group showed significantly higher Na+/K+‐ATPase activity, total antioxidant capacity, and expression levels of Na+/K+‐ATPase α‐subunit, V‐H ATPase α‐subunit, hexokinase, phosphofructokinase, antioxidants (SOD, CAT, GPX) and Hsp70 mRNA when compared with the control group. Furthermore, after exposure to low salinity, the mRNA levels of phosphofructokinase, V‐H ATPase α‐subunit, GPX, p38, JNK and Rac1 stayed constant in shrimp fed with fructose‐enriched Artemia but changed significantly in the control group. Thus, a diet of fructose‐enriched Artemia can improve the osmoregulation and survival of juvenile L. vannamei shrimp exposed to low salinities.  相似文献   

2.
In this study, we tested the lower salinity tolerance of juvenile shrimps (Litopenaeus vannamei) at a relatively low temperature (20 °C). In the first of two laboratory experiments, we first abruptly transferred shrimps (6.91 ± 0.05 g wet weight, mean ± SE) from the rearing salinity (35 000 mg L?1) to salinities of 5000, 15 000, 25 000, 35 000 (control) and 40 000 mg L?1 at 20 °C. The survival of L. vannamei juvenile was not affected by salinities from 15 000 to 40 000 mg L?1 during the 96‐h exposure periods. Shrimps exposed to 5000 mg L?1 were significantly affected by salinity, with a survival of 12.5% after 96 h. The 24‐, 48‐ and 96‐h lethal salinity for 50% (LS50) were 7020, 8510 and 9540 mg L?1 respectively. In the second experiment, shrimps (5.47 ± 0.09 g wet weight, mean ± SE) were acclimatized to the different salinity levels (5000, 15 000, 25 000, 35 000 and 40 000 mg L?1) and then maintained for 30 days at 20 °C. Results showed that the survival was significantly lower at 5000 mg L?1 than at other salinity levels, but the final wet weight under 5000 mg L?1 treatment was significantly higher than those under other treatments (P<0.05). Feed intake (FI) of shrimp under 5000 mg L?1 was significantly lower than those of shrimp under 150 00–40 000 mg L?1; food conversion efficiency (FCE), however, showed a contrasting change (P<0.05). Furthermore, salinity significantly influenced the oxygen consumption rates, ammonia‐N excretion rates and the O/N ratio of test shrimps (P<0.05). The results obtained in our work provide evidence that L. vannamei juveniles have limited capacity to tolerate salinities <10 000 mg L?1 at a relatively low temperature (20 °C). Results also show that L. vannamei juvenile can recover from the abrupt salinity change between 15 000 and 40 000 mg L?1 within 24 h.  相似文献   

3.
Growth, immunological and physiological parameters of white shrimp Litopenaeus vannamei reared at different salinity levels (1, 10, 15, 25 and 35 g/L) at stocking density of 214 shrimp/m3 were examined at 1, 30 and 63 days. Results showed that the total haemocyte count (THC) of shrimp decreased with time at all salinity levels, indicating a potential reduction in the resistance of shrimp against pathogens, since a low value of THC indicates a perturbation of the immune system. Glucose and protein values observed in the haemolymph throughout the study indicate that shrimp adapted well to low salinities (1, 10 and 15 g/L). Although of those shrimp reared at 10 g/L only 83.3% survived, at this salinity, shrimp depicted a higher glucose concentration in haemolymph at the beginning and end of the study.  相似文献   

4.
The brown shrimp, Farfantepenaeus californiensis (Holmes), is a species native to north‐west Mexico, where its culture potential is presently being addressed. Because of the climatic conditions prevailing in the region, salinities over 40 g L?1 is a commonly encountered problem. In the present study, the effect of salinity on the growth and mortality of juvenile F. californiensis is described. The change in short‐term routine metabolism at different salinities was also evaluated in order to define the adaptive capacity of the shrimp and to provide insight into the changes in the pathways of energy distribution. Groups of shrimp were exposed to increasing salinity (25, 35, 45 and 55 g L?1), and growth and survival rates after 75 days were determined in duplicate 1.8‐m3 tanks for each salinity level. Significant differences were found in final weight, growth rate and mortality of shrimp as a result of salinity level. Final mean shrimp weights at increasing salinity levels were 10.0, 9.4, 8.6 and 7.8 g. Corresponding mortality was 24.4%, 15.1%, 33.6% and 55.7%. Oxygen consumption was found to depend significantly on salinity and was equivalent to 0.0027, 0.0037, 0.0043 and 0.0053 mg g?1 min?1 respectively for the increasing salinities. The increased rate of oxygen consumption at high salinities reflects the response of the organism to osmoregulatory and ionic imbalances. Increased energy requirements to fulfil basic metabolic function as salinity increased resulted in a reduction in the energy that could be diverted to growth. Consequently, the culture of the brown shrimp at salinities over 35 g L?1 would probably result in reduced yields.  相似文献   

5.
Three isonitrogenous diets containing 60 g kg–1, 90 g kg–1 or 120 g kg–1 lipid were formulated and fed to the Litopenaeus vannamei (2.00 ± 0.08 g) under two salinities (25 or 3 psu) in triplicate for 8 weeks. Shrimp fed 90 g kg–1 lipid had higher weight gain and specific growth rate than shrimp fed the other two diets regardless of salinity, and the hepatosomatic index increased with increasing dietary lipid at both salinities. The shrimp at 3 psu had significantly lower survival and ash content, higher condition factor, weight gain and specific growth rate than the shrimp at 25 psu. Increasing dietary lipid level induced the accumulation of serum MDA regardless of salinity, and at 3 psu, it reduced the serum GOT and GPT activities and the mRNA expression of TNF‐α in intestine and gill of L. vannamei. The hepatopancreatic triacylglycerol lipase (TGL) and CPT‐1 mRNA expression showed the highest value in shrimp fed 90 g kg–1 lipid diet at 3 psu. This study indicates that 120 g kg–1 dietary lipid may negatively affect the growth and induce oxidative damage in shrimp, but can improve immune defence at low salinity; 60 g kg–1 dietary lipid cannot afford the growth and either has no positive impact on the immunology for L. vannamei at 3 psu.  相似文献   

6.
This study aimed to evaluate the effect of low salinity on the water quality, microbial flocs composition and performance of Litopenaeus vannamei juveniles reared over 40 days in a zero‐water‐exchange super‐intensive system at 0, 2, 4 and 25 g L?1. At 0 g L?1, the mortality was total at the 26th day, and consequently, these salinity data were not included in the statistical analysis. Among the water quality parameters, only pH and the total suspended solids concentration were significantly influenced by salinity. However, a trend towards intensification of the nitrification processes was observed as the salinity increased, with the lowest ammonia and the highest nitrite and nitrate concentrations found at 25 g L?1. The concentrations of ciliates and flagellates diminished and increased, respectively, with the increase in salinity. Diatoms predominated at 25 g L?1, whereas at 2 and 4 g L?1, chlorophytes were more abundant. Microbial floc crude protein content was reduced with the increase in salinity, whereas ash content demonstrated the inverse trend. The best overall growth performance and survival were observed at 25 g L?1. However, satisfactory productivity was also found at 4 g L?1, suggesting the viability of rearing L. vannamei at low salinity under zero‐water‐exchange conditions.  相似文献   

7.
We evaluated the performance of whiteleg shrimp Penaeus vannamei (Boone, 1931) in response to different stocking densities and acclimation periods. Shrimp postlarvae were acclimated from seawater (30 g L?1) to low‐salinity well water (<1.0 g L?1) at a constant hourly reduction rate of 40, 60, 80 and 100 h. After acclimation to low‐salinity well water, postlarvae from each acclimation time treatment were stocked in three replicate tanks at densities of 50, 100, 150 or 200 shrimps m?2 for 12 weeks of growth. Salinity averaged <1.0 g L?1 for each growth study. The different treatments resulted in significant differences in both the final body weight and the survival rate (SR). Shrimp acclimated for 100 h showed substantially improved survival (83%) relative to shrimp acclimated for shorter periods. Shrimp yields for all cultured periods ranged from 0.32 kg m?2 in tanks stocked at 50 m?2 to 1.14 kg m?2 in tanks stocked at 200 m?2. We conclude that whiteleg shrimp can be successfully grown in low‐salinity well water, and that the growth, production output and SRs are significantly higher when shrimp are acclimated for longer periods.  相似文献   

8.
The effects of salinity on haemolymph osmolality, oxygen consumption and ammonia excretion were investigated in adult kuruma shrimp, Marsupenaeus japonicus (Bate), at salinities of 20, 25, 30 and 35 g L?1. Haemolymph osmolality showed a positive linear relationship (r2=0.9854) with medium osmolality. The isosmotic point calculated from this relationship was 1039 mOsm kg?1, which corresponds to a salinity of approximately 35 g L?1. The slope of the regression equation was very high (0.81), suggesting that M. japonicus adults are poor osmoregulators compared with the adults of other penaeids and to conspecific young. The difference between haemolymph and medium osmolality (DOP) was lowest at 35 g L?1 and highest at 20 g L?1. Thus, the minimum DOP coincided with the isosmotic point of the shrimp. The respiration rate was significantly lower at 30 g L?1 than at the other salinities. Ammonia excretion rates were inversely related with salinity and therefore were minimal at 35 g L?1. The results of this study suggest that the optimum salinity for adult kuruma shrimp is around 30–35 g L?1 and that even minor (e.g. 5 g L?1) deviations from this optimum cause significant physiological changes. Further, the observed increases in oxygen consumption and ammonia excretion during exposure to low salinities, which indicate higher energy expenditure and amino acid catabolism for osmoregulation, respectively, suggest that the growth efficiency of M. japonicus adults may be severely compromised by hypohaline water inflow into the rearing ponds.  相似文献   

9.
Juvenile New Zealand turbot, Colistium nudipinnis (Waite 1910), produced during the first aquaculture development project for this endemic flatfish, were reared at ambient and reduced salinities to determine the effect of salinity on growth and survival and the possible implications for aquaculture. Juveniles aged from 176 days to 17 months showed a high level of salinity tolerance, with minimal mortality attributable to salinity reduction over the range 33–18 g L?1. Growth rate was slightly increased at the slightly reduced salinity of 28 g L?1 (5 g L?1 below ambient) but was significantly decreased at the markedly reduced salinity of 18 g L?1. The growth response at 23 g L?1 was markedly different between ‘new’ water and water that was recycled from a previous set of rearing tanks, with juveniles reared in 23 g L?1‘new’ having a mean growth rate that was 29% lower than that of the control juveniles (in 33 g L?1‘new’ water), whereas juveniles in 23 g L?1‘reused’ water grew 45% faster than the controls. The implications of this novel effect are discussed in relation to the aquaculture potential of the New Zealand turbot.  相似文献   

10.
We investigated the growth of juvenile common snook (Centropomus undecimalis) reared at 25°C and 28°C and salinities of 0.3, 15, and 32 g L?1. Total length, weight, RNA/DNA, and protein/DNA ratios were determined after 90 days of experiment. Higher growth was observed at 28ºC compared with 25°C, at the same salinity. At 28°C and 15 g L?1 salinity, the weight (25.14 g) of juveniles was twice that of the juveniles reared at the lower temperature. At different salinities, only higher temperature affected growth, with higher weight values obtained at 15 g L?1 in comparison with 0.3 and 32 g L?1. Length was similar at 0.3 and 15 g L?1. The RNA/DNA ratio was greater in juveniles reared at a salinity of 15 g L?1 when compared with 0.3 and 32 g L?1. This study shows that the combination of higher temperature and intermediate salinity promotes better growth of common snook juveniles.  相似文献   

11.
The effects of salinity fluctuation on the growth, intermoult period and energy budget of juvenile Litopenaeus vannamei were investigated. Salinity fluctuation regimes were set in different frequencies of 2, 4 and 8 days and different amplitudes of ±2, ±5 and ±10 g L?1 from a control salinity of 20 g L?1. After a 48‐day feeding trial, the intermoult period of shrimp became shorter with increasing amplitude and frequency of salinity fluctuation (P<0.05). Both the frequency and the amplitude of salinity fluctuation had a significant effect on the growth rate of L. vannamei juveniles (P<0.05). At the frequency of 4 days, the highest growth rates occurred at amplitudes of 5–10 g L?1, whereas the growth rate was the lowest at 10 g L?1 when the frequency was reduced to 2 days. Feed intake (FI) and assimilation efficiency (AE) of shrimp were also significantly affected by the salinity fluctuation (P<0.05) and matched the growth rate response. The energy expenditures for growth (G), respiration (R), excretion (U) and exuviae (E) to the energy consumed as food (C) were not affected by salinity fluctuation. However, salinity fluctuation significantly affected the percentage of C as faeces (F), with the lowest value occurring at salinity amplitudes of 5–10 g L?1 and frequencies of 4–8 days. Therefore, salinity fluctuations (every 4 days by ±5–10 g L?1) result in higher growth rates than constant salinity conditions (20 g L?1) through greater FI, enhanced feed assimilation and reduced faecal energy loss.  相似文献   

12.
A series of experiments were conducted to examine the effects of salinity (1–48 g/L) on the biological performance, as evaluated by growth and survival, of the Pacific white shrimp, Litopenaeus vannamei, and the Atlantic white shrimp, Litopenaeus setiferus, reared at temperatures of 20, 24 or 28 C. Poor growth and survival of L. vannamei was observed after 21–28 d of culture at low salinity (2 and 4 g/L) at 20 C. Raising salinity to 8 and up to 32 g/L significantly increased survival at this temperature, indicating that avoiding low temperatures is critical for survival of this species when reared at low salinity. A major improvement in the growth rate of L. vannamei was observed at 24 C, but it still was sub‐optimal compared to growth observed at 28 C. Irrespective of salinity, high survival rates were observed at both 24 and 28 C, but variable growth rates were recorded. Contrary to L. vannamei, the Atlantic white shrimp, L. setiferus, which was reared for 28 d at 24 C only, had better growth performance at 8 g/L compared to 2, 16 and 32 g/L. Under equal experimental conditions, L. setiferus had considerably lower weight gain and survival than L. vannamei.  相似文献   

13.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

14.
The use of non‐marine arachidonic acid (ArA) and docosahexaenoic acid (DHA) as highly unsaturated fatty acid (HUFA) enrichments was evaluated as complete replacements for marine fish oil in practical diets formulated with solvent‐extracted soybean meal (SESM). Litopenaeus vannamei juveniles (0.59 g) were reared over 84 days in an outdoor tank system with no water discharge. Fishmeal was replaced with SESM, while fish oil was replaced with HUFA‐rich algal cells, alternative oil and/or fermentation products. Spray‐dried Schizochytrium algal cells (Schizomeal‐Hi DHA) served as the DHA enrichment source. Oil extracted from Mortierella sp. was used as the ArA enrichment (AquaGrow® ArA). DHA and ArA sources (Advanced BioNutrition Corp., Columbia, MD, USA) were non‐marine products obtained from a commercial supplier. Five diets were formulated with ArA inclusion levels of 0, 0.65, 1.3, 2.6 and 5.2 g kg?1. In addition, one diet was formulated to be DHA deficient and another was formulated with menhaden fish oil (control). Different inclusion levels of non‐marine ArA had no effect on survival or growth. Shrimp fed the non‐marine HUFA‐supplemented diets had lower average weight compared to shrimp offered the diet containing fish oil. No differences were detected in average weights of shrimp offered the ArA‐deficient and ArA‐supplemented diets.  相似文献   

15.
The effects of dietary astaxanthin supplemented at 0, 40, 80 or 150 mg astaxanthin kg−1 on growth, survival, moult frequency, osmoregulatory capacity (OC) and selected metabolic and haematological variables in Litopenaeus vannamei acclimated to low‐salinity water (3 g L−1) were evaluated. Supplemented astaxanthin at 80 mg kg−1 improved growth, survival and moult frequency in shrimp. The lowest OC was also exhibited in shrimp fed with dietary astaxanthin at 80 mg kg−1. Shrimp haemolymph concentrations of glucose, lactate, haemocyanin and total haemocyte count were all significantly enhanced by feeding the diet supplemented with 80 mg astaxanthin kg−1 compared with shrimp fed with the other diets. On the basis of these results, dietary astaxanthin supplementation of 80 mg kg−1 is recommended for juvenile L. vannamei cultured in low‐salinity water.  相似文献   

16.
The synchronous effects of aqueous Na/K and dietary potassium (K+) on growth and physiological characters was studied on the Pacific white shrimp (Litopenaeus vannamei) reared in low‐salinity well water (4 ppt) for 8 weeks with initial weight of 0.28 ± 0.01 g. Three practical diets were formulated with supplement of 0, 0.3%, 0.6% K+ which contained 1.29 g/100 g, 1.60 g/100 g, 1.93 g/100 g K+ respectively. The supplement of K+ to the low‐salinity well water was 10, 20, 40 mg L?1 which formed Na:K ratios of 42:1, 33:1, 23:1 respectively. Results showed that when the aqueous Na:K ratio was 42 and dietary K+ was 1.93 g/100 g K+, the WGR and PER of L. vannamei were the highest and the FCR was lower than that of others (< 0.01). Supplement of K+ into well water and diets did not showed significant effects on haemolymph ammonia‐N, uric acid, urea content (> 0.05), but had a extremely significant effect on arginase activity and Cl? concentration (< 0.01). Moreover, similar results were observed in alkaline phosphatase (ALP), bacteriolytic activity (LSZ) and respiratory burst activity (O2?) (< 0.05). These results suggested that aqueous Na/K in the low‐salt well water and dietary K had significant synergistic effect on the growth, osmoregulation and immunity of L. vannamei. Concluded from the growth performance, nitrogen metabolism, osmoregulation and immunity, as the Na/K in the low‐salinity well water descended from 42 to 23, the requirement of dietary K+ was also decreased.  相似文献   

17.
In the field, moulting and salinity drop in the water due to excessive rainfall have been mentioned to be risk factors for WSSV outbreaks. Therefore, in this study, the effect of an acute change in environmental salinity and shedding of the old cuticle shell on the susceptibility of Penaeus vannamei to WSSV was evaluated by immersion challenge. For testing the effect of abrupt salinity stress, early premoult shrimp that were acclimated to 35 g L?1 were subjected to salinities of 50 g L?1, 35 g L?1, 20 g L?1, 10 g L?1 and 7 g L?1 or 5 g L?1 and simultaneously exposed to 105.5 SID50 mL?1 of WSSV for 5 h, after which the salinity was brought back to 35 g L?1. Shrimp that were transferred from 35 g L?1 to 50 g L?1, 35 g L?1 and 20 g L?1 did not become infected with WSSV. Shrimp became infected with WSSV after an acute salinity drop from 35 g L?1 to 10 g L?1 and lower. The mortality in shrimp, subjected to a salinity change to 10 g L?1, 7 g L?1 and 5 g L?1, was 6.7%, 46.7% and 53.3%, respectively (P < 0.05). For testing the effect of moulting, shrimp in early premoult, moulting and post‐moult were immersed in sea water containing 105.5 SID50 mL?1 of WSSV. The resulting mortality due to WSSV infection in shrimp inoculated during early premoult (0%), ecdysis (53.3%) and post‐moult (26.72%) demonstrated that a significant difference exists in susceptibility of shrimp during the short moulting process (P < 0.05). The findings of this study indicate that during a drop in environmental salinity lower than 10 g L?1 and ecdysis, shrimp are at risk for a WSSV infection. These findings have important implications for WSSV control measures.  相似文献   

18.
Shrimp farming at low salinity is a trend that will continue to grow globally. Performance of Litopenaeus vannamei postlarvae in the nursery at different salinities with a biofloc technology (BFT) system needs to be explored further, as the nursery is currently used as a transitional stage between the hatchery and grow-out ponds. Hence, this study evaluated the effect of seven salinity levels (2, 4, 8, 12, 16, 25, and 35 ‰) on the performance of L. vannamei postlarvae reared with a BFT system and zero-water exchange at 2000 org/m3. Additionally, this study evaluated the water quality of all salinity treatments. After 28 days of culture, the findings showed that, under biofloc conditions, salinity affected the performance of some variables of water quality in some cases, but only the combination of a high nitrite-N concentration (>4 mg/l) and low salinity (2 and 4 ‰) caused up to 100 % shrimp mortality in the first 2 weeks. In the rest of the treatments (8, 12, 16, 25, and 35  ‰), shrimp survival was >72 %. Shrimp mortality was affected by salinity, especially when it decreased from 35–25–16 to 12 and 8 ‰. The organisms reared at low salinities presented lower final weights and specific growth rate than those reared at higher salinities. An inverse relationship was shown between the ion concentration and the final weight of shrimp.  相似文献   

19.
A 10‐week feeding experiment was conducted to evaluate the effect of different protein to energy ratios on growth and body composition of juvenile Litopenaeus vannamei (initial average weight of 0.09 ± 0.002 g, mean ± SE). Twelve practical test diets were formulated to contain four protein levels (300, 340, 380 and 420 g kg?1) and three lipid levels (50, 75 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The water temperature was 28.5 ± 2 °C and the salinity was 28 ± 1 g L?1 during the experimental period. The results showed that the growth was significantly (P < 0.05) affected by dietary treatments. Shrimps fed the diets containing 300 g kg?1 protein showed the poorest growth. However, shrimp fed the 75 g kg?1 lipid diets had only slightly higher growth than that fed 50 g kg?1 lipid diets at the same dietary protein level, and even a little decline in growth with the further increase of dietary lipid to 100 g kg?1. Shrimp fed the diet with 420 g kg?1protein and 75 g kg?1 lipid had the highest specific growth rate. However, shrimp fed the diet with 340 g kg?1 protein and 75 g kg?1 lipid showed comparable growth, and had the highest protein efficiency ratio, energy retention and feed efficiency ratio among dietary treatments. Triglycerides and total cholesterol in the serum of shrimp increased with increasing dietary lipid level at the same dietary protein level. Body lipid and energy increased with increasing dietary lipid level irrespective of dietary protein. Results of the present study showed that the diet containing 340 g kg?1 protein and 75 g kg?1 lipid with digestible protein/digestible energy of 21.1 mg kJ?1 is optimum for L. vannamei, and the increase of dietary lipid level has not efficient protein‐sparing effect.  相似文献   

20.
In recent years, the shrimp industry has turned to inland freshwater culture as one method to avoid problems such as the introduction of possible vectors of viral pathogens into seawater ponds. Our experiments evaluated susceptibility to white spot syndrome virus (WSSV) in Litopenaeus vannamei held under different salinity regimens. Juvenile L. vannamei that were conditioned at salinities of 35, 25, 15, 5 and 2 g L−1 were challenged with WSSV. In order to assess the severity of white spot disease, histological analysis and nested polymerase chain reaction (PCR) tests were carried out on the challenged shrimp every 4 h after 48 h post challenge. The results indicated that significantly more severe infections resulted at 15‰ than at other salinities. Mortality could not be compared due to the sampling design and because severe WSSV infections occurred in all test groups such that few shrimp remained alive in each challenged group at the end of the test. Despite this, the results suggest that salinity may affect the course and outcome of WSSV infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号