首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helianthinin, the main storage protein of sunflowers, has low water solubility and does not form a gel when heated; this behavior is different from other 11S globulins and limits its food applications. To understand this particular behavior, changes on helianthinin association-dissociation state induced by modifications in pH and ionic strength were analyzed. The influence of these different medium conditions on its thermal stability and tendency to form aggregates was also studied. Helianthinin behavior at different pH values and ionic strengths is similar to other 11S globulins except that it remains in a trimeric form at pH 11. Helianthinin thermal stability is higher than other 11S globulins but is lower than oat 11S globulin. Alkaline pH produces a 10 degrees C decrease of its denaturation temperature and also of the cooperativity of denaturation process, but it does not affect the denaturation activation energy. The decrease in thermal stability with the pH increase is also manifested by its tendency to form aggregates by SH/SS interchange reactions. When thermal treatments at alkaline pH are performed, all helianthinin subunits form aggregates, characterized by a higher proportion of beta-polypeptides than alpha-polypeptides, which is an indication that aggregation is accompanied by dissociation. Treatments at 80 degrees C are sufficient to induce aggregation but not to produce denaturation, and in these conditions hexameric forms remain after the treatment.  相似文献   

2.
The 7S/11S glycinin equilibrium as found in Lakemond et al. (J. Agric. Food Chem. 2000, 48, xxxx-xxxx) at ambient temperatures influences heat denaturation. It is found that the 7S form of glycinin denatures at a lower temperature than the 11S form, as demonstrated by a combination of calorimetric (DSC) and circular dichroism (CD) experiments. At pH 7.6, at which glycinin is mainly present in the 11S form, the disulfide bridge linking the acidic and the basic polypeptides is broken during heat denaturation. At pH 3.8, at which glycinin has dissociated partly into the 7S form, and at pH 5.2 this disruption does not take place, as demonstrated by solubility and gel electrophoretic experiments. A larger exposure of the acidic polypeptides (Lakemond et al., 2000) possibly correlates with a higher endothermic transition temperature and with the appearance of an exothermic transition as observed with DSC. Denaturation/aggregation (studied by DSC) and changes in secondary structure (studied by far-UV CD) take place simultaneously. Generally, changes in tertiary structure (studied by near-UV CD) occur at lower temperatures than changes in secondary structure.  相似文献   

3.
Proteins isolated from blue-green algae Spirulina platensis strain Pacifica were characterized by visible absorption, differential scanning calorimetry (DSC), viscometry, and dynamic oscillatory rheological measurements. Unique thermal unfolding, denaturation, aggregation, and gelation of the algal protein isolate are presented. DSC analysis showed that thermal transitions occur at about 67 and 109 degrees C at neutral pH. Calcium chloride stabilized the quaternary structure against denaturation and shifted the transitions at higher temperatures. Viscometric studies of Spirulina protein isolate as a function of temperature showed that the onset of the viscosity increase is closely related to the dissociation-denaturation process. Lower viscosities were observed for the protein solutions dissolved at pH 9 due to an increased protein solubility. Solutions of Spirulina protein isolate form elastic gels during heating to 90 degrees C. Subsequent cooling at ambient temperatures caused a further pronounced increase in the elastic moduli and network elasticity. Spirulina protein isolate has good gelling properties with fairly low minimum critical gelling concentrations of about 1.5 and 2.5 wt % in 0.1 M Tris buffer, pH 7, and with 0.02 M CaCl(2) in the same buffer, respectively. It is suggested that mainly the interactions of exposed hydrophobic regions generate the molecular association, initial aggregation, and gelation of the protein isolate during the thermal treatment. Hydrogen bonds reinforce the network rigidity of the protein on cooling and further stabilize the structure of Spirulina protein gels but alone are not sufficient to form a network structure. Intermolecular sulfhydryl and disulfide bonds were found to play a minor role for the network strength of Spirulina protein gels but affect the elasticity of the structures formed. Both time and temperature at isothermal heat-induced gelation within 40-80 degrees C affect substantially the network formation and the development of elastic modulus of Spirulina protein gels. This is also attributed to the strong temperature dependence of hydrophobic interactions. The aggregation, denaturation, and gelation properties of Spirulina algal protein isolate are likely to be controlled from protein-protein complexes rather than individual protein molecules.  相似文献   

4.
The influence of sucrose (0-40 wt %) on the thermal denaturation and functionality of whey protein isolate (WPI) solutions has been studied. The effect of sucrose on the heat denaturation of 0.2 wt % WPI solutions (pH 7.0) was measured using differential scanning calorimetry. Sucrose increased the temperature at which protein denaturation occurred, for example, by 6-8 degrees C for 40 wt % sucrose. The dynamic shear rheology of 10 wt % WPI solutions (pH 7.0, 100 mM NaCl) was monitored as they were heated from 30 to 90 degrees C and then cooled to 30 degrees C. Sucrose increased the gelation temperature and the final rigidity of the cooled gels. The degree of flocculation in 10 wt % oil-in-water emulsions stabilized by 1 wt % WPI (pH 7.0, 100 mM NaCl) was measured using a light scattering technique after they were heated at fixed temperatures from 30 to 90 degrees C for 15 min and then cooled to 30 degrees C. Sucrose increased the temperature at which maximum flocculation was observed and increased the extent of droplet flocculation. These results are interpreted in terms of the influence of sucrose on the thermal unfolding and aggregation of protein molecules.  相似文献   

5.
The influence of sucrose (0--40 wt %) on the thermal denaturation and gelation of bovine serum albumin (BSA) in aqueous solution has been studied. The effect of sucrose on heat denaturation of 1 wt % BSA solutions (pH 6.9) was measured using ultrasensitive differential scanning calorimetry. The unfolding process was irreversible and could be characterized by a denaturation temperature (T(m)), activation energy (E(A)), and pre-exponential factor (A). As the sucrose concentration increased from 0 to 40 wt %, T(m) increased from 72.9 to 79.2 degrees C, E(A) decreased from 314 to 289 kJ mol(-1), and ln(A/s(-1)) decreased from 104 to 94. The rise in T(m) was attributed to the increased thermal stability of the globular state of BSA relative to its native state because of differences in their preferential interactions with sucrose. The change in preferential interaction coefficient (Delta Gamma(3,2)) associated with the native-to-denatured transition was estimated. The dynamic shear rheology of 2 wt % BSA solutions (pH 6.9, 100 mM NaCl) was monitored as they were heated from 30 to 90 degrees C, held at 90 degrees C for either 15 or 120 min, and then cooled to 30 degrees C. Sucrose increased the gelation temperature due to thermal stabilization of the native state of the protein. The complex shear modulus (G) of cooled gels decreased with sucrose concentration when they were held at 90 degrees C for 15 min because the fraction of irreversibly denatured protein decreased. On the other hand, G of cooled gels increased with sucrose concentration when they were held at 90 degrees C for 120 min because a greater fraction of irreversibly denatured protein was formed and the strength of the protein-protein interactions increased.  相似文献   

6.
Heat-induced gel formation by soy proteins at neutral pH   总被引:9,自引:0,他引:9  
Heat-induced gel formation by soy protein isolate at pH 7 is discussed. Different heating and cooling rates, heating times, and heating temperatures were used to elucidate the various processes that occur and to study the relative role of covalent and noncovalent protein interactions therein. Gel formation was followed by dynamic rheological measurements. Heat denaturation was a prerequisite for gel formation. The gelation temperature (84 degrees C) was just above the onset denaturation temperature of glycinin. The stiffness of the gels, measured as the elastic modulus, G', increased with the proportion of denatured protein. An increase in G' was also observed during prolonged heating at 90 degrees C. This increase is explained by the occurrence of rearrangements in the network structure and probably also by further incorporation of protein in the network. The increase in G' upon cooling was thermoreversible indicating that disulfide bond formation and rearrangements do not occur upon cooling.  相似文献   

7.
Soy isoflavones, present in many processed soy foods, are known for their phytoestrogenic and antioxidant activities. The aim of this work was to study the kinetics of genistein and daidzein degradation at elevated temperatures and to follow changes in their antioxidant activity. Daidzein and genistein in model solutions (pH 7 and 9) were thermally treated at 120 degrees C or incubated at 70, 80, and 90 degrees C. Isoflavone degradation was observed at all temperatures, with apparent first-order kinetics at 70-90 degrees C, and E(a) = 8.4 and 11.6 kcal/mol at pH 9, respectively. Microcalorimetric stability tests showed a similar pattern of degradation, however, with higher E(a) (genistein, 73.7 kcal/mol; daidzein, 34.1 kcal/mol) that may be attributed to the anaerobic conditions. The antioxidant activity of incubated isoflavone solutions, followed by the ABTS test, decreased rapidly at pH 9 for genistein, whereas only moderate reduction was observed for daidzein (pH 7 and 9) or genistein at pH 7. This may indicate different degradation mechanisms for genistein and daidzein.  相似文献   

8.
Physicochemical changes of myosin during heating were investigated to elucidate the mechanism of heat-induced gelation of arrowtooth flounder (ATF) myosin at high ionic strength. Changes in dynamic properties indicated ATF myosin formed a gel in three different stages as shown by the first increase in G' (storage modulus) at 28 degrees C, followed by the decrease at 35 degrees C and the second increase at 42 degrees C. DSC thermogram showed the onset of myosin denaturation at 25 degrees C with two maximum transition temperatures at 30 and 36 degrees C. The decrease in alpha-helical content indicated ATF myosin began to unfold at 15 degrees C and the unfolding continued until it reached 65 degrees C. Turbidity measurement showed myosin began to aggregate at 23 degrees C and the aggregation was complete at 40 degrees C. Surface hydrophobicity increased consistently in the temperature range studied, 20-65 degrees C. Sulfhydryl contents decreased significantly at 20-30 degrees C due to the formation of disulfide linkages but remained constant at temperatures >30 degrees C. ATF myosin was shown to be extremely sensitive to heat, resulting in denaturation at lower temperature than other fish myosin. Denaturation was initiated by unfolding of the alpha-helical region in myosin followed by exposure of hydrophobic and sulfhydryl residues, which are subsequently involved in aggregation and gelation processes.  相似文献   

9.
The coding region of the copper/zinc superoxide dismutase (Cu/Zn SOD) cDNA from papaya fruit, Carica papaya L. cv. Tainong 2, was cloned into an expression vector, pET-20b(+). The Cu/Zn SOD was expressed in Escherichia coli and purified by His-tag technique. Two active forms of the enzyme (30% dimer and 70% monomer) in equilibrium were observed. The activity of the dimeric enzyme was higher than that of the monomeric form. The thermal inactivation rate constant K(d) values calculated for the dimer and monomer at 90 degrees C were -0.0203 and -0.0216 min(-1), and the half-lives for inactivation were 41.9 and 31.8 min, respectively. This indicated that the dimeric enzyme was more stable than its monomeric form. The dimerization of the enzyme was inhibited under acidic pH (below 3.0) or imidazole buffer (above 0.5 M), whereas it was not affected under alkaline pH (above 9.0). Both activity and forms of the enzyme were not affected by 1-4% SDS. Furthermore, the dimeric enzyme was much more resistant to proteolytic attack after 3 h of incubation at 37 degrees C with trypsin or chymotrypsin. In addition, mutation of the papaya Cu/Zn SOD at position 48 from Leu to Phe (L48F) affected the association of monomer, whereas a mutant with Lys substitution (L48K) at the same position tended to dissociate into monomeric form.  相似文献   

10.
Thermal denaturation, rheological, and microstructural properties of gels prepared from native beta-lactoglobulin (beta-LG) and preheated or heat-denatured beta-LG (HDLG) aggregates were compared. The HDLG was prepared by heating solutions of 4% beta-LG in deionized water, pH 7.0, at 80 degrees C for 30 min and then diluted to the desired concentration in 0.6 M NaCl and 0.05 M phosphate buffer at pH 6.0, 6.5, and 7.0. When reheated to 71 degrees C, HDLG formed a gel at a concentration of 2% protein. At pH 7.0, 3% HDLG gelled at 52.5 degrees C and had a storage modulus (G') of 2200 Pa after cooling. beta-LG (3%) in 0.6 M NaCl and 0.05 M phosphate buffer, pH 7.0, did not gel when heated to 71 degrees C. The gel point of 3% HDLG decreased by 10.5 degrees C and the G' did not change when the pH was decreased to 6.0. The HDLG gel microstructure was composed of strands and clumps of small globular aggregates in contrast to beta-LG gels, which contained a particulate network of compacted globules. The HDLG formed a gel at a lower concentration and lower temperature than beta-LG in the high-salt buffer, suggesting an application in meat systems or other food products prepared with salt and processed at temperatures of < or =71 degrees C.  相似文献   

11.
Heat inactivation characteristics differed for acidic (A), neutral (N), and basic (B) broccoli peroxidase. At 65 degrees C, A was the most heat stable followed by N and B. The activation energies for denaturation were 388, 189, and 269 kJ/mol for A, N, and B, respectively. Reactivation of N occurred rapidly, within 10 min after the heated enzyme was cooled and incubated at room temperature. The extent of reactivation varied from 0 to 50% depending on the isoenzyme and heating conditions (temperature and time). The denaturation temperature allowing the maximum reactivation was 90 degrees C for A and horseradish peroxidase (HRP) and 70 and 80 degrees C for B and N, respectively. In all cases, heat treatment at low temperatures for long times prevented reactivation of the heated enzymes. Calcium (5 mM) increased the thermal stability of N and B but had no effect on reactivation. The presence of 0.05% bovine serum albumin decreased thermal stability but increased the extent of reactivation of A..  相似文献   

12.
Soybeans contain oil bodies that are coated by a layer of oleosin proteins. In nature, this protein coating protects the oil bodies from environmental stresses and may be utilized by food manufacturers for the same purpose. In this study, oil bodies were extracted from soybean using an aqueous extraction method that involved blending, dispersion (pH 8.6), filtration, and centrifugation steps. The influence of NaCl (0-250 mM), thermal processing (30-90 degrees C, 20 min) and pH (2-8) on the properties and stability of the oil bodies was analyzed using zeta-potential, particle size, and creaming stability measurements. The extracted oil bodies were relatively small ( d 32 approximately 250 nm), and their zeta-potential went from around +12 mV to -20 mV as the pH was increased from 2 to 8, with an isoelectric point around pH 4. The oil bodies were stable to aggregation and creaming at low (pH = 2) and high (pH >/= 6) pH values but were unstable at intermediate values (3 相似文献   

13.
A full-length cDNA clone of 744 bp encoding a putative copper/zinc-superoxide dismutase (Cu/Zn-SOD) from lemon (Citrus limon) was cloned by PCR approach. Nucleotide sequence analysis of this cDNA clone revealed that it comprised an open reading frame coding for 152 amino acid residues. The deduced amino acid sequences showed high identity (65-84%) with the sequences of the Cu/Zn-SODs from other plant species. Computer analysis of the residues required for coordinating copper (His-45, -47, -62, and -119) and zinc (His-62, -70, and -79 and Asp-82), as well as the two cysteines (56 and 145) that form a single disulfide bond, showed they were well-conserved among all reported Cu/Zn-SOD sequences in the present study. To further characterize the lemon Cu/Zn-SOD, the coding region was subcloned into an expression vector, pET-20b(+), and transformed into Escherichia coliBL21(DE3). Expression of the Cu/Zn-SOD was confirmed by enzyme activity staining on a native gel and purified by Ni(2+)-nitrilotriacetic acid Sepharose superflow. The purified enzyme showed two active forms (70% monomer and 30% dimer) in equilibrium, and the specific activity was 7 456 units/mg. The activity of the dimer was 65% higher than that of the monomer. The thermal inactivation rate constant K(d) value calculated for the dimer at 90 degrees C was -7.0 x 10(-3) min(-1), and the half-life for inactivation was 99 min. Both activity and forms of the enzyme were affected very little by acidic pH, basic pH, or 4% SDS. The dimeric structure was more resistant to heat and proteolytic attack with trypsin or chymotrypsin compared to the monomeric structure. Imidazole caused the dimer to dissociate into monomers. These studies suggested subunit interaction might be important for enzyme stability.  相似文献   

14.
We have previously cloned and characterized the cDNAs of three isoforms of the 8S globulin of mungbean, expressed the major 8Salpha isoform in Escherichia coli, and purified and successfully crystallized it (Bernardo, A. E. N.; Garcia, R. N.; Adachi, M.; Angeles, J. G. C.; Kaga, A; Ishimoto, M.; Utsumi, S.; Tecson-Mendoza, E. M. J. Agric. Food Chem. 2004, 52, 2552-2560). Herein, we report the physicochemical and emulsifying properties of the native 8S and recombinant 8Salpha globulin or vicilin. The circular dichroism spectra analysis of the native 8S and recombinant 8Salpha globulins revealed that the recombinant 8Salpha formed a secondary structure close to that of the native 8S. Further, gel filtration analysis showed that 8Salpha was able to assemble into trimers. The native 8S and recombinant 8Salpha globulins were soluble at pH 3.4 and at pH 7.4-9.0 at low ionic strength, mu = 0.08. Interestingly, the native 8S was more soluble at pH 7.0 and pH 7.4 than the recombinant 8Salpha at mu = 0.08. Both forms were very soluble at pH 3.4-9.0 at high ionic strength, mu = 0.50. The native form exhibited a higher T(m) (69.2, 79.5, and 83.8 degrees C) than the recombinant form (65.6, 71.6, 77.5 degrees C) at mu = 0.1, 0.2, and 0.5, respectively. The recombinant form was found to have greater surface hydrophobicity than the native form. There was little difference in the emulsifying ability between the native 8S and 8Salpha at pH 3.4 and pH 7.6. The results indicate that the presence of N-linked glycans is not essential in the assembly and stable conformation of the mungbean vicilin. However, the N-linked glycans might have contributed to the higher solubility at low ionic strength, greater thermal stability, and decreased surface hydrophobicity of the native vicilin as compared to the recombinant 8Salpha. On the other hand, the N-linked glycans showed little effect on the emulsifying ability of the protein.  相似文献   

15.
The combined high pressure/thermal (HP/T) inactivation of tomato pectin methyl esterase (PME) and polygalacturonase (PG) was investigated as a possible alternative to thermal processing classically used for enzyme inactivation. The temperature and pressure ranges tested were from 60 degrees C to 105 degrees C, and from 0.1 to 800 MPa, respectively. PME, a heat-labile enzyme at ambient pressure, is dramatically stabilized against thermal denaturation at pressures above atmospheric and up to 500-600 MPa. PG, however, is very resistant to thermal denaturation at 0.1 MPa, but quickly and easily inactivated by combinations of moderate temperatures and pressures. Selective inactivation of either PME or PG was achieved by choosing proper combinations of P and T. The inactivation kinetics of these enzymes was measured and described mathematically over the investigated portion of the P/T plane. Whereas medium composition and salinity had little influence on the inactivation rates, PME was found less sensitive to both heat and pressure when pH was raised above its physiological value. PG, on the other hand, became more labile at higher pH values. The results are discussed in terms of isoenzymes and other physicochemical features of PME and PG.  相似文献   

16.
The mechanism that leads to a decreased aggregation of beta-lactoglobulin in the presence of dextran sulfate and lambda-carrageenan was investigated by assessing changes in the denaturation thermodynamics and protein structure. Differential scanning calorimetry results showed that the denaturation temperature (Tp) was about 4.6 degrees C higher in the presence of dextran sulfate, as compared with beta-lactoglobulin alone, whereas in the presence of lambda-carrageenan the difference in Tp was about 1.2 degrees C. Changes in protein structure studies using near-UV circular dichroism (CD) provided support for the calorimetric results. The transition midpoint (Tm) for denaturation of beta-lactoglobulin was about 5 degrees C higher in the presence of dextran sulfate than that found with beta-lactoglobulin alone and about 2 degrees C in the presence of lambda-carrageenan. Thermal modifications of the tertiary structure of beta-lactoglobulin were irreversible at temperatures above 67 degrees C; the addition of dextran sulfate reduced the extent of such modifications. Far-UV CD studies indicated that the addition of dextran sulfate or lambda-carrageenan did not affect secondary structure changes of beta-lactoglobulin upon heating. These studies indicate that dextran sulfate and lambda-carrageenan can enhance the stability of beta-lactoglobulin and thereby inhibit heat denaturation and aggregation.  相似文献   

17.
The denaturation, aggregation, and rheological properties of chicken breast muscle myosin, beta-lactoglobulin (beta-LG), and mixed myosin/beta-LG solutions were studied in 0.6 M NaCl, 0.05 mM sodium phosphate buffer, pH 7.0, during heating. The endotherm of a mixture of myosin and beta-LG was identical to that expected if the endotherm of each protein was overlaid on the same axis. The maximum aggregation rate (AR(max)) increased, and the temperature at the AR(max) (T(max)) and initial aggregation temperature (T(o)) decreased as the concentration of both proteins was increased. The aggregation profile of <0.5% myosin was altered by the presence of 0.25% beta-LG. Addition of 0.5-3.0% beta-LG decreased storage moduli of 1% myosin between 55 and 75 degrees C, but increased storage moduli (G') when heated to 90 degrees C and after cooling. beta-LG had no effect on the gel point of > or =1.0% myosin, but enhanced gel strength when heated to 90 degrees C and after cooling. After cooling, the G' of 1% myosin/2%beta-LG gels was about 1.7 times greater than that of gels prepared from 2% myosin/1% beta-LG.  相似文献   

18.
A phytate-degrading enzyme was purified approximately 2190-fold from germinated 4-day-old faba bean seedlings to apparent homogeneity with a recovery of 6% referred to the phytase activity in the crude extract. It behaves as a monomeric protein of a molecular mass of approximately 65 kDa. The phytate-degrading enzyme belongs to the acidic phytases. It exhibits a single pH optimum at 5.0. Optimal temperature for the degradation of sodium phytate is 50 degrees C. Kinetic parameters for the hydrolysis of sodium phytate are K(M) = 148 micromol L(-1) and k(cat) = 704 s(-1) at 35 degrees C and pH 5.0. The faba bean phytase exhibits a broad affinity for various phosphorylated compounds and hydrolyzes phytate in a stepwise manner. The first hydrolysis product was identified as D/L-myo-inositol(1,2,3,4,5)pentakisphosphate.  相似文献   

19.
Emulsions were made with sunflower protein isolate (SI), helianthinin, and sunflower albumins (SFAs). Emulsion formation and stabilization were studied as a function of pH and ionic strength and after heat treatment of the proteins. The emulsions were characterized with respect to average droplet size, surface excess, and the occurrence of coalescence and/or droplet aggregation. Sunflower proteins were shown to form stable emulsions, with the exception of SFAs at neutral and alkaline pH values. Droplet aggregation occurred in emulsions made with SI, helianthinin, and SFAs. Droplet aggregation and subsequent coalescence of emulsions made with SFAs could be prevented at pH 3. Calcium was found to cause droplet aggregation of emulsions made with helianthinin, at neutral and alkaline pH values. Treatments that increase conformational flexibility of the protein molecule improved the emulsion properties of sunflower proteins.  相似文献   

20.
For the production of oligosaccharides from chitosan, a chitosanase-producing bacterium, S65, was isolated from soil. On the basis of phylogenetic analysis of the 16S rDNA gene sequence and phenotypic analysis, S65 was identified as a Bacillus sp. strain. This bacterium constitutively produced chitosanase in a culture medium without chitosan as an inducer. S65 chitosanase was homogeneously purified by DEAE Sepharose fast flow anion exchange followed by Superdex 75 size exclusion, and the molecular weight was 45 kDa according to SDS-PAGE. Enzyme analysis showed that the optimum pH and temperature of S65 were 6.0 and 65 degrees C, respectively. Catalytic activity was stable from pH 5.5-6.5 at temperatures below 40 degrees C, and the pI of chitosanase was about 6.0 as determined by a test tube method. S65 chitosanase degraded carboxymethyl cellulose (CMC) at the degree of about 5.3% relative to the value of soluble chitosan, but it cannot hydrolyze colloidal chitin and crystalline cellulose. Gene encoding was cloned and sequenced. The deduced amino acid sequence of the S65 exhibited the highest homology to those of family 8 glycanase, suggesting that the enzyme belonged to family 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号