首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
胡维  葛刚  熊勇  吴兰 《农业环境保护》2012,(9):1785-1790
通过研究鄱阳湖南矶山湿地土壤在不同季节、不同植被类型和不同土壤深度下总有机碳、总氮、总磷的含量变化,分析了鄱阳湖南矶山湿地土壤养分的空间分布特征和季节变化规律。结果表明:南矶山湿地土壤总有机碳、总氮、总磷含量在不同的土壤深度、季节和植被类型中均表现出极显著差异。其中南矶山灰化苔草、南荻、狗牙根植被群落样地0~15cm表层土壤总有机碳、总氮含量显著大于30~45cm底层含量;灰化苔草、南荻群落土壤总有机碳和总氮含量的季节变化明显,尤其是表层土壤在各个不同的季节差异显著,但狗牙根植被群落土壤总有机碳和总氮含量季节变化不明显;3种典型植被类型下土壤总磷含量季节变化明显,呈现"N"的变化趋势。土壤总有机碳与总氮含量极显著正相关、与总磷含量显著相关,表明鄱阳湖南矶山湿地土壤氮、磷主要以有机质的结合形态存在。  相似文献   

2.
水分梯度对若尔盖高寒湿地土壤活性有机碳分布的影响   总被引:5,自引:1,他引:4  
沿自然原因和人为原因形成的水分梯度,对若尔盖高寒湿地沼泽土和泥炭土的有机碳(SOC)和活性有机碳(LC)进行了研究。研究表明,若尔盖高寒湿地沼泽土有机碳和全氮沿水分梯度(减小)变化趋势一致,即在表层0—10cm湿润环境中的有机碳和全氮含量远高于淹水环境和过渡地带,而10—30 cm沿水分梯度差异变小。泥炭土的有机碳和氮素含量在湿润环境远大于淹水(流水)环境。这说明当时的挖沟排水疏干沼泽使得相当一部分土壤有机碳或者释放到大气中,或者随水流流失。沼泽土活性有机碳在表层0—10 cm沿水分梯度升高;在10—30 cm差异变小,与有机碳和氮素的变化趋势一致。泥炭土的活性有机碳沿水分梯度升高,与泥炭土有机碳和氮素变化趋势一致。这一方面反映了两种土壤类型成土过程的不同,另一方面也反映了自然原因和人为原因造成的差异。沼泽土的碳氮比沿水分梯度有降低的趋势而泥炭土的碳氮比沿水分梯度有升高的趋势。此外,高寒沼泽土碳氮比,pH值以及机械组成都是影响土壤有机碳,氮素和活性有机碳的重要因子。  相似文献   

3.
科尔沁沙地半固定沙丘不同坡位土壤C,N特征   总被引:1,自引:0,他引:1  
[目的]研究沙丘不同坡位土壤碳氮的分布特征,旨在探索沙丘不同坡位植被演替机制。[方法]选取高于5m的半固定沙丘,沿主要风向于坡底、坡中、坡顶和背风坡设置样点,对土壤容重、土壤总有机碳含量和土壤总氮含量进行测定,并计算碳氮比、碳氮密度和碳氮储量。[结果](1)不同坡位土壤碳含量均随深度增加显著降低,主要变异层发生在0—40cm层。不同坡位土壤碳含量在30—40cm层和60—100cm层存在差异。(2)氮含量与容重在不同坡位和不同深度均不存在显著差异性,碳氮比在坡底和坡顶存在显著的垂直差异性,背风坡60—100cm层土壤碳氮比显著高于其它坡位。(3)各坡位土壤碳密度随深度增加显著下降。30—40cm层土壤碳密度存在显著的坡位差异,而土壤氮密度的垂直差异和坡位间差异均不显著。(4)半固定沙丘土壤碳氮储量分别为716.89和94.14kg/m2,不同坡位差异性不显著;碳储量的构成在4种坡位差异较大,而各坡位不同深度土壤氮储量对总储量的贡献差异较小。[结论]科尔沁沙地半固定沙丘土壤碳氮含量与密度不同坡位的差异较小,同时各坡位的碳氮均存在显著的垂直差异性,尤其在30—40cm层,变异程度较大,这可能与该层植物根系分布有关。  相似文献   

4.
Rates of N mineralization were measured in 27 forest soils encompassing a wide range of forest types and management treatments in south-east Australia. Undisturbed soil columns were incubated at 20°C for 68 days at near field-capacity water content, and N mineralization was measured in 5-cm depth increments to 30 cm. The soils represented three primary profile forms: gradational, uniform and duplex. They were sampled beneath mature native Eucalyptus sp. forest and from plantations of Pinus radiata of varying age (<1 to 37 years). Several sites had been fertilized, irrigated, or intercropped with lupins. The soils ranged greatly in total soil N concentrations, C:N ratios, total P, and sand, silt, and clay contents. Net N mineralization for individual soil profiles (0–30 cm depth) varied from 2.0 to 66.6 kg ha-1 over 68 days, with soils from individual depths mineralizing from <0 (immobilization) to 19.3 kg ha-1 per 5 cm soil depth. Only 0.1–3.1% of the total N present at 0–30 cm in depth was mineralized during the incubation, and both the amount and the percentage of total N mineralized decreased with increasing soil depth. N fertilization, addition of slash residues, or intercropping with lupins in the years prior to sampling increased N mineralization. Several years of irrigation of a sandy soil reduced levels of total N and C, and lowered rates of N mineralization. Considuring all soil depths, the simple linear correlations between soil parameters (C, N, P, C:N, C:P, N:P, coarse sand, fine sand, silt, clay) and N mineralization rates were generally low (r<0.53), but these improved for total N (r=0.82) and organic C (r=0.79) when the soils were grouped into primary profile forms. Prediction of field N-mineralization rates was complicated by the poor correlations between soil properties and N mineralization, and temporal changes in the pools of labile organic-N substrates in the field.  相似文献   

5.
为了阐明人工梭梭林土壤碳氮磷密度及其生态化学计量特征演变规律,以吉兰泰荒漠区不同林龄(3,6,11,16年)人工梭梭林为研究对象,分析0—20,20—40,40—60 cm土层土壤有机碳(SOC)、全氮(TN)、全磷(TP)密度和生态化学计量特征。结果表明:(1)4种林龄人工梭梭林0—60 cm土层SOC、TN含量及其密度随林龄增加而升高,而TP含量及其密度随林龄增加而降低。其中,3,6年梭梭林SOC、TN含量及其密度随土层深度增加而升高,TP含量及其密度则与之相反;11,16年梭梭林SOC、TN、TP含量及其密度随土层深度增加而降低。(2)4种林龄梭梭林土壤C∶N、C∶P、N∶P分别为2.24~9.21,1.59~7.05,0.56~0.81,均属于中等变异水平,且变异系数随林龄和土层深度增加逐渐减小,说明土壤C∶N、C∶P、[JP]N∶P趋于平稳状态。(3)林龄、土层深度及其交互作用显著影响SOC含量、SOC密度、C∶N、C∶P,对TN含量、TP含量、TN密度、TP密度、N∶P无显著影响。(4)土壤孔隙度(STP)与SOC密度呈显著正相关关系(P<0.05),说明土壤孔隙度增加有助于SOC密度增加,提高土壤肥力。在干旱荒漠区建植梭梭林有利于提高土壤肥力,改善干旱荒漠区土壤环境。  相似文献   

6.
滇池柴河流域不同土地利用方式土壤养分剖面分异   总被引:4,自引:0,他引:4  
基于滇池柴河流域土壤采样,研究了平坦设施农业、平坦传统农业、坡耕地、撂荒地和林地5种土地利用方式0—100cm土壤养分剖面的分异特征,结果表明:(1)不同土地利用方式土壤0—100cm内TN含量排序为:设施农业>传统农业>撂荒地>坡耕地>林地,并且设施农业TN含量显著高于坡耕地和林地(P<0.05)。不同土地利用方式间土壤TN含量的显著差异主要表现在0—80cm。土壤TN含量沿土层自上而下逐层降低,但在不同土地利用方式下,各土层间的差异不一致。(2)不同土地利用方式土壤0—100cm内TP含量排序为:传统农业>设施农业>坡耕地>林地>撂荒地,且不同土地利用方式间各个土层内土壤TP均无显著性差异。5个土层TP均表现为撂荒地<林地<耕作土壤。土壤TP沿土层自上而下总体先降后升,但不同土地利用方式土壤TP随土层的变化趋势不尽一致。(3)不同土地利用方式土壤0—100cm内有机质含量排序为:设施农业>传统农业>撂荒地>坡耕地>林地,且设施农业有机质含量明显高于坡耕地和林地。在5个土层内,不同土地利用方式间土壤有机质差异不显著,只在20—40cm土层内设施农业与坡耕地、林地之间达到显著性差异。土壤有机质含量沿土层自上而下逐层降低,但在不同土地利用方式下,各土层间的显著性差异不一致。  相似文献   

7.
西北旱作农田不同耕作模式对土壤性状及小麦产量的影响   总被引:5,自引:2,他引:3  
【目的】在雨养农业区,旱作区因连年翻耕而引起严重的土壤质量退化,使作物生产力下降,需定期改变其耕作方式。免耕深松隔年轮耕可以降低土壤容重,增加耕层土壤团聚体和有机碳氮的含量,增强土壤蓄水保墒能力,对改善土壤性状和提高作物产量具有重要意义。【方法】本研究于2007~2010年在宁夏南部半旱区进行了两年免耕一年深松 (NT/ST/NT)、两年深松一年免耕 (ST/NT/ST)、连年翻耕 (CT) 3种耕作模式试验,研究了其对耕层土壤容重、团聚体、土壤有机碳氮含量、土壤水分及作物产量的影响。【结果】3年耕作处理后,与连年翻耕相比,NT/ST/NT、ST/NT/ST处理0—20 cm层土壤容重分别降低了4.4%和7.3%,20—40 cm土层分别降低2.1%和5.7%,40—60 cm土层分别降低4.1%和5.5%;土壤孔隙度0—20 cm土层分别提高了4.1%和6.8%,20—40 cm土层提高了2.1%和4.3%,40—60 cm土层提高了5.5%和5.7%。0—20 cm土层,NT/ST/NT处理0.25~2 mm机械稳定性团聚体含量平均较CT处理提高了12.4%,ST/NT/ST处理 > 2 mm机械稳定性团聚体含量较CT处理平均提高了42.0%;20—40 cm土层,NT/ST/NT、ST/NT/ST处理 > 2 mm团聚体含量较CT处理平均分别提高了44.3%和50.4%。两种轮耕模式使0—40 cm土层土壤团聚体平均重量直径分别显著高于CT处理21.8%和22.5%,几何平均直径分别高于CT处理9.6%和9.5%。三个处理耕层土壤有机碳氮含量均比试验前有不同程度的增加,轮耕处理0—30 cm土层0.25~2 mm粒级有机碳含量和 < 0.25 mm粒级全氮含量显著高于CT,以ST/NT/ST处理效果最佳。NT/ST/NT和ST/NT/ST处理0—10 cm土层0.25~2 mm团聚体有机碳含量较CT处理分别显著提高7.9%和10.2%,10—20 cm土层分别提高19.0%和15.7%,20—30 cm土层分别提高10.6%和13.3%;0—10 cm土层 < 0.25 mm粒级全氮含量显著提高9.4%和10.9%,10—20 cm土层分别提高6.8%和10.2%,20—30 cm土层分别提高7.4%和9.3%。研究期间,NT/ST/NT和ST/NT/ST处理较CT处理可显著提高0—200 cm土壤贮水量,其中以ST/NT/ST处理保蓄土壤水分效果最佳。在小麦生长前期,轮耕处理土壤贮水量均高于连年翻耕,生长后期ST/NT/ST处理土壤水分含量最高,NT/ST/NT处理次之。轮耕处理的小麦生物量和籽粒产量显著高于连年翻耕,其中小麦籽粒产量分别增加9.6%和10.7%。【结论】免耕/深松轮耕可显著改善土壤的物理性状和水分环境,显著增加耕层土壤有机碳氮含量,提高作物的生产力,在宁南旱区有重要的应用前景。  相似文献   

8.
Summary We evaluated potential NO inf3 sup- losses from organic and inorganic N sources applied to improve the growth of cotton (Gossypium hirsutum) on a Pima clay loam soil (Typic Torrifluvent). An initial set of soil cores (April 1989) was collected to a depth of 270 cm from sites in a cotton field previously amended with anaerobically digested sewage sludge or an inorganic N fertilizer. The denitrification potential was estimated in all soil samples by measuring N2O with gas chromatography. Soils amended with a low or high rate of sludge showed increased denitrification activity over soil samples amended with a low rate or inorganic N fertilizer. All amended samples showed greater denitrification activity than control soils. The denitrification decreased with soil depth in all treatments, and was only evident as deep as 90 cm in the soils treated with the high sludge rate. However, when soils collected from depths greater than 90 cm were amended with a C substrate, significant denitrification activity occurred. These date imply that organisms capable of denitrification were present in all soil samples, even those at depths far beneath the root zone. Hence, denitrification was C-substrate limited. A second series of soil cores taken later in the growing season (July 1989) confirmed these data. Denitrification losses (under laboratory conditions) to a soil depth of 270 cm represented 1–4% of total soil N depending on treatment, when the activity was C-substrate limited. With additional C substrate, the denitrification losses increased to 15–22% of the total soil N.  相似文献   

9.
不同演化阶段白刺灌丛沙堆土壤生态化学计量特征   总被引:1,自引:1,他引:0  
为了阐明灌丛沙堆发育对土壤碳(C)、氮(N)、磷(P)生态化学计量特征的影响,以吉兰泰荒漠区不同演化阶段白刺(Nitraria tangutorun)灌丛沙堆为研究对象,研究0—100 cm土层土壤C∶N∶P化学计量特征在不同演化阶段的变化规律和垂直分布规律。结果表明:(1)白刺灌丛沙堆土壤有机碳(SOC)、全氮(TN)和全磷(TP)随演化阶段(雏形阶段→发育阶段→稳定阶段→衰亡阶段)的变化呈先增后减的变化趋势。演化阶段对白刺灌丛沙堆SOC影响显著(P<0.05),对TN、TP无显著影响(P>0.05),其SOC、TN、TP均值含量在0—100 cm土层分别为0.42~0.58,0.04~0.07,0.22~0.25 g/kg,远小于全国土壤平均水平(11.12,1.06,0.65 g/kg)。(2)白刺灌丛沙堆SOC、TN、TP含量及其生态化学计量比随土层深度增加无明显规律性。(3)土壤SOC、TN、TP含量及其生态化学计量比均属于中等变异,且变异系数随白刺灌丛沙堆演化不断减小。(4)土壤容重、毛管孔隙度、非毛管孔隙度对白刺灌丛沙堆土壤TN、C∶N、N∶P影响显著,而土壤含水量、pH对白刺灌丛沙堆SOC、TN、TP含量及其生态化学计量比无显著影响。各演化阶段白刺灌丛沙堆SOC、TN是调控白刺灌丛沙堆土壤生态化学计量比的主要因素。因此,该研究结果明晰了白刺灌丛沙堆土壤C∶N∶P生态化学计量特征对不同演化阶段的响应,为该区域白刺群落的保护、利用和植被恢复与重建提供科学依据。  相似文献   

10.
Spatial variability of hydro‐physical properties has long been observed, whereas temporal variation is much less documented and considered in studies and applications, particularly of paddy clay soils under different cropping systems. The objective of this study was therefore to assess the seasonal‐ and inter‐seasonal variation of selected hydro‐physical properties of a paddy clay soil under different rice‐based cropping systems with contrasting tillage. In a long‐term experiment, plots were arranged in a randomized complete block design with four treatments and four replications: (i) rice–rice–rice; (ii) rice–maize–rice; (iii) rice–mung bean–rice; and (iv) rice–mung bean–maize. Soil samples were collected at three depths (0–10, 10–20 and 20–30 cm) at three times during two cropping seasons, i.e., 15 days after soil preparation (DASP), 45 DASP and 90 DASP during the winter–spring and spring–summer seasons. Results show that temporal variability of soil bulk density, macro‐porosity (MacP) and matrix‐porosity within both seasons and between seasons was limited for cropping systems with upland crop rotations, whereas within season variation was significant for rice monoculture system. Observed variation in bulk density, matrix‐porosity and MacP was mainly associated with cropping system and soil depth. Field saturated hydraulic conductivity of topsoil showed great temporal variability, both seasonal and inter‐seasonal, in correspondence with MacP (r  = 0·58). These results highlight the need of depth differentiated soil sampling and time consideration when evaluating management practices on soil physical properties and modeling the hydrological behavior of paddy soil. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Reclaimed coal mine lands have the potential to sequester atmospheric carbon (C); however, limited information exists for the western USA coalfields. This study was carried out on two chronosequences (BA‐C3 grasses and DJ‐shrubs) of reclaimed sites at two surface coal mines to determine the effects of vegetation, soil texture, and lignin content on soil total organic carbon (TOC) accumulations. In the BA chronosequence, TOC increased over 26 years at an average rate of 0·52 Mg C ha−1 yr−1 in the 0–30 cm depth and was significantly correlated with clay content. Comparison between < 1 and 16‐year‐old stockpile soils indicated TOC content did not differ significantly. In the DJ chronosequence, TOC content in the 0–30 cm depth declined from 31·3 Mg ha−1 in 5‐year‐old soils to 23·4 Mg ha−1 in 16‐year‐old soils. The C:N ratios suggested that some (up to 2·0 per cent) of the TOC was potentially derived from coal particles in these reclaimed soils. Soil total N (TN) contents followed a similar trend as TOC with TOC and TN concentrations strongly correlated. Lignin contents in TOC of all reclaimed soils and topsoil stockpiles (TSs) were higher than that of nearby undisturbed soils, indicating the recalcitrant nature of TOC in reclaimed soils and/or possibly the slow recovery of lignin degrading organism. Results indicated that TOC accumulations in DJ were largely controlled by its composition, particular lignin content. In BA sites TOC accumulation was strongly influenced by both clay and lignin contents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
耕作与轮作方式对黑土有机碳和全氮储量的影响   总被引:10,自引:1,他引:9  
土壤有机碳(SOC)及全氮(TN)对土壤肥力、作物产量、农业可持续发展以及全球碳、氮循环等都具有重要影响。为探索不同耕作和轮作方式对耕层黑土SOC和TN储量的影响,本文以吉林省德惠市进行了8 a的田间定位试验中层黑土为研究对象,对免耕、垄作和秋翻三种耕作方式及玉米-大豆轮作和玉米连作两种轮作方式下SOC和TN在各土层的含量变化进行了分析,并采用等质量土壤有机质储量计算方法,对比分析了不同处理对0~30 cm SOC和TN储量的影响。结果表明,与试验开始前相比,玉米-大豆轮作系统中,秋翻下SOC和TN储量均有所降低;免耕显著增加了0~5 cm SOC及TN含量,但SOC在亚表层亏损,导致其储量并未增加;而垄作处理下SOC及TN含量在0~5、5~10 cm的均显著增加,0~30 cm储量亦分别增加了4.9%和10.7%。玉米连作系统的两种耕作处理(免耕和秋翻)下SOC和TN储量均有所增加,且TN储量增幅均高于玉米-大豆轮作系统,其中免耕下TN储量增幅是玉米-大豆轮作的3.2倍。所有处理下C/N均呈降低趋势,其中垄作0~5 cm C/N由12.05降至11.04,降低幅度分别是免耕和秋翻的3.2和2.8倍。综上可知,对质地黏重排水不良的中层黑土,玉米-大豆轮作系统下免耕并不是促进SOC固定的有效形式,而垄作则促进了黑土SOC和TN的积累,这不仅有利于土壤肥力的改善,而且是使农田黑土由CO2"源"变为"汇"的有效形式之一。与玉米-大豆轮作相比,玉米连作下三种耕作方式都有利于SOC和TN积累。  相似文献   

13.
中国黄土高原区轮耕对土壤团聚体、有机碳氮含量的影响   总被引:2,自引:0,他引:2  
In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk density, and increase soil aggregates and organic carbon in the 0-40 cm soil layer. A 3-year field study was conducted to determine the effect of tillage practices on soil organic carbon (SOC), total nitrogen (TN), water-stable aggregate size distribution and aggregate C and N sequestration from 0 to 40 cm soil in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT-ST-NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST-NT-ST); and conventional tillage over years 1-3 (CT). Mean values of soil bulk density in 0-40 cm under NT-ST-NT and ST-NT-ST were significantly decreased by 3.3% and 6.5%, respectively, compared with CT, while soil total porosity was greatly improved. Rotational tillage increased SOC, TN, and water-stable aggregates in the 0-40 cm soil, with the greatest effect under ST-NT-ST. In 0-20 and 20-40 cm soils, the tillage effect was confined to the 2-0.25 mm size fraction of soil aggregates, and rotational tillage treatments obtained significantly higher SOC and TN contents than conventional tillage. No significant differences were detected in SOC and TN contents in the >2 mm and <0.25 mm aggregates among all treatments. In conclusion, rotational tillage practices could significantly increase SOC and TN levels, due to a fundamental change in soil structure, and maintain agroecosystem sustainability in the Loess Plateau area of China.  相似文献   

14.
Minesoils are characterized by low soil organic matter and poor soil physicochemical environment. Mine soil reclamation process has potential to restore soil fertility and sequester carbon (C) over time. Soil organic C (SOC) pool and associated soil properties were determined for reclaimed minesoils under grass and forest landuses of varied establishment year. Three grassland sites of 30, 9, and 1 years after reclamation (G30, G9, and G1) and two forest sites, 11 years after reclamation (RF) and undisturbed stand of 40 years (UF), were selected within four counties (Morgan, Muskingum, Noble, and Coshocton) of southeastern Ohio. Soil bulk density (BD) of reclaimed forest (RF) soil was significantly higher than undisturbed forest (UF) soils within 10–40 cm soil depth profile. Reclamation process increased soil pH from slightly acidic to alkaline and decreased the soil EC in both landuses. Among grassland soils, significant changes in SOC and total soil N contents were observed within 0–10 cm soil depth. SOC contents of G30 (29.7 Mg ha−1) and G9 (29.5 Mg ha−1) were significantly higher than G1 soils (9.11 Mg ha−1). Soil N content was increased from G1 (0.95 Mg ha−1) to G9 (2.00 Mg ha−1) site and then the highest value was found under G30 (3.25 Mg ha−1) site within 0–10 cm soil depth. UF soils had significantly higher SOC and total N content than RF soils at 0–10 and 10–20 cm soil depths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
We examined the interacting effects of drastic disturbance and re‐vegetation communities on the development of soil properties over time. We compared soil characteristics from an undisturbed reference site with reclaimed mine sites that differed by vegetation type and time since reclamation: Three sites were seeded solely with crested wheatgrass (Agropyron cristatum) (11, 16, and 29 years old), and two were seeded with native cool‐season grass mixes (14 and 26 years old). We sampled soil at two depths (0–5 and 5–15 cm) for soil macroaggregate and microaggregate weights, aggregate carbon to nitrogen (C : N) ratios, and microbial abundance. We employed a Bayesian bivariate model to account for potential correlations in soil properties across depths and compared soil properties across sites using posterior predictive distributions. We found that all reclaimed soils, regardless of vegetation type, had total aggregate weights that were similar to the undisturbed reference soil but had a larger proportion of macroaggregates than the reference soil. Aggregate C : N ratios were similar between the undisturbed reference and crested wheatgrass soils, while the reclaimed native cool‐season grass soils had lower C : N ratios in the top 5 cm. Total microbial abundance in soils seeded with crested wheatgrass was an order of magnitude lower than that in soils occupied by native species (both reclaimed and undisturbed). The presence of crested wheatgrass on the reclaimed sites alone did not differentiate all soil properties across our reclamation sites, but seeding this single, aggressive species may have contributed to maintaining different belowground characteristics on reclaimed soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Forest soils have large contents of carbon (C) and total nitrogen (TN), which have significant spatial variability laterally across landscapes and vertically with depth due to decomposition, erosion and leaching. Therefore, the ratio of C to TN contents (C:N), a crucial indicator of soil quality and health, is also different depending on soil horizon. These attributes can cost-effectively and rapidly be estimated using visible–near infrared–shortwave infrared (VNIR–SWIR) spectroscopy. Nevertheless, the effect of different soil layers, particularly over large scales of highly heterogeneous forest soils, on the performance of the technique has rarely been attempted. This study evaluated the potential of VNIR–SWIR spectroscopy in quantification and variability analysis of C:N in soils from different organic and mineral layers of forested sites of the Czech Republic. At each site, we collected samples from the litter (L), fragmented (F) and humus (H) organic layers, and from the A1 (depth of 2–10 cm) and A2 (depth of 10–40 cm) mineral layers providing a total of 2505 samples. Support vector machine regression (SVMR) was used to train the prediction models of the selected attributes at each individual soil layer and the merged layer (profile). We further produced the spatial distribution maps of C:N as the target attribute at each soil layer. Results showed that the prediction accuracy based on the profile spectral data was adequate for all attributes. Moreover, F was the most accurately predicted layer, regardless of the soil attribute. C:N models and maps in the organic layers performed well although in mineral layers, models were poor and maps were reliable only in areas with low and moderate C:N. On the other hand, the study indicated that reflectance spectra could efficiently predict and map organic layers of the forested sites. Although, in mineral layers, high values of C:N (≥ 50) were not detectable in the map created based on the reflectance spectra. In general, the study suggests that VNIR–SWIR spectroscopy has the feasibility of modelling and mapping C:N in soil organic horizons based on national spectral data in the forests of the Czech Republic.  相似文献   

17.
长期水耕植稻对水稻土耕层质地的影响   总被引:1,自引:0,他引:1  
为了解长期水耕植稻对南方地区水田表土层颗粒组成的影响,以浙江省为研究区,采用历史资料分析、典型样区调查及定点观察相结合的方法,研究水稻土耕作层(包括犁底层)与心土层间黏粒含量的差异,分析植稻时间对水稻土不同土层颗粒组成的影响,比较植稻期间稻田排水中泥砂物质的颗粒组成与对应土壤间的差异,探讨了长期植稻对水稻土剖面质地分异的影响。对浙江省456个代表性剖面统计,与水稻土心土层比较,耕作层和犁底层黏粒含量平均下降了14%和10%。对植稻不同时间的浅海沉积物(从10~20年至80年)、第四纪红土(从5~20年至70年)和玄武岩风化物(从5~20年至35~70年)发育的水稻土比较发现,随植稻时间的增加,耕作层和犁底层土壤砂粒含量呈现增加趋势,黏粒含量明显下降,耕作层、犁底层与心土层黏粒含量的比值逐渐下降。农田排水中泥砂物质的黏粒和粉砂含量高于对应农田土壤,而砂粒含量则低于相应的土壤。分析认为,长期水耕植稻可导致耕作层土壤砂化(即砂粒含量增加,黏粒含量下降),其原因除与水耕过程中黏粒淋淀外,排水中黏粒和粉砂细颗粒的选择性流失对耕作层砂化也有较大的贡献。  相似文献   

18.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   

19.
东北地区滨海盐渍土型稻田土壤有机氮组分的研究   总被引:3,自引:0,他引:3  
用Bremner法测定东北地区滨海盐渍土型开垦5年、30年稻田土壤和邻近未开垦稻田的旱地土壤的有机氮各组分含量。结果表明:(1)在0~60 cm土层,3种土壤非酸解性全氮含量及其占全氮比率明显大于酸解性全氮,但总体上以表层土壤(0~20 cm)为最高。(2)与未开垦旱地土壤相比,种稻5年和30年均使表层土壤酸解全氮含量明显下降,但种稻5年使土壤酸解氨基酸态氮和氨基糖态氮的含量及其占全氮比率明显增加,使氨态氮和未知态氮的含量及其占全氮比率明显下降;而种稻30年则均使土壤酸解各组分氮含量及其占全氮比率明显下降。(3)与未开垦旱地土壤相比,种稻5年和30年稻田土壤酸解全氮含量及其占全氮比率均随土层深度的增加而逐渐降低,但2种稻田土壤酸解各组分氮含量及其占全氮比率的剖面分布则无明显的变化规律。  相似文献   

20.
城郊土壤不透水表面有土壤机碳转化及其相关性质的研究   总被引:2,自引:0,他引:2  
Installation of impervious surface in urban area prevents the exchange of material and energy between soil and other environmental counterparts, thereby resulting in negative effects on soil function and urban environment. Soil samples were collected at 0-20 cm depth in Nanjing City, China, in which seven sites were selected for urban open soils, and fourteen sites with similar parent material were selected for the impervious-covered soils, to examine the effect of impervious surface on soil properties and microbial activities, and to determine the most important soil properties associated with soil organic carbon (SOC) transformation in the urban soils covered by impervious surfaces. Soil organic carbon and water-soluble organic carbon (WSOC) concentrations, potential carbon (C) and nitrogen (N) mineralization rates, basal respiration, and physicochemical properties with respect to C transformation were measured. Installation of impervious surface severely affected soil physicochemical properties and microbial activities, e.g., it significantly decreased total N contents, potential C mineralization and basal respiration rate (P 〈 0.01), while increased pH, clay and Olsen-P concentrations. Soil organic carbon in the sealed soils at 0-20 cm was 2.35 kg m-2, which was significantly lower than the value of 4.52 kg m-2 in the open soils (P 〈 0.05). Canonical correlation analysis showed WSOC played a major role in determining SOC transformation in the impervious-covered soil, and it was highly correlated with total N content and potential C mineralization rate. These findings demonstrate that installation of impervious surface in urban area, which will result in decreases of SOC and total N concentrations and soil microbial activities, has certain negative consequences for soil fertility and long-term storage of SOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号