首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Dry matter (DM) partitioning into root, leaf, stem, shoot dry weight plant?1 response in four cool season C3-cereals viz. wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.) and oats (Avena sativa L.) was investigated at 30, 60 and 90 days after emergence (DAE) under eight nitrogen, phosphorus and potassium (NPK) sources: S1 = 20-20-20, S2 = 20-27-5, S3 = 7-22-8, S4 = 10-10-10-20S, S5 = 11-15-11, S6 = 31-11-11, S7 = 24-8-16, and S8 = 19-6-12 in pot experiment at Dryland Agriculture Institute, West Texas A&;M University, Canyon, Texas, USA during winter 2009-10. A considerable variation in DM partitioning into various plant parts was observed in the four crop species at different growth stages and NPK source. At 30 DAE, 27% of the total DM per plant (TDMPP) was partitioned into roots and 73% into shoots (19% stems + 54% leaf). Only16 % of the TDMPP was partitioned into roots and 84% into shoots (18 % stem + 66 % leaf) at 60 DAE. At 90 DAE, 29% of TDMPP was partitioned into roots and 71 % into shoots (33 % stems + 38 % leaf) at 90 DAE. Percent DM partitioning into stems ranked first (33%) at 90 DAE > at 30 DAE (19%) > at 60 DAE (18 %). With advancement in crops age, DM partitioning into various crop parts increased. The root DM plant?1 (RDMPP) increased from 11.5–722 mg plant?1; stem DM plant?1 (STDMPP) from 8.3–889.0 mg plant?1; leaf DM plant?1 (LDMPP) from 23.1–1031.0 mg plant?1; shoot DM plant?1 (SHDMPP) from 31.3–1921 mg plant?1, and TDMPP increased from 42.9–2693.0 mg plant?1 at 30 and 90 DAE, respectively. Because of the higher N contents in S7 (24:8:16) and S6 (31:11:11) reduced the DM partitioning into various plants parts as well as TDMPP at all three growth stages. The adverse effects of S6 and S7 on DM partitioning was more on oats > rye > wheat > barley. The S4 with 10:10:10 (NPK) and :20S was not toxic at 30 DAE, but at 60 and 90 DAE it became toxic that adversely affected the DM partitioning as well as TDMPP probably may be due its high sulfur (20%) content which lacking in other NPK sources. The DM partitioning to various parts of barley and wheat was more than oats and rye at different growth stages (barley > wheat > rye > oats). Since the DM portioning values were determined on the average of five plants in pot experiment under organic soil at field capacity; in case of field experiments more research is needed on various crop species/varieties under different environmental conditions particularly under moisture stress condition.  相似文献   

2.
Leaf thickness plays an important role in leaf and plant functioning and is related to species’ strategies of resource acquisition and use. Leaf thickness in small grains crops was measured as specific leaf area (SLA) (leaf area in cm2 produced g?1 leaf dry weight plant?1) and specific leaf weight (SLW) (leaf dry weight in mg produced cm?2 leaf area plant?1). The four small grains crops (cool season C3 cereals) studied were wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.) and oats (Avena sativa L.). The null hypothesis tested was that SLA and SLW in small grain crops do not differ at different growth stages and nitrogen, phosphorus, and potassium (NPK) source. Eight NPK sources used in the experiment were: S1 = 20-20-20, S2 = 20-27-5, S3 = 7-22-8, S4 = 10-10-10-20S, S5 = 11-15-11, S6 = 31-11-11, S7 = 24-8-16, and S8 = 19-6-12, and each was applied at the rate of 300 mg pot?1 at the time of sowing to each crop species. The experiment was performed in completely randomized design with three repeats at the Green House of Dryland Agriculture Institute, West Texas A&M University, Texas, during winter 2009-10. Based on the results, it was observed that both SLA and SLW differed with change in crop species, growth stage and NPK source. Among the crop species, SLA was greater in oats > barley > rye > wheat at different growth stages; while SLW of wheat and rye > barley and oats. The differences in the SLW between wheat vs. rye; and between oats vs. barley at different growth stages were not significant (P ≤ 0.05). Among the NPK sources, application of S7 (24: 8: 16) had higher SLA at 60 and 90 DAE (days after emergence). Application of S6 (31: 11: 11) had higher SLW at 60 DAE due to the production of the lowest leaf area plant?1, but the increase in SLW at 90 DAE with S5 and S4 was due to the higher leaf dry weight plant?1produced. Leaf dry weight and leaf area plant?1 were considered the two most important leaf characteristics that influenced SLA and SLW. On the average, SLA increased with passage of time i.e. 0.70 < 520 < 600 cm2 g?1 at 30, 60 and 90 DAE, respectively; but SLW on the other hand, was highest 3.5 at 60 DAE > 2.2 at 90 DAE > 1.5 mg cm?2 at 30 DAE. The increase in leaf area plant?1 and decline in the leaf dry weight plant?1 increased SLA; in contrast, increase in leaf dry weight plant?1 and reduction in leaf area plant?1 increased SLW indicated reciprocal relationship between SLA and SLW in the crop species.  相似文献   

3.
Plant species differ in their potassium (K) efficiency, but the mechanisms are not clearly documented and understood. Therefore, K efficiency of spring wheat, spring barley, and sugar beet was studied under controlled conditions on a K fixing sandy clay loam. The effect of four K concentrations in soil solution ranging from low (5 and 20 μM K) to high (2.65 and 10 mM K) on plant growth and K uptake was investigated at 3 harvest dates (14, 21, and 31 days after sowing). The following parameters were determined: shoot dry matter (DM), K concentration in shoot dry matter, root length (RL), root length/shoot weight ratio (RSR), shoot growth rate/average root length ratio (GRs/aRL), K influx, and soil solution K concentrations. Wheat proved to have a higher agronomic K efficiency than barley and sugar beet, indicated by a greater relative yield under K‐deficient conditions. As compared to both cereals, sugar beet was characterized by higher K concentrations in the shoot dry matter, only 30—50 % of the root length, 15—30 % of the RSR and a 3 to 6 times higher GRs/aRL. This means that the shoot of sugar beet had a 3 to 6 times higher K demand per unit root length. Even at low K concentrations in the soil solution, sugar beet had a 7 to 10 times higher K influx than the cereals, indicating that sugar beet was more effective in removing low available soil K. Wheat and barley were characterized by slow shoot growth, low internal K requirement, i.e. high K utilization efficiency, and high RSR, resulting in a low K demand per unit root length. At low soil K concentrations, both cereals increased K influx with age, an indication of adaptation to K deficiency. The mechanism of this adaptation merits closer investigation. Model calculations were performed to estimate the K concentration difference between the bulk soil and the root surface (ΔCL) needed to drive the measured K influx. For the two cereals, the calculated ΔCL was smaller than the K concentration in the soil solution, but for sugar beet, ΔCL was up to seven times higher. This indicates that sugar beet was able to mobilize K in the rhizosphere, but the mechanisms responsible for this mobilization remain to be studied.  相似文献   

4.
An experiment was conducted with cucumber (Cueumis sativus L., cv. Sumter) plants in the vegetative phase of growth to determine effects of manganese deficiency (0.2 μM Mn) and toxicity (182 μM Mn) on fluxes of several mineral nutrients, water, and carbohydrate in the root and shoot, beginning 43 d after germination. Plants were sampled every three days from 34 to 58 d after germination. First and second derivatives of regression equations were used to estimate fluxes and study source/sink phenomena of dry weight (DW), fresh weight (FW), H2O, Cu, Fe, Mn, Zn, N, P, and K in root and shoot tissues.

With Mn sufficiency (1.8 μM Mn), both root and shoot acted as sinks for of each of the 10 dependent variables through 58 d. In contrast, Mn deficiency caused net loss of K and N from the root beginning at 53 and 56 d, respectively, and net loss of P and Fe from the shoot beginning at 57 and 58 d, respectively. With Mn toxicity, net loss of Cu, N, and K from the root began at 46, 46, and 51 d, respectively, and net loss of Fe from the shoot began at 55 d. Both Mn deficiency and toxicity increased the shoot:root ratio (S:R) of K and decreased the S:R of Fe, compared to Mn‐sufficiency. Manganese deficiency decreased the S:R of DW and H2O, and Mn toxicity increased the S:R of FW, DW, H20, and N. Under the conditions of this experiment, acute Mn toxicity affected fluxes more severely than did Mn deficiency.  相似文献   

5.
Abstract

The relative frequency of three viruses causing barley yellow dwarf disease (BYD) was assessed in spring cereals and pasture grasses at two regions in Latvia in 2000–2002. A total of 2589 leaf samples (367 from spring oats, 743 from spring barley, 1479 from predominant grass species) were collected from 44 fields of spring oats, 84 fields of spring barley, and 26 pastures. We found that isolates of barley yellow dwarf virus-PAV (BYDV-PAV), barley yellow dwarf virus-MAV (BYDV-MAV) and cereal yellow dwarf virus-RPV (CYDV-RPV) were present in these samples of spring cereals and pasture grasses. The most common isolates of barley yellow dwarf virus were BYDV-PAV and BYDV-MAV in both grasses and cereals, but there was a great difference between years and regions. The proportion of BYD symptomatic cereal samples that reacted positively in TAS-ELISA test was 9 to 15%. The overall BYDV/CYDV incidence in pasture grasses ranged from 2 to 19%. The incidence of BYDV/CYDV infection was higher in Festuca elatior than in other grass species. Isolates of CYDV-RPV were rather rare: only found in Lolium perenne and Dactylis glomerata among six grass species tested and more frequently in barley than oats. This paper reports the first quantitative survey of selected BYD-causing viruses in spring cereals and pasture grasses in Latvia and in the Baltic states. We conclude that three selected virus species are prevalent in spring cereals and pasture grasses in Latvia, although with great variation between years. Further studies are needed to obtain knowledge of the most critical factors that determine these fluctuations.  相似文献   

6.
Plant growth-promoting rhizobacteria, particularly those from the genus Azospirillum spp., may affect root functions such as growth and nutrient/water uptake, which in turn may affect shoot growth. Calculations based on data from literature on shoot and root mass of crop grasses (79 plant/bacteria associations were analyzed) revealed that inoculation with Azospirillum spp. increased the shoot-to-root (S/R) ratio in about half of reported cases and decreased the S/R ratio in the other half. In 11 of 35 cases, the S/R ratio increased when the shoot mass increased more than the root mass. In 23 of 35 cases, the root mass did not increase, yet the S/R ratio still increased. Thus, the increase in the S/R ratio indicated that shoot growth responds to inoculation more than root growth. A decrease in the S/R ratio occurred when (a) root growth dominated shoot growth even though both increased (16 of 36 cases), or (b) root growth either increased or remained unchanged, and shoot growth was either unaffected or even decreased (19 of 36 cases). This analysis suggests that: (a) Azospirillum spp. participates in the partitioning of dry matter (both carbon compounds and minerals) at the whole plant level by affecting root functions, and (b) the bacteria affect crop grass through multiple mechanisms operating during plant development.  相似文献   

7.
An experiment was conducted to study the biochemical response of rapeseed (Brassica campestris L.) to sulphur (S) fertilization at grey terrace soil. There were five treatments: S0 (control), S1 (20 kg S ha?1), S2 (40 kg S ha?1), S3 (60 kg S ha?1) and S4 (80 kg S ha?1). Chlorophyll content in the leaf was determined at 30, 40, 50 and 60 days after emergence (DAE). The biochemical properties were found responsive to S. The highest chlorophyll content of mustard leaves was found in 60 kg S ha?1 at 50 DAE. The same treatment also showed the maximum N content in the leaves at 45 DAE. The highest oil content was recorded in 60 kg S ha?1. Other chemical characters such as acid value, peroxide and saponification values were lowest in 60 kg S ha?1 while iodine value was found highest in the same S level. Non-essential fatty acids such as palmitic, stearic and erucic acid were increased in the rapeseed with decrease in S level, whereas essential fatty acids were maximum in 60 kg S ha?1. Therefore, 60 kg S ha?1 can be recommended to produce quality rapeseed in grey terrace soil of Bangladesh.  相似文献   

8.
Tolerance to zinc (Zn) deficiency was examined for three wheat (Triticum aestivum L.) and three barley (Hordeum vulgare L.) varieties grown in chelator‐buffered nutrient solution. Four indices were chosen to characterize tolerance to Zn deficiency: (1) relative shoot weight at low compared to high Zn supply (“Zn efficiency index”), (2) relative shoot to root ratio at low compared to high Zn supply, (3) total shoot uptake of Zn under deficient conditions, and (4) shoot dry weight under deficient conditions. Barley and wheat exhibited different tolerance to Zn deficiency, with barley being consistently more tolerant than wheat as assessed by all four indices. The tolerance to Zn deficiency in the barley varieties was in the order Thule=Tyra>Kinnan, and that of wheat in the order Bastian=Avle>Vinjett. The less tolerant varieties of both species accumulated more P in the shoots than the more tolerant varieties. For all varieties, the concentrations of Mn, Fe, Cu, and P in shoot tissue were negatively correlated with Zn supply. This antagonism was more pronounced for Mn and P than for Cu and Fe. Accumulation of Cu in barley roots was extremely high under Zn‐deficient conditions, an effect not so clearly indicated in wheat.  相似文献   

9.
Three cultivars of tomato (Lycopersicon esculentum Mill., cvs. Sera, 898, Rohaba) were grown under different levels of NaCl in nutrient solution to determine effects of salt stress on shoot and root dry matter (DM), plant height, water use efficiency (WUE, g DM kg‐1 water evapotranspired), shoot sodium (Na) and potassium (K) concentrations, and K versus Na selectivity (SK,Na). Increasing NaCl concentration in nutrient solution adversely affected shoot and root DM, plant height, WUE, K concentration, and K/Na ratio of all cultivars. Shoot Na concentrations increased with increasing NaCl concentration in the nutrient solution. Although increasing salt concentration in the solution adversely affected growth of all cultivars, the cultivar Sera had the highest shoot and root DM than the other two cultivars (898 and Rohaba). Shoot and root DM of cultivar 898 was most affected by salt, while cultivar Rohaba had an intermediate salt sensitivity. The cultivar Sera generally had higher WUE values, shoot K concentrations, and SK,Na, but had lower shoot Na concentrations than the other two cultivars when plants were grown under different salt levels. Greater Na exclusion, higher K uptake and shoot SK,Na are suggested as being plant strategies for salt tolerance.  相似文献   

10.
Pistachio hull is a horticultural waste product obtained during dehulling process of pistachio nuts. This experiment was carried out to evaluate the effects of pistachio hull and rice husk compost, as culture medium, on vegetative and physiological characteristics of pothos (Scindapsus aureus) plants. Rooted cuttings were used as plant materials and cultured in pots (40 × 30cm) filled with the following media: S1 = 100% peat (control), S2 = 100% rice husk, S3 = 70% rice husk + 30% pistachio hull, S4 = 50% rice husk + 50% pistachio hull, S5 = 30% rice husk + 70% pistachio hull and S6 = 100% pistachio hull. The vegetative parameters were affected by media type, so that no plants survived in 100% pistachio hull. The application of 50% pistachio hull and 50% rice husk (S4), increased shoot fresh weight, and potassium (K) concentration of shoot and root compared to control. Fresh and dry root weight and phosphorus (P) concentration of shoot was increased with S2 treatment (100% rice husk).  相似文献   

11.
In the present study, the effectiveness of biofertilizer containing plant growth promoting rhizobacteria was evaluated on growth and physiology of cotton under saline conditions. Cotton plants were exposed to different levels of NPK (50%, 75%, and 100% of recommended levels) along with coating with biofertilizer under saline (15 dS m?1) and non-saline conditions. It was observed that the biofertilizer seed coating improved growth, physiological (relative water content and chlorophyll content index), and ionic (K+/Na+) characteristics under saline and non-saline conditions. However, shoot growth (shoot fresh and dry weight) and leaf gas exchange characteristics (CO2 assimilation rate, A; intercellular CO2 concentration, Ci; transpiration rate, E; stomatal conductance, gs) were decreased by biofertilizer coating under saline condition. Increasing levels of NPK fertilizer increased shoot growth, whereas root growth was maximum at 75% NPK level under saline conditions. The results of the study indicate that the biofertilizer application was very effective for cotton plant in non-saline conditions but not very effective in saline conditions.  相似文献   

12.
Nutrient requirements o£ plants during their various phases of growth are affected by several internal and external factors. The changes in rate of uptake by root with age are an important factor to meet the increasing plant demand for nutrients. Nutrient culture experiments were carried out under controlled greenhouse conditions with corn (Zea Mays L.) and alfalfa (Medicago sativa L.) to investigate the relationship of stage of growth to changes in plant parameters and nutrient uptake properties. With advancement of age. both plant species increased their ambient growth medium pH towards neutrality. With increasing age in alfalfa there was very little change in observed S:R ratio and root growth rate. On the other hand in corn plants the S:R ratio increased and growth rate for root and shoot decreased with age. Alfalfa contained higher concentrations of N, K, Na, and Ca than corn; while ion concentrations in both crops decreased with plant age. At all stages of growth, alfalfa absorbed less nutrients than corn. The rates of nutrient influx, In in both the crops showed various degrees of correlation with age and rate of shoot growth. In corn. In for ions reached a maximum at 25 days growth; whereas, in alfalfa, In reached maximum at 30 days of growth. The differences in influx rates for different ions in the two species are probably due to the difference in development of shoot and root parameters and shoot demand for the ions.  相似文献   

13.
《Journal of plant nutrition》2013,36(12):2603-2612
ABSTRACT

The influence of nitrogen (N) sources on biomass yield and nutrient uptake of wheat (Triticum aestivum L.) under saline conditions was studied in a greenhouse experiment. Six different forms of N {nitrate-N as Ca(NO3)2, urea-N [CO(NH2)2], ammonium-N as (NH4)2SO4, nitrate-N+urea-N, nitrate-N+ammonium-N and a control (no N fertilizer)} were factorially combined with three levels of salinity to give a total of 18 treatments that were replicated three times. Each of the five levels of applied N was at the rate of 100?kg?ha?1. The salinity levels (ECe) were 6.2 and 12.1?dSm?1, denoted as S 1 and S 2 and untreated soil (S 0), respectively. A basal dose of phosphorus (P) and potassium (K) was also applied. Five wheat plants were grown in each pot for six weeks. Data were collected for shoot and root biomass and shoot samples were analyzed for N, P, K, calcium (Ca), magnesium (Mg), sodium (Na), chloride (Cl), and micronutrients contents. Plant growth and nutrient uptake were influenced by both salinity and source of N. As expected, increasing salinity decreased dry matter production of shoot and root, whereas N application increased plant growth across all levels of salinity. The total dry biomass (shoot and root) of wheat was significantly higher in combined N treatments than in single sources. Irrespective of N forms most of the nutrient concentrations in the shoot was increased with increasing level of salinity. Among the fertilizers the concentration of cation was higher in nitrate-treated plants than in other forms of N. Ammonium-N and urea-N tended to inhibit the uptake of cations compared to nitrate-N under saline conditions. The trend for P and Cl concentration was almost opposite to that of cations concentration in the shoot. The uptake of nutrients seemed to be influenced by cation–anion balance in soil-plant system. Nitrogen concentration of shoot was greatly enhanced by all forms of N in the following order: Ni>NiAm>Am>NiUr>Ur>control. The interactive effect of salinity and fertilizer on iron (Fe), manganese (Mn), and zinc (Zn) contents was not consistent. Among the fertilizers the concentration of trace elements in the shoot was also not significantly different. It was concluded that the plant growth and nutrient concentration of shoot could depend upon N source and level of salinity. The mixed application of both ammoniacal and nitrate forms of N could possibly be conducive to plant growth in salt affected soils.  相似文献   

14.
Aluminum (Al) negatively interferes with the uptake or transport of different nutrients. The aim of our work was to compare the Al tolerance and micronutrient accumulation: iron (Fe), zinc (Zn) and manganese (Mn), in cereal species (winter wheat, spring wheat, winter rye, oats and barley) contrasting in Fe efficiency. Our previous screening in a calcareous soil showed that oats and barley were more Fe-efficient than spring wheat, winter wheat or winter rye. In Al stress conditions, both oats and barley exhibited more effectiveness in Fe acquisition and translocation from root to shoot in comparison to winter wheat, spring wheat and winter rye. Also, oats and barley responded to Al toxicity by less Al-retarded shoot biomass than other cereal species. A combination of tolerance mechanisms appears to have great importance for Al tolerance including mechanisms underlying Fe efficiency in cereal seedlings.  相似文献   

15.
Abstract

This study was conducted to evaluate the effect of vesicular‐arbuscular mycorrhizal (VAM) fungus Glomus etunicatum on growth, absorption, and distribution of calcium (Ca), magnesium (Mg), phosphorus (P), and aluminum (Al) in one Al‐tolerant and one Al‐sensitive barley cultivar. The plants were grown in sand daily irrigated with nutrient solution containing 0 or 600 μM Al at pH 4.8. Significant interaction (P=0.05) among variety, mycorrhiza, and aluminum (VxMxAl) were noted for both shoot and root dry matter (DM); shoot concentration and content of Al, P, Ca, and Mg; root concentration of Al, P, and Mg; and root content of Al, P, Ca, and Mg. With VAM inoculation: i) root colonization degree was about 50% in all treatment, ii) shoot DM yield increased between 30 and 70%, iii) Al concentration and content decrease down to a half both in shoots and roots of sensitive barley, iv) Ca concentration in shoots of sensitive barley showed a high increase at 600 μM Al, and v) P concentration and content in shoots of both varieties increased significantly.  相似文献   

16.
Manganese (Mn) deficiency is a widespread crop micronutrient disorder. The aim of this work was to evaluate two NPK fertilizers coated with Mn that eliminate the specific labor cost for applying Mn and that allow the correction of Mn deficiency in wheat (Triticum aestivum L.). Two Mn sources [MnSO4 and Mn‐lignosulfonate (MnLS)] were compared as NPK coatings at doses of 0.1, 0.3, and 1.0% (w/w) in hydroponic, perlite, and soil pot cultures under growth chamber and greenhouse conditions with wheat to evaluate the effects on dry matter production and Mn concentrations. For the NPK+MnLS product, 52–63% of the total Mn remained in solution at calcareous conditions. However, the NPK+MnSO4 product was able to maintain only 14–25% of the total Mn added in solution. As expected, the MnLS product resulted in higher Mn concentrations in shoots than the MnSO4 product due to the Mn complexation by lignosulfonate which preserved Mn from precipitation and maintained it available for plants. In the experiment with perlite as growth substrate, at low Mn dose (0.1% Mn) a similar Mn concentration in wheat shoots was found (57 mg kg?1 DW for the MnSO4 coating versus 72 mg kg?1 DW for MnLS coating), but at the highest dose (1.0% Mn) the NPK+MnLS showed a significant increase in shoot Mn concentration (167 versus 132 mg kg?1 DW). Soil application of coated NPK products showed similar Mn concentrations in shoots with both Mn sources (29–37 mg kg?1 DW), except for the NPK+MnSO4 (0.1%) treatment (only 18 mg kg?1 DW). Based on the recommended Fe/Mn values (Fe : Mn ratio = 1.5–2.5) given in the literature for plants with a correct nutrition, only the NPK+MnLS (0.3%) fulfilled this ratio (Fe : Mn = 2.5).  相似文献   

17.
Inoculants are of great importance in sustainable and/or organic agriculture. In the present study, plant growth of barley (Hordeum vulgare) has been studied in sterile soil inoculated with four plant growth-promoting bacteria and mineral fertilizers at three different soil bulk densities and in three harvests of plants. Three bacterial species were isolated from the rhizosphere of barley and wheat. These bacteria fixed N2, dissolved P and significantly increased growth of barley seedlings. Available phosphate in soil was significantly increased by seed inoculation of Bacillus M-13 and Bacillus RC01. Total culturable bacteria, fungi and P-solubilizing bacteria count increased with time. Data suggest that seed inoculation of barley with Bacillus RC01, Bacillus RC02, Bacillus RC03 and Bacillus M-13 increased root weight by 16.7, 12.5, 8.9 and 12.5% as compared to the control (without bacteria inoculation and mineral fertilizers) and shoot weight by 34.7, 34.7, 28.6 and 32.7%, respectively. Bacterial inoculation gave increases of 20.3–25.7% over the control as compared with 18.9 and 35.1% total biomass weight increases by P and NP application. The concentration of N and P in soil was decreased by increasing soil compaction. In contrast to macronutrients, the concentration of Fe, Cu and Mn was lower in plants grown in the loosest soil. Soil compaction induced a limitation in root and shoot growth that was reflected by a decrease in the microbial population and activity. Our results show that bacterial population was stimulated by the decrease in soil bulk density. The results suggest that the N2-fixing and P-solubilizing bacterial strains tested have a potential on plant growth activity of barley.  相似文献   

18.
Crop and native plants can be characterized as high and low nutrient‐adapted based on their expected response to native and applied nutrients. Our objective was to compare the plasticity of biomass allocation and tissue nutrient concentrations to added sulfur (S) and nitrogen (N) across a continuum of high and low nutrient‐adapted grasses, represented by barley (Hordeum vulgare), smooth brome (Bromus inermis), bluebunch wheatgrass (Pseudoroegneria spicata), and Idaho fescue (Festuca idahoensis). In our greenhouse study, treatments included two S sources (pyrite and gypsum), at 150 and 300 kg S ha‐1, N at 50 kg ha‐1, and a check. Shoot biomass of barley, smooth brome, and bluebunch wheatgrass was enhanced by S plus N. Shoot biomass of barley and smooth brome was greater with pyrite than with gypsum. Root biomass of smooth brome and bluebunch wheatgrass was greater with pyrite than with gypsum. Plant S concentrations of barley and Idaho fescue were enhanced by added S. Plant S concentrations in barley and smooth brome were greater with gypsum than with pyrite. Except for barley, plant S pools (shoot biomass x shoot S concentration) were enhanced with S plus N compared with no added nutrients. Nitrogen pools of barley, smooth brome, and bluebunch wheatgrass were higher with pyrite than with gypsum. Soil sulfate (SO4) was greater when S or S plus N was added than without any added nutrients. For barley and smooth brome, soil sulfate tended to be lower with pyrite than with gypsum. For all soils, pH was lower with added S or added S plus N compared with unamended soils. While pyrite lowered soil pH, gypsum tended to increase soil pH. Overall, barley and smooth brome were highly plastic in responding to enhanced nutrient levels, bluebunch wheatgrass was relatively responsive, and Idaho fescue was least responsive.  相似文献   

19.
ABSTRACT

On the basis of greenhouse bioassays, the sensitivities of root and shoot biomass of barley (Hordeum vulgare L.), corn (Zea mays L.), oilseed rape (Brassica napus L.) and sugar beet (Beta vulgaris L.) to soil-incorporated sulfosulfuron and tribenuron methyl were assessed. Shoot and root biomass production was measured 30 days after emergence. Plant responses, including roots and shoots dry weight per pot, were described by a three parameter log-logistic regression model as a function of sulfosulfuron or tribenuron methyl doses and the relative sensitivities were calculated at the various ED-levels with their associated 95% confidence intervals. The most precise ED-levels were that at ED50 and sensitivity rank was oilseed rape, sugar beet, corn and barley, whatever the chosen response level and herbicide. We calculated relative sensitivities at ED10, ED50 and ED90 for the species of barley, the most tolerant crop, as reference. Comparison of relative sensitivity of crops to both herbicides showed that the sensitivity of these crops was much larger for tribenuron methyl than for sulfosulfuron. Oilseed rape was the most sensitive species (ED50?=?0.202 and 0.179?µg?kg?1 soil for root dry weight (RDW) response to sulfosulfuron and tribenuron methyl, respectively) while barley was the most tolerant one (ED50?=?1.008 and 3.68?µg?kg?1soil for RDW response to sulfosulfuron and tribenuron methyl, respectively). Sugar beet and corn had intermediate sensitivity. Also, we demonstrated how important it is to show the confidence intervals of relative sensitivities. In several instances the relative sensitivities, even numerically large, were not significantly different from 1.00. We demonstrate that classifying biotypes as resistant to a herbicide requires the threshold of resistance/susceptible (R/S) of 4.00 only be accepted if confidence intervals do not cover 1.00.  相似文献   

20.
Identification and determination of some gibberellins in the gibberellin spectrum of some cereals, als affected by CCC treatment The gibberellin contents of wheat, barley and oat plants, treated with CCC, were studied during the vegetative period. It was possible to identify a characteristic gibberellin spectrum for every cereal plant examined, although the variation was in a limited number of gibberellin forms. A great variation in the content of individual gibberellic acid forms was noticed, as well, among the different cereals studied. The highest content of gibberellins was found with GA3. The content of GA5 was lower than that of GA9 while was not generally higher than that of GA8. CCC-treated cereal plants showed lower values of gibberellins when compared with those of control. On the other hand, CCC treatment did not affect the content of gibberellins in the spikes which showed a considerably high content of GA3, GA5 and GA9. A higher content of GA7 was observed in both barley and oats, but not in the case of wheat, during tillering stage. However it was difficult, from the results of the present work, to indicate whether GA7 is reponsible for the week effect of CCC obtained with both barley and oats or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号