首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sterckeman  T.  Douay  F.  Proix  N.  Fourrier  H.  Perdrix  E. 《Water, air, and soil pollution》2002,135(1-4):173-194
Ag, As, Bi, Cd, Co, Cr, Cu, Hg, In, Ni, Pb, Sb, Se, Sn,Tl, Th, U and Zn contamination of cultivated surfacehorizons has been assessed around two lead and zincsmelters in the North of France. The verticaldistribution of Ag, As, Bi, Cu, Hg, Se, Sb and Tl inthe soils has also been examined. The soils around thelead and zinc smelter at Noyelles-Godault arecontaminated by Ag, As, Bi, Cd, Cu, Hg, In, Ni, Pb, Sb,Se, Sn, Tl and Zn. The original concentration in themost contaminated soils may be multiplied by a factorof around 2 to 100, according to the element. Cadmium,Pb and Zn are the most abundant contaminants. The Pband Zn concentrations are correlated to those of theother contaminants, with the exception of Se. Aroundthe Auby zinc smelter, there is a contamination by thesame elements, but in different proportions, inaddition to Cr contamination. Contamination by Se canreach a depth of around 1 m, whereas contamination byAg, As, Bi, Cu, Hg, Sb and Tl is confined to the top 30cm. Although the contaminant content in most soilsdepends on the distance from the plant, Secontamination would appear to vary to a greater extentaccording to the physico-chemical soil conditions.  相似文献   

2.
According to the present-day ecotoxicologic data, hazardous heavy metals/metalloids form the following sequence in the soil: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence differs from the well-known series of the hazardous heavy elements, in which the danger of Pb and Zn is exaggerated, whereas that of V, Sb, and Ba, is underestimated. Tl also should be included in the list of hazardous elements in the soil. At present, the stress is made on the investigation of heavy metals/metalloids in agricultural soils rather than in urban soils, as the former produce contaminated products poisoning both animals and humans. The main sources of soil contamination with heavy metals are the following: aerial deposition from stationary and moving sources; hydrogenic contamination from the industrial sewage discharging into water bodies; sewage sediments; organic and mineral fertilizers and chemicals for plant protection, tailing dumps of ash, slag, ores, and sludge. In addition to the impact on plants and groundwater, heavy metals/metalloids exert a negative effect on the soil proper. Soil microorganisms appear to be very sensitive to the influence of heavy elements.  相似文献   

3.
The contamination of 27 urban topsoils has been assessed around two lead and zinc smelters (Metaleurop Nord and Umicore) in the North of France. Eighteen trace elements have been analysed (Ag, As, Bi, Cd, Co, Cr, Cu, Hg, In, Ni, Pb, Sb, Se, Sn, Tl, Th, U and Zn). The investigation included the study of the vertical distribution of Cd, Pb and Zn as indicators of pollution. It was shown that Cd, In, Pb, Sb and Zn were major pollutants followed in lesser quantities by Ag, Bi, Cu and Hg. In addition, As, Ni, Se, Sn and Tl were present at levels slightly higher than regional agricultural values. The other elements (Co, Cr, Th and U) were at endogenous levels. The observations have highlighted the strong heterogeneity of the physico-chemical parameters of urban soils and the existence of heavy contamination of the under layers by Cd, Pb and Zn. A potential transfer of metals from the topsoil to the deeper layers and especially Cd and Zn, is not excluded. Indeed the soil rework is not the only factor explaining contamination level of the deeper layers of the studied soils. The comparison of the studied element concentrations in urban soils with nearby local agricultural values shows that the dust emission originating from the Metaleurop and Umicore smelters were not the only source of contamination. Thus a large contamination of the studied urban soils by Sb and In could be explained by domestic combustion of coal for heating.  相似文献   

4.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

5.
北京城乡交错带土壤重金属的空间变异特征   总被引:22,自引:0,他引:22  
  相似文献   

6.

Purpose  

The present work concerns the distribution of ten heavy metals (Sb, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surrounding agricultural soils of the world largest antimony (Sb) mine in China. The objective is to explore the degree and spatial distribution of heavy metal pollution of the Sb mine-affected agricultural soils. The presented data were compared with metal concentrations in soils from mining and smelting sites in China and other countries.  相似文献   

7.
A pedo‐geochemical survey was carried out in the Nord‐Pas de Calais region (France) on soils developed in loess deposits. Total concentrations of Al, Fe and 18 trace elements, as well as common soil characteristics, were determined in samples from 52 surface and 97 deep horizons developed in these loess deposits. The Pb isotopic composition was determined in two sola. The composition of deep horizons, compared with that of the upper continental crust, with that of horizons developed from 21 other sedimentary rocks from the region and with that of loess from various parts of the world, confirms that loess from the Nord‐Pas de Calais region derives from multi‐recycled and well‐mixed ancient sedimentary rocks. Correlation analysis shows that least mobile (i.e. ionic potential (Z/r) is between 3 and 7) geogenic elements (Bi, Co, Cr, Cu, In, Ni, Pb, Sn, Tl, V, Zn) are associated with the fraction <2 µm (which we define as ‘lutum’). More mobile elements (As, Cd, Hg, Mn, Mo, Sb, Se) are less associated with this fraction. Cadmium is particularly linked to Mn. The distribution of [trace element]/([Al] or [Fe]) in the French loess gives the background content for soils developed from most sedimentary materials in northwestern Europe. Topsoils are enriched with all the trace elements examined, except Co, Cr and Ni. Enrichments with Cd, Cu, Mn and Zn are greater in cultivated soils than in forest soils. Enrichments with Pb and with Cu, Hg, Mo, Sb, Se and Sn are mainly due to human contamination through atmospheric fallout. Organic matter seems to act as a sink for all the exogenous trace elements.  相似文献   

8.
Zhang  Zhaoxue  Zhang  Nan  Li  Haipu  Lu  Yi  Wang  Qiang  Yang  Zhaoguang 《Journal of Soils and Sediments》2019,19(12):4042-4051
Purpose

This study aimed to reveal spatial distribution of As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V, and Zn in paddy soils in the Zijiang River basin and to evaluate its pollution status and potential ecological risks, and thus to provide basic information for rational utilization of paddy soils in the study area.

Materials and methods

The heavy metal(loid) concentrations in one hundred and thirty-five paddy soil samples (these samples were collected from the top 0–20 cm layer) were measured by inductively coupled plasma-optical emission spectrometry. The spatial distribution characteristics of the heavy metal(loid)s were depicted by the Ordinary Kriging interpolation analysis. The contamination degree and potential ecological risks of the heavy metal(loid)s in paddy soils were assessed by Nemerow’s comprehensive index, geoaccumulation index, potential ecological risk factor, and potential ecological risk index. The potential sources of the heavy metal(loid)s were deduced by Pearson’s correlation analysis, hierarchical cluster analysis, and principal component analysis.

Results and discussion

The mean concentrations of the heavy metal(loid)s decreased in the order of Mn?>?V?≈?Zn?>?Cr?>?Ni?≈?Pb?>?Cu?≈?Sb?>?As?>?Cd. Except for Cd and Sb, the mean concentrations of As, Cr, Cu, Mn, Ni, Pb, V, and Zn were close to the background reference values. The concentration of Cd in 94.8% of samples exceeded the soil quality standard value (grade II, 5.5?<?pH?<?6.5, GB 15618–1995). According to the assessments of pollution and potential ecological risks for the heavy metal(loid)s, 45.2% and 46.7% of samples were severely polluted and moderately polluted, respectively. The potential sources analysis indicated that Cd, Sb, and Zn mainly originated from agricultural, mining, and smelting activities; As, Cu, and Pb mainly originated from agricultural activities, while coal combustion by-products was another major source of these heavy metal(loid)s in paddy soils near the thermal power plant in the southwest corner of the study area; Cr, V, Mn, and Ni mainly originated from natural source.

Conclusions

Cadmium and Sb are the main contaminants in paddy soils in the study area, and there are hot-spot pollution areas.

  相似文献   

9.
为了解浙江龙游硫铁矿区农田重金属污染状况,采集矿区265件农田土壤样品,分析8种重金属Cu、As、Hg、Zn、Cd、Ni、Pb、Cr元素全量,利用地统计学软件GS+9.0对研究区土壤各元素指标进行半变异函数拟合,并利用普通克里格法进行插值并绘制空间分布图。采集30件水稻籽粒样品,分析重金属在研究区中水稻籽粒的累积特征,并进行了健康风险评价。结果表明:矿区土壤中8种重金属元素的变异系数从0.72到1.76,离散程度较高。8种重金属的土壤空间半变异函数Cu、As、Hg元素符合指数模型,Zn、Cd、Ni、Pb符合球状模型,Cr符合高斯模型。元素Cu、Pb、Zn、Cr、Ni的块金值与基台值的比值C0/C0+C都小于0.25,说明空间变化主要受地质背景等因素影响;元素Cd、Hg和As的块金值与基台值的比值C0/C0+C在0.25~0.75之间,说明除了地质背景因素,人为活动等随机因素也有影响。矿区水稻籽粒中重金属Ni和Cd的变异系数最高,分别为0.95和0.87,说明Ni和Cd元素可能存在异常积累。矿区水稻籽粒对重金属的富集能力由大到小依次为Cd、Zn、Cu、Ni、As、Hg、Cr、Pb。健康风险评价结果表明矿区农田水稻籽粒中元素As、Cd的风险商大于1,存在潜在健康风险;而其他6种重金属Cu、Hg、Zn、Ni、Pb和Cr基本属于安全范围。  相似文献   

10.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

11.
广东省土壤无机元素背景值的变化趋势研究   总被引:5,自引:0,他引:5  
张山岭  杨国义  罗薇  郭书海 《土壤》2012,44(6):1009-1014
通过对“七五”期间广东省土壤环境背景监测点回顾性调查,以研究广东省土壤背景监测点13种无机元素含量变化趋势.与“七五”背景值对比,土壤A层中Hg以及A、C两层中F含量下降,其他11种元素含量均上升,特别是Se、V、Zn和Co的含量有较明显的上升.As、Co、Cr、F、Hg、Mn、Ni、V和Zn的含量从A层到C层呈增加趋势,Cd、Pb和Cu的含量呈减少趋势,Se的含量基本没有变化,此外还对无机元素含量变化的原因进行分析.  相似文献   

12.

Purpose

The effect of soil heavy metals on crops and human health is an important research topic in some fields (Agriculture, Ecology et al.). In this paper, the objective is to understand the pollution status and spatial variability of soil heavy metals in this study area. These results can help decision-makers apportion possible soil heavy metal sources and formulate pollution control policies, effective soil remediation, and management strategies.

Materials and methods

A total of 212 topsoil samples (0–20 cm) were collected and analyzed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni) from agricultural areas of Yingbao County in Lixia River Region of Eastern China, by using four indices (pollution index (PI), Nemerow pollution index (PIN), index of geo-accumulation (I geo), E i /risk index (RI)) and cluster analysis to assess pollution level and ecological risk level of soil heavy metals and combining with geostatistics to analyze the concentration change of heavy metals in soils. GS+ software was used to analyze the spatial variation of soil heavy metals, and the semi-variogram model is the main tool to calculate the spatial variability and provide the input parameters for the spatial interpolation of kriging. Arcgis software was used to draw the spatial distribution of soil heavy metals.

Results and discussion

The result indicated that the eight heavy metals in soils of this area had moderate variations, with CVs ranging from 23.51 to 64.37 %. Single pollution index and Nemerow pollution index showed that about 2.7 and 1.36 % of soil sampling sites were moderately polluted by Cd and Zn, respectively. The pollution level of soil heavy metals decreased in the order of Cd?>?Zn?>?Pb?>?As?>?Cu?>?Cr?>?Ni?>?Hg. The I geo values of heavy metals in this area decreased in the order of Zn?>?Cd?>?As?>?Pb?>?Cu?>?Cr?>?Hg?>?Ni. According to the E i index, except Cd that was in the moderate ecological risk status, other heavy metals in soils were in the light ecological risk status, and the level of potential ecological risk (RI) of soil sampling sites of the whole area was light.

Conclusions

The results of four indices and the analysis of spatial variation indicated that the contents of Cd and Zn were contributed mainly by anthropogenic activities and located in the south-east of this study area. However, the contents of Hg, As, Cu, Pb, Cr, and Ni in soils were primarily influenced by soil parent materials.
  相似文献   

13.
A total of 50 farmland soil samples were collected from the Yanqi County, Xinjiang, China, and the concentrations of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) were determined by standard methods. The spatial distribution, pollution level and ecological risk status of heavy metals were analyzed based on GIS technology, the Geo-accumulation Index (Igeo), the Pollution Load Index (PLI) and the Potential Ecological Risk Index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn of farmland soils exceeded the background values of irrigation soils in Xinjiang by 1.5, 1.40, 1.33, 2.63, and 4.92 times, respectively. Cd showed a no-pollution level, Zn showed a partially moderate pollution level, Pb showed a slight pollution level, and Cr, Cu, As, Mn, and Ni showed no-pollution level, compared to the classification standard. The PLI values of heavy metal elements of farmland soils varied from 0.83 to 1.89, with an average value of 1.29, at the moderate pollution level. (2) The Individual Potential Ecological Risk Index for heavy metals in the study area was ranked in the order of: As > Ni > Cu > Cd > Pb > Cr> Zn. The RI values of heavy metals of farmland soils varied from 3.45 to 11.34, with an average value of 6.13, at the low ecological risk level. (3) Cu and Mn of farmland soils were mainly originated from the soil parent material and topography of the study area. As, Cd, Ni and Pb were mainly originated from human activities, and Cr and Zn may originated from both natural and anthropogenic factors in the study area.  相似文献   

14.
湘中下寒武统黑色页岩土壤的地球化学特征   总被引:11,自引:0,他引:11  
以湘中发育于下寒武统黑色页岩之上的土壤为研究对象,选择安化东坪、烟溪,桃江,宁乡等地的典型土壤及相应成土母岩,利用等离子质谱(ICP-MS)、X射线荧光光谱(XRF)等分析技术,对土壤、成土母岩(黑色页岩)的主量元素和微量元素(包括重金属元素、稀土元素等)进行了较系统的分析测定。结果表明,湘中下寒武统黑色页岩土壤风化作用强烈,风化指数CIA均在73以上。强烈的风化使得土壤具有明显贫CaO、Na2O,而富Al2O3、Fe2O3的化学组成特征。土壤因继承成土母岩(黑色页岩)的特征而富集Mo、Cd、Sn、Sb、U、V、Cr、Co、Ni、Cu、Zn、Tl、Pb、Th等多种重金属元素,其综合富集指数(EI值)平均在3以上,最高达17。地质累计指数(Igeo)评价结果显示,土壤重金属的富集已达到污染程度,土壤存在Cd、Mo、Sb、U、Sn、V、Cu、Tl、Ba等重金属的污染,并以Cd、Mo、Sb等重金属污染最强,达中度至极强污染程度。重金属与主量元素的相关性分析显示,土壤中的重金属主要赋存于黏土矿物和铁氧化物(针铁矿)等矿物相中,其中Ba、Sn、Th、Cu、Sc等主要赋存黏土矿物中;Zn、Ni、Mn、Co、Cd、Tl、Pb等则主要赋存于铁氧化物矿物(针铁矿)中;而Cr、V、Mo、Sb、U等则不受黏土矿物和铁氧化物矿物的控制。此外,不同地区土壤的Zr/Hf、Ta/Nb、Nd/Sm等元素比值相对稳定,依次为36.20、0.085、5.30(n=73),并与相应的成土母岩(黑色页岩)相应值基本一致。土壤与成土母岩具有相同的稀土配分型式,且成土过程中稀土元素不发生明显的分异。微量元素比值和稀土元素特征指示土壤中的重金属来自成土母岩(黑色页岩)本身,为自然污染源。  相似文献   

15.
Heavy metal content of roots and shoots of vines (Vitis vinifera L.) after fertilization with garbage-sewage-sludge-compost The enrichment of Zn, Cu, Pb, Cd, Co, Ni and Cr from garbage-sewage-sludge-compost in vineyard soils, vines and must was studied in field-and pot-experiments. The following results were obtained: 1. In a field experiment, in which garbage-sewage-sludge-compost was applied, a marked soil enrichment of Zn, Cu, Pb, Cd and Cr was found. It was most evident at the 0–20 cm depth but also obvious at the 40–60 cm depth thus indicating downward migration. The soil was not enriched with Co and Ni. The heavy metal content of leaves, berries and must of riesling vines did not increase on the plots treated with garbage-sewage-sludge-compost. 2. In a pot trial, using an acid and an alkaline soil each mixed with garbage-sewage-sludge-compost, it was observed that only the uptake of Zn and Cu increased into the leaves, tendrils and wood of the riesling cuttings. In relation to the content of the substrate, the heavy metals were detected in the roots percentually in the following order: Cu, Cd > Zn > > Pb, Co, Ni, Cr The root contents were mostly substantially higher than those of the shoot. The migration from root to shoot decreased in the following percentual order: Zn > Cu > Cd, Pb 3. The heavy metal content decreased considerably from the roots to the upper plant organs. This was reflected in low concentrations of heavy metals in the vine must.  相似文献   

16.
Soil samples taken by soil auger to a depth of 150 mm from randomly selected agricultural fields throughout England and Wales were analysed for total As, B, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se and Zn, acetic acid-extractable Cd, Co, Cu, Ni, Pb and Zn, EDTA-extractable Cd, Co, Cu, Ni, Pb, Se and Zn, ammonium oxalate extractable Ni and Mo and hot water-extractable B. Median, log-derived mean and range data are given for each element. Median values are given also by parent material and textural grouping.  相似文献   

17.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

18.
Abstract

The application of fertilizers and other amendments, including urban and industrial wastes, to agricultural lands is of some concern due to the possibility of soil pollution by heavy metals and, ultimately, deterioration of the environment. Easy, rapid, and safe analytical procedures are therefore required to assess the potential hazard of applying these materials to soils. The objective of this study was to evaluate the potential of axial‐view inductively‐coupled plasma atomic emission (ICP‐AES) for the determination of 17 elements of environmental significance in HNO3 and HF digests of selected fertilizers and soil amendments. Reliable results were obtained for silver (Ag), barium (Ba), beryllium (Be), cadmium (Cd), and nickel (Ni). The arsenic (As), manganese (Mn) and vanadium (V) analyses were virtually problem free in samples containing low to moderate amounts of chromium (Cr), Ni, and titanium (Ti). Bismuth (Bi), selenium (Se), and thallium (Tl) could not be determined due to spectral interferences and cobalt (Co), Cr, copper (Cu), lead (Pb), antimony (Sb), and zinc (Zn) results were of intermediate quality. Correction of spectral interferences using the multi‐component spectral fitting (MSF) technique was only partially useful for Co and Pb and not necessary or beneficial for other analytes. Axial‐view ICP‐AES is a suitable tool for the routine analyses of trace elements in fertilizers and soil amendments, and its scope could be extended to more analytes provided that more detailed interference studies are carried out. The use of the interelement correction technique (IEC), which was not tested in this study, might be helpful in correcting spectral interferences. The analyte detection limits ranged from <0.7 to 17 μg L‐1.  相似文献   

19.
山东省沂源县土壤重金属来源分布及风险评价   总被引:5,自引:2,他引:3  
为建设高标准农田及保证食品安全,对土壤重金属污染状况进行精确评估极为关键。选取山东省山地丘陵区典型区域—沂源县为研究区,系统采集427个表层土壤样品(0~20 cm),测定了As、Cd、Co、Cr、Cu、Mn、Ni、Pb、Hg和Zn共10种重金属含量;采用多元统计分析和地统计分析方法,揭示了土壤重金属的主要来源;进一步分析得出研究区重金属的空间分布以及与成土母质、工业排放和农业生产污染之间的关系。研究表明:1)沂源县表层土壤中10种重金属元素的平均含量值均高于土壤背景值但未超过国家二级土壤元素限定值,存在一定程度的重金属富集。2)经主成分分析和单因素方差分析后将研究区重金属的来源主要分为3类:As、Co、Cu和Mn主要来源于成土母质,属自然源因子;Hg、Cd、Zn和Pb受到母质和工农业污染双重控制,属于混合来源;Cr和Ni主要是成土母质影响下的自然来源。3)自然来源重金属含量的高值区主要与石灰岩成土母质类型分布相一致,Hg、Cd、Zn和Pb元素含量的高值区与工业区分布基本一致。4)通过潜在生态风险评价,沂源县表层土壤目前处于中度潜在生态风险等级,其中Hg和Cd潜在生态风险最强,达到中度生态危害,其他元素具有轻微的潜在生态危害。研究中通过多元统计-地统计模拟分析法有效的揭示了土壤重金属污染源汇特征,可作为评估该区土壤污染现状和对土壤重金属污染进行风险评价的重要依据。  相似文献   

20.
近年来重金属污染日益加重,对人类及水生态系统健康产生较大危害。本研究选择广州市典型城市湖泊——流花湖,利用地累积指数(Igeo)、潜在生态风险指数(RI)对沉积物中12种重金属的污染水平、垂向分布特征及其潜在生态风险进行评价,并通过多元统计分析对金属元素的来源进行解析。结果表明:①湖泊沉积物重金属含量(Mn、V除外)均显著高于区域土壤背景值,自下而上呈现先增加后减少的趋势;②地累积指数评价结果显示Cd、Zn、Sb、Cu、Pb和As这6种重金属污染较严重,其中Cd偏重度污染的状态(Igeo=3.89);③不同重金属元素污染水平有较大差异,Cd、Cu、Zn、Sb、Pb、As、Ni、Cr、Tl、Co的单个重金属污染指数(Cif)均为中等污染水平以上,而生态风险系数(Eif)表现为Cd(Eif=818.6)极严重等级,Sb(Eif=82.64)重度风险等级,其他10种重金属Eif均为轻度风险等级;④该湖RI指数变化幅度剧烈(105.85相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号